Nanotechnology in Air Pollution Remediation
Haleema Saleem
Qatar University, Center for Advanced Materials (CAM), University Street, P. O. Box:2713, Doha, Qatar
Universiti Teknologi Malaysia, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Jalan Iman, Johor Bahru, 81310 Malaysia
Search for more papers by this authorSyed J. Zaidi
Qatar University, Center for Advanced Materials (CAM), University Street, P. O. Box:2713, Doha, Qatar
Search for more papers by this authorAhmad F. Ismail
Universiti Teknologi Malaysia, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Jalan Iman, Johor Bahru, 81310 Malaysia
Search for more papers by this authorPei S. Goh
Universiti Teknologi Malaysia, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Jalan Iman, Johor Bahru, 81310 Malaysia
Search for more papers by this authorHaleema Saleem
Qatar University, Center for Advanced Materials (CAM), University Street, P. O. Box:2713, Doha, Qatar
Universiti Teknologi Malaysia, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Jalan Iman, Johor Bahru, 81310 Malaysia
Search for more papers by this authorSyed J. Zaidi
Qatar University, Center for Advanced Materials (CAM), University Street, P. O. Box:2713, Doha, Qatar
Search for more papers by this authorAhmad F. Ismail
Universiti Teknologi Malaysia, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Jalan Iman, Johor Bahru, 81310 Malaysia
Search for more papers by this authorPei S. Goh
Universiti Teknologi Malaysia, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Jalan Iman, Johor Bahru, 81310 Malaysia
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Air pollution is a major concern worldwide with consequences for the environment and human health. The latest developments in nanotechnology can contribute to potential solutions for the air contamination issues and remarkably increase the selectivity as well as efficiency of air purification systems, thus providing cost efficiency and longer-term performance. Air pollution could be remediated with the help of nanotechnology in different ways, such as using nanoadsorbents, nanofilters, nanocatalysts, and nanosensors. It is extremely important and urgent to design as well as develop nano-enabled filters, membranes, adsorbents, sensors, and catalysts that demonstrate improved performance for the control of air pollution. This chapter focuses on the utilization of various nanomaterials in air pollution remediation applications. We examine mostly the carbon-based nanomaterials together with metal-based nanomaterials for the removal of pollutants from the atmosphere. Finally, the possible adverse impacts of the atmospheric nanomaterials (carbon-based nanomaterials and metal-based nanomaterials) are also discussed.
References
- Bradstreet , J.W. ( 1996 ). Hazardous Air Pollutants: Assessment, Liabilities and Regulatory Compliance . Elsevier .
- World Health Organization ( 2021 ). Air pollution . https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed 07 March 2021).
- Saleem , H. and Mittal , V. ( 2018 ). Nanocellulose as reinforcement in polymer nanocomposites . In: Nanocellulose (ed. V. Mittal ), 77 – 102 . Central West Publishing .
- Saleem , H. and Zaidi , S.J. ( 2020 ). Recent developments in the application of nanomaterials in agroecosystems . Nanomaterials 10 ( 12 ): 2411 .
- Saleem , H. and Zaidi , S.J. ( 2020 ). Sustainable use of nanomaterials in textiles and their environmental impact . Materials 13 ( 22 ): 5134 .
- Yadav , S. , Saleem , H. , Ibrar , I. et al. ( 2020 ). Recent developments in forward osmosis membranes using carbon-based nanomaterials . Desalination 482 : 114375 .
- Saleem , H. and Mittal , V. ( 2018 ). Polymer nanocomposites for gas barrier and packaging applications . In: Polymer Nanocomposites: Emerging Applications (ed. V. Mittal ), 1 – 34 . Central West Publishing .
- AlZainati , N. , Saleem , H. , Altaee , A. et al. ( 2021 ). Pressure retarded osmosis: advancement, challenges and potential . Journal of Water Process Engineering 40 : 101950 , ISSN 2214-7144.
- Saleem , H. and Mittal , V. ( 2018 ). Polymer nano-composites for electronics applications . In: Polymer Nanocomposites: Emerging Applications (ed. V. Mittal ), 191 – 224 . Central West Publishing .
- Saleem , H. and Mittal , V. ( 2018 ). Polymer nano-composites for wastewater treatment applications . In: Polymer Nanocomposites: Emerging Applications (ed. V. Mittal ), 117 – 146 . Central West Publishing .
- Xu , X. , Song , C. , Miller , B.G. , and Scaroni , A.W. ( 2005 ). Influence of moisture on CO 2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41 . Industrial and Engineering Chemistry Research 44 : 8113 – 8119 .
- Hussain , C.M. ( 2015 ). Carbon nanomaterials as adsorbents for environmental analysis . In: Nanomaterials for Environmental Protection (ed. B.I. Kharisov , O.V. Kharissova and H.V.R. Dias ), 217 – 236 , Wiley.
- Gui , M.M. , Yap , Y.X. , Chai , S.P. , and Mohamed , A.R. ( 2013 ). Multi-walled carbon nanotubes modified with (3-aminopropyl) triethoxysilane for effective carbon dioxide adsorption . International Journal of Greenhouse Gas Control 14 : 65 – 73 .
- Portela , R. , Rubio-Marcos , F. , Leret , P. et al. ( 2015 ). Nanostructured ZnO/sepiolite monolithic sorbents for H 2 S removal . Journal of Materials Chemistry A 3 ( 3 ): 1306 – 1316 .
- Huy , N.N. , Thuy , V.T.T. , Thang , N.H. et al. ( 2019 ). Facile one-step synthesis of zinc oxide nanoparticles by ultrasonic-assisted precipitation method and its application for H 2 S adsorption in air . Journal of Physics and Chemistry of Solids 132 : 99 – 103 .
- Liu , Z. , Mao , X. , Tu , J. , and Jaccard , M. ( 2014 ). A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO 2 control in China's iron and steel sector . Journal of Environmental Management 144 : 135 – 142 .
- Luo , L. , Guo , Y. , Zhu , T. , and Zheng , Y. ( 2017 ). Adsorption species distribution and multicomponent adsorption mechanism of SO 2 , NO, and CO 2 on commercial adsorbents . Energy & Fuels 31 ( 10 ): 11026 – 11033 .
- Arcibar-Orozco , J.A. , Rangel-Mendez , J.R. , and Bandosz , T.J. ( 2013 ). Reactive adsorption of SO 2 on activated carbons with deposited iron nanoparticles . Journal of Hazardous Materials 246 : 300 – 309 .
- Sekhavatjou , M.S. , Moradi , R. , Hosseini , A.A. , and Taghinia , H.A. ( 2014 ). A new method for sulfur components removal from sour gas through application of zinc and iron oxides nanoparticles . International Journal of Environmental Research (IJER) 8 ( 2 ): 273 – 278 .
- Mahmoodi Meimand , M. , Javid , N. , and Malakootian , M. ( 2019 ). Adsorption of sulfur dioxide on clinoptilolite/nano iron oxide and natural clinoptilolite . Health Scope 8 ( 2 ): 1 – 8 .
- Li , Z. , Liao , F. , Jiang , F. et al. ( 2016 ). Capture of H 2 S and SO 2 from trace sulfur containing gas mixture by functionalized UiO-66 (Zr) materials: a molecular simulation study . Fluid Phase Equilibria 427 : 259 – 267 .
- DeCoste , J.B. , Demasky , T.J. , Katz , M.J. et al. ( 2015 ). A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals . New Journal of Chemistry 39 ( 4 ): 2396 – 2399 .
- Saleem , H. , Trabzon , L. , Kilic , A. , and Zaidi , S.J. ( 2020 ). Recent advances in nanofibrous membranes: production and applications in water treatment and desalination . Desalination 478 : 114178 .
- Saleem , H. and Zaidi , S.J. ( 2020 ). Developments in the application of nanomaterials for water treatment and their impact on the environment . Nanomaterials 10 ( 9 ): 1764 .
-
Saleem , H.
and
Javaid Zaidi , S.
(
2020
).
Innovative nanostructured membranes for reverse osmosis water desalination
.
https://doi.org/10.29117/quarfe.2020.0023
.
10.29117/quarfe.2020.0023 Google Scholar
- Saleem , H. and Zaidi , S.J. ( 2020 ). Nanoparticles in reverse osmosis membranes for desalination: a state of the art review . Desalination 475 : 114171 .
- Zaidi , S.J. , Fadhillah , F. , Saleem , H. et al. ( 2019 ). Organically modified nanoclay filled thin-film nanocomposite membranes for reverse osmosis application . Materials 12 ( 22 ): 3803 .
- Horváth , E. , Rossi , L. , Mercier , C. et al. ( 2020 ). Photocatalytic nanowires-based air filter: towards reusable protective masks . Advanced Functional Materials 30 ( 40 ): 2004615 .
- Deng , N. , He , H. , Yan , J. et al. ( 2019 ). One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration . Polymer 165 : 174 – 179 .
- Kadam , V.V. , Wang , L. , and Padhye , R. ( 2018 ). Electrospun nanofibre materials to filter air pollutants – a review . Journal of Industrial Textiles 47 ( 8 ): 2253 – 2280 .
- Li , Q. , Wu , J. , Huang , L. et al. ( 2018 ). Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes . Journal of Materials Chemistry A 6 ( 25 ): 12115 – 12124 .
- Yin , L. , Hu , M. , Li , D. et al. ( 2020 ). Multifunctional ZIF-67@SiO 2 membrane for high efficiency removal of particulate matter and toxic gases . Industrial & Engineering Chemistry Research 59 ( 40 ): 17876 – 17884 .
- Zhang , Y. , Yuan , S. , Feng , X. et al. ( 2016 ). Preparation of nanofibrous metal–organic framework filters for efficient air pollution control . Journal of the American Chemical Society 138 ( 18 ): 5785 – 5788 .
- Lim , C.T. ( 2017 ). Nanofiber technology: current status and emerging developments . Progress in Polymer Science 70 : 1 – 17 .
- Feng , S. , Li , X. , Zhao , S. et al. ( 2018 ). Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO 2 dynamic adsorption . Environmental Science: Nano 5 ( 12 ): 3023 – 3031 .
- Sondi , I. and Salopek-Sondi , B. ( 2004 ). Silver nanopartiklar som antimikrobiellt medel: En fallstudie på E. coli som modell för gramnegativa bakterier . Journal of Colloid and Interface Science 275 ( 1 ): 177 – 182 .
- Li , L. , Frey , M.W. , and Green , T.B. ( 2006 ). Modification of air filter media with nylon-6 nanofibers . Journal of Engineered Fibers and Fabrics 1 ( 1 ): 155892500600100101 .
- Balamurugan , R. , Sundarrajan , S. , and Ramakrishna , S. ( 2011 ). Recent trends in nanofibrous membranes and their suitability for air and water filtrations . Membranes 1 ( 3 ): 232 – 248 .
-
Rastogi , S.K.
,
Jabal , J.M.F.
,
Zhang , H.
et al. (
2011
).
Antibody@silica coated iron oxide nanoparticles: synthesis, capture of
E. coli
and SERS titration of biomolecules with antibacterial silver colloid
.
Journal of Nanomedicine & Nanotechnology
2
(
7
):
1
–
8
.
10.4172/2157-7439.1000121 Google Scholar
- Qing , Y.'a. , Cheng , L. , Li , R. et al. ( 2018 ). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies . International Journal of Nanomedicine 13 : 3311 .
- Hamza , A.M. , Alhtheal , E.D. , and Shakir , A.K. ( 2017 ). Enhancement the efficiency of ZnO nanofiber mats antibacterial using novel PVA/Ag nanoparticles . Energy Procedia 119 : 615 – 621 .
- Souzandeh , H. , Molki , B. , Zheng , M. et al. ( 2017 ). Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration . ACS Applied Materials & Interfaces 9 ( 27 ): 22846 – 22855 .
- Yu , H. , Liu , R. , Wang , X. et al. ( 2012 ). Enhanced visible-light photocatalytic activity of Bi 2 WO 6 nanoparticles by Ag 2 O cocatalyst . Applied Catalysis B: Environmental 111 : 326 – 333 .
-
Huang , Y.
,
Wang , W.
,
Zhang , Y.
et al. (
2019
).
Synthesis and applications of nanomaterials with high photocatalytic activity on air purification
. In:
Novel Nanomaterials for Biomedical, Environmental and Energy Applications
(ed.
X. Wang
and
X. Chen
),
299
–
325
.
Elsevier
.
10.1016/B978-0-12-814497-8.00010-2 Google Scholar
- Rodrigues-Silva , C. , Miranda , S.M. , Lopes , F.V.S. et al. ( 2017 ). Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase . Environmental Science and Pollution Research 24 ( 7 ): 6372 – 6381 .
- Binas , V. , Venieri , D. , Kotzias , D. , and Kiriakidis , G. ( 2017 ). Modified TiO 2 based photocatalysts for improved air and health quality . Journal of Materiomics 3 ( 1 ): 3 – 16 .
- Rezaee , A. , Rangkooy , H. , Khavanin , A. , and Jafari , A.J. ( 2014 ). High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char . Environmental Chemistry Letters 12 ( 2 ): 353 – 357 .
- Vohra , A. , Goswami , D.Y. , Deshpande , D.A. , and Block , S.S. ( 2006 ). Enhanced photocatalytic disinfection of indoor air . Applied Catalysis B: Environmental 64 ( 1, 2 ): 57 – 65 .
- Tallury , P. , Malhotra , A. , Byrne , L.M. , and Santra , S. ( 2010 ). Nanobioimaging and sensing of infectious diseases . Advanced Drug Delivery Reviews 62 ( 4, 5 ): 424 – 437 .
- Phan , D.-T. and Chung , G.-S. ( 2014 ). Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites . International Journal of Hydrogen Energy 39 ( 1 ): 620 – 629 .
-
Nurzulaikha , R.
,
Lim , H.N.
,
Harrison , I.
et al. (
2015
).
Graphene/SnO
2
nanocomposite-modified electrode for electrochemical detection of dopamine
.
Sensing and Bio-Sensing Research
5
:
42
–
49
.
10.1016/j.sbsr.2015.06.002 Google Scholar
- Agarwal , P.B. , Alam , B. , Sharma , D.S. et al. ( 2018 ). Flexible NO 2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates . Flexible and Printed Electronics 3 ( 3 ): 035001 .
- Wang , Z. , Zhang , T. , Zhao , C. et al. ( 2018 ). Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO 2 sensing . Sensors and Actuators B: Chemical 260 : 508 – 518 .
-
Endo , M.
,
Strano , M.S.
, and
Ajayan , P.M.
(
2007
).
Potentia
l applications of carbon nanotubes
. In:
Carbon Nanotubes
(ed.
A. Jorio
,
G. Dresselhaus
and
M.S. Dresselhaus
),
13
–
62
.
Berlin, Heidelberg
:
Springer
.
10.1007/978-3-540-72865-8_2 Google Scholar
- Jeon , J.-Y. , Kang , B.-C. , Byun , Y.T. , and Ha , T.-J. ( 2019 ). High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level . Nanoscale 11 ( 4 ): 1587 – 1594 .
- Karakuscu , A. , Hu , L.-H. , Ponzoni , A. et al. ( 2015 ). Si OCN functionalized carbon nanotube gas sensors for elevated temperature applications . Journal of the American Ceramic Society 98 ( 4 ): 1142 – 1149 .
- Liao , L. , Lu , H.B. , Li , J.C. et al. ( 2007 ). Size dependence of gas sensitivity of ZnO nanorods . Journal of Physical Chemistry C 111 ( 5 ): 1900 – 1903 .
- Huang , M.H. , Wu , Y. , Feick , H. et al. ( 2001 ). Catalytic growth of zinc oxide nanowires by vapor transport . Advanced Materials 13 ( 2 ): 113 – 116 .
- Zhang , B. , Li , M. , Song , Z. et al. ( 2017 ). Sensitive H 2 S gas sensors employing colloidal zinc oxide quantum dots . Sensors and Actuators B: Chemical 249 : 558 – 563 .
- Song , Z. , Wei , Z. , Wang , B. et al. ( 2016 ). Sensitive room-temperature H 2 S gas sensors employing SnO 2 quantum wire/reduced graphene oxide nanocomposites . Chemistry of Materials 28 ( 4 ): 1205 – 1212 .
- Shanmugasundaram , A. , Chinh , N.D. , Jeong , Y.-J. et al. ( 2019 ). Hierarchical nanohybrids of B- and N-codoped graphene/mesoporous NiO nanodisks: an exciting new material for selective sensing of H 2 S at near ambient temperature . Journal of Materials Chemistry A 7 ( 15 ): 9263 – 9278 .
- Chatterjee , C. and Sen , A. ( 2015 ). Sensitive colorimetric sensors for visual detection of carbon dioxide and sulfur dioxide . Journal of Materials Chemistry A 3 ( 10 ): 5642 – 5647 .
-
Shao , L.
,
Chen , G.
,
Ye , H.
et al. (
2013
).
Sulfur dioxide adsorbed on graphene and heteroatom-doped graphene: a first-principles study
.
European Physical Journal B: Condensed Matter and Complex Systems
86
(
2
):
1
–
5
.
10.1140/epjb/e2012-30853-y Google Scholar
- Ren , Y. , Zhu , C. , Cai , W. et al. ( 2012 ). Detection of sulfur dioxide gas with graphene field effect transistor . Applied Physics Letters 100 ( 16 ): 163114 .
- Zhang , D. , Liu , J. , Jiang , C. , and Li , P. ( 2017 ). High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite . Sensors and Actuators B: Chemical 245 : 560 – 567 .
- Liu , Y. , Xu , X. , Chen , Y. et al. ( 2018 ). An integrated micro-chip with Ru/Al 2 O 3 /ZnO as sensing material for SO 2 detection . Sensors and Actuators B: Chemical 262 : 26 – 34 .
-
Petryshak , V.
,
Mikityuk , Z.
,
Vistak , M.
et al. (
2017
).
Highly sensitive active medium of primary converter SO
2
sensors based on cholesteric-nematic mixtures, doped by carbon nanotubes
.
Przeglad Elektrotechniczny
1
:
119
–
122
.
10.15199/48.2017.03.27 Google Scholar
- Ray , P.C. , Yu , H. , and Fu , P.P. ( 2009 ). Toxicity and environmental risks of nanomaterials: challenges and future needs . Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis & Ecotoxicology Reviews 27 ( 1 ): 1 – 35 .
- Klaine , S.J. , Alvarez , P.J.J. , Batley , G.E. et al. ( 2008 ). Nanomaterials in the environment: behavior, fate, bioavailability, and eff ects . Environmental Toxicology and Chemistry 27 ( 9 ): 1825 – 1851 .
-
Gautam , R.K.
and
Chattopadhyaya , M.C.
(
2016
).
Nanomaterials for Wastewater Remediation
.
Butterworth-Heinemann
.
10.1201/9781315368108 Google Scholar
-
Medhi , H.
and
Bhattacharyya , K.G.
(
2018
).
Functionalized nanomaterials for pollution abatement
. In:
Nanotechnology in Environmental Science
(ed.
C.M. Hussain
and
A.K. Mishra
),
599
–
648
, Wiley.
10.1002/9783527808854.ch19 Google Scholar