Nanotechnology for Water Treatment: Recent Advancement in the Remediation of Organic and Inorganic Compounds
Charulata Sivodia
Indian Institute of Technology (Indian School of Mines), Department of Environmental Science and Engineering, Dhanbad, Jharkhand, India
Search for more papers by this authorAlok Sinha
Indian Institute of Technology (Indian School of Mines), Department of Environmental Science and Engineering, Dhanbad, Jharkhand, India
Search for more papers by this authorCharulata Sivodia
Indian Institute of Technology (Indian School of Mines), Department of Environmental Science and Engineering, Dhanbad, Jharkhand, India
Search for more papers by this authorAlok Sinha
Indian Institute of Technology (Indian School of Mines), Department of Environmental Science and Engineering, Dhanbad, Jharkhand, India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
The existence of several organic (dyes and pesticides) and inorganic pollutants (heavy metals) in the environment imposed adverse effects on living organisms. The lack of proper monitoring and insufficiency of conventional treatment plants has aggravated the risk of their exposure to humans and fauna. Recently, nanotechnology has been emerged as a potential environmental technology for the remediation of persistent pollutants due to its remarkable surface area and quantum size effects. Nanomaterials (zero-valent iron, multi-walled carbon nanotubes, and nanofiber) are widely applied as catalysts or adsorbents in different treatment systems. This chapter defines the role of nanotechnology in the removal of organic and inorganic contaminants.
References
- Albadarin , A.B. , Collins , M.N. , Naushad , M. et al. ( 2017 ). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue . Chemical Engineering Journal 307 : 264 – 272 .
- Naushad , M. and Alothman , Z.A. ( 2015 ). Separation of toxic Pb 2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation . Desalination and Water Treatment 53 ( 8 ): 2158 – 2166 .
- Wu , L.K. , Wu , H. , Liu , Z.Z. et al. ( 2018 ). Highly porous copper ferrite foam: a promising adsorbent for efficient removal of As(III) and As(V) from water . Journal of Hazardous Materials 347 : 15 – 24 .
- WHO/UNICEF. Joint Water Supply, & Sanitation Monitoring Programme ( 2014 ). Progress on Drinking Water and Sanitation: 2014 Update . World Health Organization .
- Elias , M.A. , Hadiba rata , T. , and Sathishkumar , P. ( 2021 ). Modified oil palm industry solid waste as a potential adsorbent for lead removal . Environmental Chemistry and Ecotoxicology 3 : 1 – 7 .
- Ibrahim , R.K. , Hayyan , M. , AlSaadi , M.A. et al. ( 2016 ). Environmental application of nanotechnology: air, soil, and water . Environmental Science and Pollution Research 23 ( 14 ): 13754 – 13788 .
- Mohapatra , M. , Anand , S. , Mishra , B.K. et al. ( 2009 ). Review of fluoride removal from drinking water . Journal of Environmental Management 91 ( 1 ): 67 – 77 .
- Sathishkumar , P. , Arulkumar , M. , and Palvannan , T. ( 2012 ). Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye remazol brilliant blue R (RBBR) . Journal of Cleaner Production 22 ( 1 ): 67 – 75 .
- Panahi , Y. , Mellatyar , H. , Farshbaf , M. et al. ( 2018 ). Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment . Materials Today: Proceedings 5 ( 7 ): 15550 – 15558 .
- Zahari , A.M. , Shuo , C.W. , Sathishkumar , P. et al. ( 2018 ). A reusable electrospun PVDF-PVP-MnO 2 nanocomposite membrane for bisphenol A removal from drinking water . Journal of Environmental Chemical Engineering 6 ( 5 ): 5801 – 5811 .
-
E. Lichtfouse
,
J. Schwarzbauer
, and
D. Robert
(ed.) (
2015
).
Pollutants in Buildings, Water and Living Organisms
.
Springer International Publishing
.
10.1007/978-3-319-19276-5 Google Scholar
-
Rienzie , R.
,
Ramanayaka , S.
, and
Adassooriya , N.M.
(
2019
).
Nanotechnology applications for the removal of environmental contaminants from pharmaceuticals and personal care products
. In:
Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology
,
279
–
296
.
Butterworth-Heinemann
.
10.1016/B978-0-12-816189-0.00012-3 Google Scholar
- Biswas , A. , Bayer , I.S. , Biris , A.S. et al. ( 2012 ). Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects . Advances in Colloid and Interface Science 170 ( 1, 2 ): 2 – 27 .
- Saleh , T.A. ( 2020 ). Nanomaterials: classification, properties, and environmental toxicities . Environmental Technology and Innovation 20 : 101067 .
- Gutiérrez , J.C. , Amaro , F. , and Martín-González , A. ( 2015 ). Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review . Frontiers in Microbiology 6 : 48 .
- Ngah , W.W. and Hanafiah , M.M. ( 2008 ). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review . Bioresource Technology 99 ( 10 ): 3935 – 3948 .
- Azzam , A.M. , El-Wakeel , S.T. , Mostafa , B.B. , and El-Shahat , M.F. ( 2016 ). Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles . Journal of Environmental Chemical Engineering 4 ( 2 ): 2196 – 2206 .
- Fu , F. , Dionysiou , D.D. , and Liu , H. ( 2014 ). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review . Journal of Hazardous Materials 267 : 194 – 205 .
- Shi , Y. , Xing , Y. , Deng , S. et al. ( 2020 ). Synthesis of proanthocyanidins-functionalized Fe 3 O 4 magnetic nanoparticles with high solubility for removal of heavy-metal ions . Chemical Physics Letters 753 : 137600 .
- Lin , S. , Lian , C . , Xu , M. et al. ( 2017 ). Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents . Applied Surface Science 422 : 675 – 681 .
- Liu , X. , Jiang , B. , Yin , X. et al. ( 2020 ). Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions . Separation and Purification Technology 233 : 115976 .
- Das , G.S. , Sarkar , S. , Aggarwal , R. et al. ( 2019 ). Fluorescent microspheres of zinc 1,2-dicarbomethoxy-1,2-dithiolate complex decorated with carbon nanotubes . Carbon Letters 29 ( 6 ): 595 – 603 .
- A. Malik and E. Grohmann (ed.) ( 2011 ). Environmental Protection Strategies for Sustainable Development . Springer Science & Business Media .
- Xu , W. , Wang , X. , and Cai , Z. ( 2013 ). Analytical chemistry of the persistent organic pollutants identified in the Stockholm convention: a review . Analytica Chimica Acta 790 : 1 – 13 .
- Van Der Zee , F.P. , Bisschops , I.A. , Lettinga , G. , and Field , J.A. ( 2003 ). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes . Environmental Science and Technology 37 ( 2 ): 402 – 408 .
- Kim , S.H. and Choi , P.P. ( 2017 ). Enhanced congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies . Dalton Transactions 46 ( 44 ): 15470 – 15479 .
- Moon , B.H. , Park , Y.B. , and Park , K.H. ( 2011 ). Fenton oxidation of orange II by pre-reduction using nanoscale zero-valent iron . Desalination 268 ( 1–3 ): 249 – 252 .
- Liu , J. , Liu , A. , Wang , W. et al. ( 2019 ). Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes . Chemosphere 237 : 124470 .
- Hong , M. , Wang , Y. , Wang , R. et al. ( 2021 ). Poly(sodium styrene sulfonate) functionalized graphene as a highly efficient adsorbent for cationic dye removal with a green regeneration strategy . Journal of Physics and Chemistry of Solids 152 : 109973 .
- Mahmoudian , M. and Kochameshki , M.G. ( 2021 ). The performance of polyethersulfone nanocomposite membrane in the removal of industrial dyes . Polymer 224 : 123693 .
- He , F. , Zhao , D. , and Paul , C. ( 2010 ). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones . Water Research 44 ( 7 ): 2360 – 2370 .
- Huang , B. , Lei , C. , Wei , C. , and Zeng , G. ( 2014 ). Chlorinated volatile organic compounds (Cl-VOCs) in environment – sources, potential human health impacts, and current remediation technologies . Environment International 71 : 118 – 138 .
- Arellano-González , M.Á. , González , I. , and Texier , A.C. ( 2016 ). Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes . Journal of Hazardous Materials 314 : 181 – 187 .
-
Littke , A.F.
and
Fu , G.C.
(
2002
).
Palladium-catalyzed coupling reactions of aryl chlorides
.
Angewandte Chemie International Edition
41
(
22
):
4176
–
4211
.
10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- Henschler , D. ( 1994 ). Toxicity of chlorinated organic compounds: effects of the introduction of chlorine in organic molecules . Angewandte Chemie International Edition in English 33 ( 19 ): 1920 – 1935 .
- Ashraf , M.A. ( 2017 ). Persistent organic pollutants (POPs): a global issue, a global challenge . Environmental Science and Pollution Research 24 : 4223 – 4227 .
- Chu , W.K. , Wong , M.H. , and Zhang , J. ( 2006 ). Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: II. Enzyme study . Environmental Geochemistry and Health 28 ( 1, 2 ): 169 – 181 .
- El-Sheikh , M.A. , Hadibarata , T. , Yuniarto , A. et al. ( 2020 ). Role of nanocatalyst in the treatment of organochlorine compounds – a review . Chemosphere 268 : 128873 .
- Choi , K. and Lee , W. ( 2012 ). Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II) . Journal of Hazardous Materials 211 : 146 – 153 .
- Petersen , E.J. , Pinto , R.A. , Shi , X. , and Huang , Q. ( 2012 ). Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron . Journal of Hazardous Materials 243 : 73 – 79 .
- San Román , I. , Alonso , M.L. , Bartolomé , L. et al. ( 2013 ). Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization . Chemosphere 93 ( 7 ): 1324 – 1332 .
- Tseng , H.H. , Su , J.G. , and Liang , C. ( 2011 ). Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene . Journal of Hazardous Materials 192 ( 2 ): 500 – 506 .
- Zhang , J. , Lei , C. , Chen , W. et al. ( 2021 ). Electrochemical-driven nanoparticulate catalysis for highly efficient dechlorination of chlorinated environmental pollutant . Journal of Catalysis 395 : 362 – 374 .
- Gulipalli , P. , Punugoti , T. , Nikhil , P. et al. ( 2021 ). Synthesis and characterization of Ni/Zn dually doped on multiwalled carbon nanotubes and its application for the degradation of dicofol . Materials Today: Proceedings 44 : 2760 – 2766 .
- Conley , D.J. , Paerl , H.W. , Howarth , R.W. et al. ( 2009 ). Controlling eutrophication: nitrogen and phosphorus . Science 323 ( 5917 ): 1014 – 1015 .
-
Golterman , H.L.
and
De Oude , N.T.
(
1991
).
Eutrophication of lakes, rivers and coastal seas
. In:
Water Pollution
,
79
–
124
.
Berlin/Heidelberg
:
Springer
.
10.1007/978-3-540-46685-7_3 Google Scholar
- Cui , X. , Li , H. , Yao , Z. et al. ( 2019 ). Removal of nitrate and phosphate by chitosan composited beads derived from crude oil refinery waste: sorption and cost-benefit analysis . Journal of Cleaner Production 207 : 846 – 856 .
- Smil , V. ( 2000 ). Phosphorus in the environment: natural flows and human interferences . Annual Review of Energy and the Environment 25 ( 1 ): 53 – 88 .
- Jadhav , S.V. , Bringas , E. , Yadav , G.D. et al. ( 2015 ). Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal . Journal of Environmental Management 162 : 306 – 325 .
- Zuthi , M.F.R. , Guo , W.S. , Ngo , H.H. et al. ( 2013 ). Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes . Bioresource Technology 139 : 363 – 374 .
- Aliaskari , M. and Schäfer , A.I. ( 2021 ). Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater . Water Research 190 : 116683 .
- Khodadadi , M. , Saghi , M.H. , Azadi , N.A. , and Sadeghi , S. ( 2016 ). Adsorption of chromium VI from aqueous solutions onto nanoparticle sorbent: chitozan-Fe-Zr . Journal of Mazandaran University of Medical Sciences 26 ( 141 ): 70 – 82 .
- Viswanathan , N. and Meenakshi , S. ( 2008 ). Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads . Journal of Fluorine Chemistry 129 ( 6 ): 503 – 509 .
- Yagub , M.T. , Sen , T.K. , Afroze , S. , and Ang , H.M. ( 2014 ). Dye and its removal from aqueous solution by adsorption: a review . Advances in Colloid and Interface Science 209 : 172 – 184 .
- Mohammadi , E. , Daraei , H. , Ghanbari , R. et al. ( 2019 ). Synthesis of carboxylated chitosan modified with ferromagnetic nanoparticles for adsorptive removal of fluoride, nitrate, and phosphate anions from aqueous solutions . Journal of Molecular Liquids 273 : 116 – 124 .
- Zavareh , S. , Behrouzi , Z. , and Avanes , A. ( 2017 ). Cu(II) binded chitosan/Fe 3 O 4 nanocomomposite as a new biosorbent for efficient and selective removal of phosphate . International Journal of Biological Macromolecules 101 : 40 – 50 .
- Velu , M. , Balasubramanian , B. , Velmurugan , P. et al. ( 2021 ). Fabrication of nanocomposites mediated from aluminium nanoparticles/ Moringa oleifera gum activated carbon for effective photocatalytic removal of nitrate and phosphate in aqueous solution . Journal of Cleaner Production 281 : 124553 .
- Abiaziem , C.V. , Williams , A.B. , Inegbenebor , A.I. et al. ( 2019 ). Adsorption of lead ion from aqueous solution unto cellulose nanocrystal from cassava peel . Journal of Physics: Conference Series 1299 ( 1 ): 012122 . IOP Publishing .
- El-Nagar , D.A. , Massoud , S.A. , and Ismail , S.H. ( 2020 ). Removal of some heavy metals and fungicides from aqueous solutions using nano-hydroxyapatite, nano-bentonite and nanocomposite . Arabian Journal of Chemistry 13 ( 11 ): 7695 – 7706 .
- Laipan , M. , Zhu , J. , Xu , Y. et al. ( 2020 ). Fabrication of layered double hydroxide/carbon nanomaterial for heavy metals removal . Applied Clay Science 199 : 105867 .
- Modi , A. and Bellare , J. ( 2020 ). Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water . Separation and Purification Technology 249 : 117160 .
- Vafaee , M. , Olya , M.E. , Drean , J.Y. , and Hekmati , A.H. ( 2017 ). Synthesize, characterization and application of ZnO/W/Ag as a new nanophotocatalyst for dye removal of textile wastewater; kinetic and economic studies . Journal of the Taiwan Institute of Chemical Engineers 80 : 379 – 390 .
- Chen , Y. , Dai , G. , and Gao , Q. ( 2019 ). Starch nanoparticles–graphene aerogels with high supercapacitor performance and efficient adsorption . ACS Sustainable Chemistry and Engineering 7 ( 16 ): 14064 – 14073 .
- Bai , L. , Wei , M. , Hong , E. et al. ( 2020 ). Study on the controlled synthesis of Zr/TiO 2 /SBA-15 nanophotocatalyst and its photocatalytic performance for industrial dye reactive red X–3B . Materials Chemistry and Physics 246 : 122825 .
- Yao , T. , Qiao , L. , and Du , K. ( 2020 ). High tough and highly porous graphene/carbon nanotubes hybrid beads enhanced by carbonized polyacrylonitrile for efficient dyes adsorption . Microporous and Mesoporous Materials 292 : 109716 .
- Yang , R. , Peng , Q. , Yu , B. et al. ( 2021 ). Yolk–shell Fe 3 O 4 @MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal . Separation and Purification Technology 267 : 118620 .
- Vinita , M. , Dorathi , R.P.J. , and Palanivelu , K. ( 2010 ). Degradation of 2,4,6-trichlorophenol by photo Fenton's like method using nano heterogeneous catalytic ferric ion . Solar Energy 84 ( 9 ): 1613 – 1618 .
- Koushik , D. , Gupta , S.S. , Maliyekkal , S.M. , and Pradeep , T. ( 2016 ). Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide–silver nanocomposite . Journal of Hazardous Materials 308 : 192 – 198 .
- Nair , D.S. and Kurian , M. ( 2017 ). Heterogeneous catalytic oxidation of persistent chlorinated organics over cobalt substituted zinc ferrite nanoparticles at mild conditions: reaction kinetics and catalyst reusability studies . Journal of Environmental Chemical Engineering 5 ( 1 ): 964 – 974 .
- Wiriyathamcharoen , S. , Sarkar , S. , Jiemvarangkul , P. et al. ( 2020 ). Synthesis optimization of hybrid anion exchanger containing triethylamine functional groups and hydrated Fe(III) oxide nanoparticles for simultaneous nitrate and phosphate removal . Chemical Engineering Journal 381 : 122671 .
- Zong , E. , Wang , C. , Yang , J. et al. ( 2021 ). Preparation of TiO 2 /cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium . International Journal of Biological Macromolecules 182 : 434 – 444 .