Nanoremediation: A Brief Introduction
Renjitha P. Rajan
Mar Thoma College, Department of Chemistry, Kuttapuzha P.O., Tiruvalla, Kerala, 689103 India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Department of Chemistry, Kuttapuzha P.O., Tiruvalla, Kerala, 689103 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, 686560, Kerala, India
Mahatma Gandhi University, School of Chemical Sciences, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Mahatma Gandhi University, School of Energy Materials, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Search for more papers by this authorLaly A. Pothen
Mahatma Gandhi University, School of Energy Materials, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
CMS College Kottayam (Autonomous), Department of Chemistry, CMS College Road, Kottayam, Kerala, 686001 India
Search for more papers by this authorRenjitha P. Rajan
Mar Thoma College, Department of Chemistry, Kuttapuzha P.O., Tiruvalla, Kerala, 689103 India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Department of Chemistry, Kuttapuzha P.O., Tiruvalla, Kerala, 689103 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, 686560, Kerala, India
Mahatma Gandhi University, School of Chemical Sciences, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Mahatma Gandhi University, School of Energy Materials, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Search for more papers by this authorLaly A. Pothen
Mahatma Gandhi University, School of Energy Materials, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
CMS College Kottayam (Autonomous), Department of Chemistry, CMS College Road, Kottayam, Kerala, 686001 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Protecting the environment from pollution is very important in sustaining ecological health and public health in general. Environmental protection primarily refers to providing clean air for breathing and pure water for drinking. This chapter gives an outline of various nanoremediation techniques used for environmental protection. The nanoremediation strategy involves the use of reactive nanomaterials for the detoxification and transformation of the contamination.
References
- Sharma , I. ( 2020 ). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects . In: Trace Metals in the Environment-New Approaches and Recent Advances (ed. M.A. Murillo-Tovar , H. Saldarriaga-Noreña and A. Saeid ). IntechOpen https://doi.org/10.5772/intechopen.90453 .
-
Han , C.
,
Andersen , J.
,
Pillai , S.C.
et al. (
2013
).
Chapter green nanotechnology: development of nanomaterials for environmental and energy applications
. In:
Sustainable Nanotechnology and the Environment: Advances and Achievements
(ed.
N. Shamim
and
V.K. Sharma
),
201
–
229
.
ACS Publications
.
10.1021/bk-2013-1124.ch012 Google Scholar
- Deif , A.M. ( 2011 ). A system model for green manufacturing . Journal of Cleaner Production 19 ( 14 ): 1553 – 1559 .
- Guerra , F.D. , Attia , M.F. , Whitehead , D.C. , and Alexis , F. ( 2018 ). Nanotechnology for environmental remediation: materials and applications . Molecules 23 ( 7 ): 1760 .
- Okonkwo , C.C. , Edoziuno , F. , and Orakwe , L.C. ( 2020 ). Environmental nano-remediation in Nigeria: a review of its potentials . Algerian Journal of Engineering and Technology 3 : 43 – 57 .
- Bhawana , P. and Fulekar , M. ( 2012 ). Nanotechnology: remediation technologies to clean up the environmental pollutants . Research Journal of Chemical Sciences 2231 : 606X .
- Zeng , X. , Wang , G. , Liu , Y. , and Zhang , X. ( 2017 ). Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control . Environmental Science Nano 4 ( 12 ): 2248 – 2266 .
- Bahcelioglu , E. , Unalan , H.E. , and Erguder , T.H. ( 2020 ). Silver-based nanomaterials: a critical review on factors affecting water disinfection performance and silver release . Critical Reviews in Environmental Science and Technology 51 ( 20 ): 2389 – 2423 .
- De Pasquale , I. , Porto , C.L. , Dell'Edera , M. et al. ( 2021 ). TiO 2 -based nanomaterials assisted photocatalytic treatment for virus inactivation: perspectives and applications . Current Opinion in Chemical Engineering 34 : 100716 .
- Dimapilis , E.A.S. , Hsu , C.-S. , Mendoza , R.M.O. , and Lu , M.-C. ( 2018 ). Zinc oxide nanoparticles for water disinfection . Sustainable Environment Research 28 ( 2 ): 47 – 56 .
- Talebian , S. , Walla ce , G.G. , Schroeder , A. et al. ( 2020 ). Nanotechnology-based disinfectants and sensors for SARS-CoV-2 . Nature Nanotechnology 15 ( 8 ): 618 – 621 .
- Lajayer , B.A. , Najafi , N. , Moghiseh , E. et al. ( 2018 ). Removal of heavy metals (Cu 2+ and Cd 2+ ) from effluent using gamma irradiation, titanium dioxide nanoparticles and methanol . Journal of Nanostructure in Chemistry 8 ( 4 ): 483 – 496 .
- Bashir , A. , Malik , L.A. , Ahad , S. et al. ( 2019 ). Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods . Environmental Chemistry Letters 17 ( 2 ): 729 – 754 .
- Liu , T. , Han , X. , Wang , Y. et al. ( 2017 ). Magnetic chitosan/anaerobic granular sludge composite: synthesis, characterization and application in heavy metal ions removal . Journal of Colloid and Interface Science 508 : 405 – 414 .
- Singh , S. , Barick , K.C. , and Bahadur , D. ( 2011 ). Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens . Journal of Hazardous Materials 192 ( 3 ): 1539 – 1547 .
- Charpentier , T.V.J. , Neville , A. , Lanigan , J.L. et al. ( 2016 ). Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions . ACS Omega 1 ( 1 ): 77 – 83 .
- Sato , M. and Sumita , I. ( 2007 ). Experiments on gravitational phase separation of binary immiscible fluids . Journal of Fluid Mechanics 591 : 289 – 319 .
- Ramajo , D.E. , Raviculé , M. , Mocciaro , C. et al. ( 2012 ). Numerical and experimental evaluation of skimmer tank technologies for gravity separation of oil in produced water . Mecánica Computacional 31 ( 23 ): 3693 – 3714 .
- Etchepare , R. , Oliveira , H. , Azevedo , A. , and Rubio , J. ( 2017 ). Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles . Separation and Purification Technology 186 : 326 – 332 .
- Yang , J. , Hou , B. , Wang , J. et al. ( 2019 ). Nanomaterials for the removal of heavy metals from wastewater . Nanomaterials 9 ( 3 ): 424 .
- Verma , B. and Balomajumder , C. ( 2020 ). Surface modification of one-dimensional carbon nanotubes: a review for the management of heavy metals in wastewater . Environmental Technology and Innovation 17 : 100596 .
- Hayati , B. , Maleki , A. , Najafi , F. et al. ( 2017 ). Super high removal capacities of heavy metals (Pb 2+ and Cu 2+ ) using CNT dendrimer . Journal of Hazardous Materials 336 : 146 – 157 .
- Adam , A.M. , Saad , H.A. , Atta , A.A. et al. ( 2021 ). An environmentally friendly method for removing Hg(II), Pb(II), Cd(II) and Sn(II) heavy metals from wastewater using novel metal–carbon-based composites . Crystals 11 ( 8 ): 882 .
- Elsehly , E.M. , Chechenin , N.G. , Makunin , A.V. et al. ( 2018 ). Enhancement of CNT-based filters efficiency by ion beam irradiation . Radiation Physics and Chemistry 146 : 19 – 25 .
- Rajasekhar , T. , Trin adh , M. , Babu , P.V. et al. ( 2015 ). Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group . Journal of Membrane Science 481 : 82 – 93 .
- Kwon , W.-T. , Park , K. , Han , S.D. et al. ( 2010 ). Investigation of water separation from water-in-oil emulsion using electric field . Journal of Industrial and Engineering Chemistry 16 ( 5 ): 684 – 687 .
- Li , Q. , Chen , J. , Liang , M. et al. ( 2015 ). Investigation of water separation from water-in-oil emulsion using high-frequency pulsed AC electric field by new equipment . Journal of Dispersion Science and Technology 36 ( 7 ): 918 – 923 .
- Walther , A. and Muller , A.H.E. ( 2013 ). Janus particles: synthesis, self-assembly, physical properties, and applications . Chemical Reviews 113 ( 7 ): 5194 – 5261 .
- Ruhland , T.M. , Gröschel , A.H. , Ballard , N. et al. ( 2013 ). Influence of Janus particle shape on their interfacial behavior at liquid–liquid interfaces . Langmuir 29 ( 5 ): 1388 – 1394 .
-
Gore , P.M.
,
Purushothaman , A.
,
Naebe , M.
et al. (
2019
).
Nanotechnology for oil–water separation
. In:
Advanced Research in Nanosciences for Water Technology
(ed.
R. Prasad
and
T. Karchiyappan
),
299
–
339
.
Springer
.
10.1007/978-3-030-02381-2_14 Google Scholar
- Koh , J.J. , Lim , G.J.H. , Zhou , X. et al. ( 2019 ). 3D-printed anti-fouling cellulose mesh for highly efficient oil/water separation applications . ACS Applied Materials & Interfaces 11 ( 14 ): 13787 – 13795 .
- Gong , Z. , Yang , N. , Chen , Z. et al. ( 2020 ). Fabrication of meshes with inverse wettability based on the TiO 2 nanowires for continuous oil/water separation . Chemical Engineering Journal 380 : 122524 .
- Zhang , H. , Zhen , Q. , Yan , Y. et al. ( 2020 ). Polypropylene/polyester composite micro/nano-fabrics with linear valley-like surface structure for high oil absorption . Materials Letters 261 : 127009 .
- Sun , S. , Zhu , L. , Liu , X. et al. ( 2018 ). Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties . ACS Sustainable Chemistry & Engineering 6 ( 8 ): 9866 – 9875 .
- Wang , K. , Liu , X. , Tan , Y. et al. ( 2019 ). Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation . Chemical Engineering Journal 371 : 769 – 780 .
- Guan , Y. , Cheng , F. , and Pan , Z. ( 2019 ). Superwetting polymeric three dimensional (3D) porous materials for oil/water separation: a review . Polymers (Basel) 11 ( 5 ): 806 .
- Li , Z. and Guo , Z. ( 2020 ). Flexible 3D porous superhydrophobic composites for oil–water separation and organic solvent detection . Materials and Design 196 : 109144 .
- Chen , C. , Wen g , D. , Mahmood , A. et al. ( 2019 ). Separation mechanism and construction of surfaces with special wettability for oil/water separation . ACS Applied Materials & Interfaces 11 ( 11 ): 11006 – 11027 .
- Grieger , K.D. , Wickson , F. , Andersen , H.B. , and Renn , O. ( 2012 ). Improving risk governance of emerging technologies through public engagement: the neglected case of nano-remediation? International Journal of Emerging Technologies and Society 10 : 61 .
- Chaney , R.L. , Reeves , P.G. , Ryan , J.A. et al. ( 2004 ). An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks . Biometals 17 ( 5 ): 549 – 553 .