Bulk Micromachining
Xinxin Li
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
Search for more papers by this authorHeng Yang
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
Search for more papers by this authorXinxin Li
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
Search for more papers by this authorHeng Yang
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
Search for more papers by this authorMasayoshi Esashi
Search for more papers by this authorSummary
Bulk micromachining is the technology using selective etching of silicon substrates and bonding of multiple etched and/or unetched wafers to fabricate micro-electro mechanical systems (MEMS). The electromechanical structures in bulk micromachining are usually much thicker than those in surface micromachining, which are appreciated in many MEMS devices. The anisotropic wet etching is widely used in bulk micromachining because of the significant improvement on machining accuracy over isotropic wet etching. Wafer bonding is the one key bulk micromachining technology. There are roughly three types of wafer bonding: direct wafer bonding, anodic bonding, and intermediate-layer bonding. The SCREAM process is one of the earliest known single-sided bulk micromachining processes used to fabricate freestanding structures with high aspect ratio in single-crystal silicon substrates. A developed micro-holes interetch and sealing process is deserved to be introduced where no epitaxy is used in its single-wafer single-sided bulk-micromachining fabrication.
References
- Petersen, K. (1982). Silicon as a mechanical material. Proc. IEEE 70: 420–457.
- Yazdi, N., Ayazi, F., and Najafi, K. (1998). Micromachined inertial sensors. Proc. IEEE 86: 1640–1659.
- Kovacs, G.T.A., Maluf, N.I., and Petersen, K.E. (1998). Bulk micromachining of silicon. Proc. IEEE 86: 1536–1551.
- Sato, K., Shikida, M., Matsushima, Y. et al. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sens. Actuators A 64: 87–93.
- Shikida, M., Sato, K., Tokoro, K., and Uchikawa, D. (2000). Differences in anisotropic etching properties of KOH and TMAH solutions. Sens. Actuators A 80: 179–188.
- Yang, H., Bao, M., Shen, S. et al. (2000). A novel technique for measuring etch rate distribution of Si. Sens. Actuators A 79: 136–140.
- Li, X., Bao, M., and Shen, S. (1996). Maskless etching of three-dimensional silicon structures in KOH. Sens. Actuators A 57: 47–52.
- Gianchandani, Y.B. and Najafi, K. (1992). A bulk silicon dissolved wafer process for microelectromechanical devices. J. Microelectromech. Syst. 1 (2): 77–85.
- Kloeck, B., Collins, S.D., de Rooij, N.F., and Smith, R. (1989). Study of electrochemical etch-stop for high-precision thickness control of silicon membranes. IEEE Trans. Electron Devices 36: 663–669.
- Connolly, E.J., French, P.J., Xia, X.H., and Kelly, J.J. (2004). Galvanic etch stop for Si in KOH. J. Micromech. Microeng. 14: 1215–1219.
- Laermer, F., Schilp, A., Funk, K., and Offenberg, M. (1999). Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications. Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), Orlando, FL, USA, 211–216.
- Schmidt, M.A. (1998). Wafer-to-wafer bonding for microstructure formation. Proc. IEEE 86 (8): 1575–1585.
- Miki, N., Zhang, X., Khannaa, R. et al. (2003). Multi-stack silicon-direct wafer bonding for 3D MEMS manufacturing. Sens. Actuators A 103: 194–201.
- Chen, K. (2005). Copper Wafer Bonding in Three-Dimensional Integration. Massachusetts Institute of Technology.
- Matsumoto, Y., Iwakiri, M., Tanaka, H. et al. (1996). A capacitive accelerometer using SDB-SOI structure. Sens. Actuators A 53: 267–272.
- Noell, W., Clerc, P., Dellmann, L. et al. (2002). Applications of SOI-based optical MEMS. IEEE J. Sel. Top. Quantum Electron. 8 (1): 148–154.
- Sari, I., Zeimpekis, I., and Kraft, M. (2012). A dicing free SOI process for MEMS devices. Microelectron. Eng. 95: 121–129.
- Cowen, A., Hames, G., Monk, D. et al. (2011) SOIMUMPs design handbook. Revision 8.0. http://www.memscapinc.com (accessed 6 September 2011).
- Partridge, A., Reynolds, J.K., Chui, B.W. et al. (2000). A high-performance planar piezoresistive accelerometer. J. Microelectromech. Syst. 9: 58–66.
-
Dao, D.V., Nakamura, K., Bui, T.T., and Sugiyama, S. (2010). Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology.
Adv. Nat. Sci.: Nanosci. Nanotechnol.
1: 013001.
10.1088/2043-6254/1/1/013001 Google Scholar
- Petersen, K., Barth, P., Poydock, J. et al. (1988). Silicon fusion bonding for pressure sensors. IEEE Technical Digest on Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 144–147.
- Petersen, K., Gee, D., Pourahmade, F. et al. (1991). Surface micromachined structures fabricated with silicon fusion bonding. TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, San Francisco, CA, USA, 397–399.
- Wang, Y., Zheng, X., Liu, L., and Li, Z. (1991). A novel structure of pressure sensors. IEEE Trans. Electron Devices 38 (8): 1797–1802.
- Parameswaran, L., Hsu, C., and Schmidt, M.A. (1995). A merged MEMS-CMOS process using silicon wafer bonding. Proceedings of International Electron Devices Meeting, Washington, DC, USA, 613–616.
- Luoto, H., Henttinen, K., Suni, T. et al. (2007). MEMS on cavity-SOI wafers. Solid-State Electron. 51 (2): 328–332.
- Yeh, C. and Najafi, K. (1997). A low-voltage tunneling-based silicon micro accelerometer. IEEE Trans. Electron Devices 44: 1875–1882.
- Najafi, K. and Suzuki, K. (1989). A novel technique and structure for the measurement of intrinsic stress and Young's modulus of thin films. Proceedings IEEE Workshop on Microelectromechanical Systems (MEMS 89), 96–97.
- Gianchandani, Y.B. and Najafi, K. (1996). Bent-beam strain sensors. J. Microelectromech. Syst. 5 (1): 52–58.
- Gianchandani, Y.B. and Najafi, K. (1997). A silicon micromachined scanning thermal profiler with integrated elements for sensing and actuation. IEEE Trans. Electron Devices 44 (11): 1857–1868.
- Kourepenis, A., Borenstein, J., Connelly, J. et al. (1998). Performance of MEMS inertial sensors. IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153), Palm Springs, CA, USA, 1–8.
- Weinberg, M., Connelly, J., Kourepenis, A., and Sargent, D. (1997). Micro electro-mechanical instrument, and systems development at the Charles Stark Draper Laboratory, Inc. 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future. Proceedings, Irvine, CA, USA, 8.5–33.
- Mason, A., Yazdi, N., Chavan, A.V. et al. (1998). A generic multielement microsystem for portable wireless applications. Proc. IEEE 86 (8): 1733–1746.
- Gianchandani, Y.B., Ma, K.J., and Najafi, K. (1995). A CMOS dissolved wafer process for integrated P++ microelectromechanical systems. Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95, Stockholm, Sweden, 79–82.
- Juan, W. and Pang, S.W. (1996). Released Si microstructures fabricated by deep etching and shallow diffusion. J. Microelectromech. Syst. 5: 18–23.
- Juan, W. and Pang, S.W. (1998). High-aspect-ratio Si vertical micromirror arrays for optical switching. J. Microelectromech. Syst. 7 (2): 207–213.
- Shaw, K.A., Zhang, Z.L., and MacDonald, N.C. (1994). SCREAM I: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures. Sens. Actuators A 40: 63–70.
- MacDonald, N.C. (1996). SCREAM micro electro mechanical systems. Microelectron. Eng. 32: 49–73.
- de Boer, M.J., Tjerkstra, R.W., Berenschot, J.W. et al. (2000). Micromachining of buried micro channels in silicon. J. Microelectromech. Syst. 9: 94–103.
- Lee, S., Park, S., and Cho, D. (1999). The surface/bulk micromachining (SBM) process: a new method for fabricating released MEMS in single crystal silicon. J. Microelectromech. Syst. 8: 409–416.
- Mizushima, I., Sato, T., Taniguchi, S., and Tsunashima, Y. (2000). Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure. Appl. Phys. Lett. 77: 3290–3292.
- Sato, T., Mizushima, I., Taniguchi, S. et al. (2004). Fabrication of silicon-on-nothing structure by substrate engineering using the empty-space-in-silicon formation technique. Jpn. J. Appl. Phys. 43: 12–18.
- Armbruster, S., Schafer, F., Lammel, G. et al. (2003). A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon. TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 246–249.
- Melzer, F. Consumer MEMS – A Technology Play. Bosch Sensor Tec.
- Wang, J. and Li, X. (2011). Single-side fabricated pressure sensors for IC-foundry compatible high-yield and low-cost volume production. IEEE Electron Device Lett. 32 (7): 979–981.
- Wang, J. and Li, X. (2011). A single-wafer-based single-sided bulk-micromachining technique for high-yield and low-cost volume production of pressure sensors. Transducers'2011, Beijing, China, 410–413.
- Seidel, H., Csepregi, L., Heuberger, A., and Baumgärtel, H. (1990). Anisotropic etching of crystalline silicon in alkaline solutions. J. Electrochem. Soc. 137 (11): 3612–3626.
- Wang, J., Xia, X., and Li, X. (2012). Monolithic integration of pressure plus acceleration composite TPMS sensors with a single-sided micromachining technology. J. Microelectromech. Syst. 21 (2): 284–293.