Use of Marine Compounds to Treat Ischemic Diseases
Catherine Boisson-Vidal
Université Paris Descartes, Unité Inserm UMR_S1140 IThEM, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, 4 avenue de l'observatoire, 75006 Paris, France
Search for more papers by this authorCatherine Boisson-Vidal
Université Paris Descartes, Unité Inserm UMR_S1140 IThEM, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, 4 avenue de l'observatoire, 75006 Paris, France
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
The marine reservoir, with its massive biodiversity, likely harbors numerous human drug candidates. Polysaccharides of various marine origins have shown to be good alternatives to mammalian polysaccharides. One well-known example is heparin, a sulfated polysaccharide used in the prevention of thrombosis and pulmonary embolism. The oldest use of marine polysaccharides concerns those produced by algae. These products form the basis for an economically important and expanding global industry. This chapter provides a historical background to the discovery of the therapeutic potential of these marine compounds, together with their medical and biotechnological applications. Peripheral arterial disease (PAD) is a progressive disorder due to atherosclerosis (narrowing of the peripheral arteries, especially in the legs). Arterial flow is reduced or discontinuous, causing oxygen deprivation in the underlying tissues and possible tissue necrosis. The primary aim of medical therapy is to increase arterial flow in the affected limb in order to relieve pain, heal trophic lesions, and avoid amputation. Anticoagulant, antithrombotic, and antiplatelet agents are used to reduce the risk of thrombus formation. Novel treatments such as therapeutic angiogenesis (promotion of new blood vessel growth) are in the development phase, with promising preclinical data. Fucoidan is a polysulfated l-fucose endowed with biological activities closely related to its chemical composition (especially the distribution of sulfate groups along its polyfucose backbone) and to its molecular weight. Fucoidans are highly soluble in water, nontoxic, and non-immunogenic. Details are provided below on its production and characterization and on the main chemical characteristics that influence their biological activities. Fucoidan exhibits venous and arterial antithrombotic properties in animal models. In animal experiments, fucoidan promoted the formation of new blood vessels, thereby preventing necrosis of ischemic tissue. It also recruits stem cells from bone marrow, further accelerating tissue healing. The cellular and molecular mechanisms underlying fucoidan's effects on angiogenesis are then addressed, beginning with a brief overview of blood vessel formation. Recent advances have been made in understanding how the interactions between these polyfucoses and adult stem cells contribute to new blood vessel formation after ischemic injury, notably via carbohydrates located mainly in the basement membrane and cell surface.
References
- Kiuru, P., D'Auria, M.V., Muller, C.D. et al. (2014) Exploring marine resources for bioactive compounds. Planta Med., 80 (14), 1234–1246.
- Penesyan, A., Kjelleberg, S., and Egan, S. (2010) Development of novel drugs from marine surface associated microorganisms. Mar. Drugs, 8 (3), 438–459.
- Tseng, C.K. and Chang, C.F. (1984) Chinese seaweeds in herbal medicine. Hydrobiologia, 116 (1), 152–154.
- Guiry, M.D. (2016) The Seaweed Site: Information on Marine Algae, http://www.seaweed.ie/nutrition/index.php (18 January 2018).
- Ruocco, N., Costantini, S., Guariniello, S. et al. (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules, 21 (5), pii: E551.
-
Zaporozhets, T. and Besednova, N. (2016) Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: review. Pharm. Biol., 54 (12), 3126–3135.
10.1080/13880209.2016.1185444 Google Scholar
- Guiry, M.D. (2016) The Seaweed Site: Information on Marine Algae, http://www.seaweed.ie/nutrition/index.php (18 January 2018).
- Kylin, H. (1915) Untersuchungen über die Biochemie der Meeresalgen. HoppeSeyler's Z. Physiol. Chem., 94 (5-6), 337–429.
- Deniaud-Bouët, E., Kervarec, N., Michel, G. et al. (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann. Bot., 114 (6), 1203–1216.
- Li, B., Lu, F., Wei, X. et al. (2008) Fucoidan: structure and bioactivity. Molecules, 13 (8), 1671–1695.
-
Chevolot, L., Foucault, A., Chaubet, F.
et al. (1999) Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr. Res., 319 (1–4), 154–165.
10.1016/S0008-6215(99)00127-5 Google Scholar
- Ale, M.T., Mikkelsen, J.D., and Meyer, A.S. (2011) Important determinants for fucoidan bioactivity: a critical review of structure–function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs, 9 (10), 2106–2130.
- Boisson-Vidal, C., Zemani, F., Caligiuri, G. et al. (2007) Neoangiogenesis induced by progenitor endothelial cells: effect of fucoidan from marine algae. Cardiovasc. Hematol. Agents Med. Chem., 5 (1), 67–77.
- Bachelet, L., Bertholon, I., Lavigne, D. et al. (2009) Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim. Biophys. Acta, 1790 (2), 141–146.
- Rouzet, F., Bachelet-Violette, L., Alsac, J.-M. et al. (2011) Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J. Nucl. Med. Off. Publ. Soc. Nucl. Med., 52 (9), 1433–1440.
-
Suzuki, M., Bachelet-Violette, L., Rouzet, F.
et al. (2015) Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine, 10 (1), 73–87.
10.2217/nnm.14.51 Google Scholar
- Fitton, J.H., Stringer, D.N., and Karpiniec, S.S. (2015) Therapies from fucoidan: an update. Mar. Drugs, 13 (9), 5920–5946.
- Hwang, P.-A., Yan, M.-D., Lin, H.-T.V. et al. (2016) Toxicological evaluation of low molecular weight fucoidan in vitro and in vivo . Mar. Drugs, 14 (7), 121.
- Norgren, L., Hiatt, W.R., Dormandy, J.A. et al. (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg., 45 (1), S5–S67.
- Lau, J.F., Weinberg, M.D., and Olin, J.W. (2011) Peripheral artery disease. Part 1: Clinical evaluation and noninvasive diagnosis. Nat. Rev. Cardiol., 8 (7), 405–418.
- Raval, Z. and Losordo, D.W. (2013) Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ. Res., 112 (9), 1288–1302.
- Dua, A. and Lee, C.J. (2016) Epidemiology of peripheral arterial disease and critical limb ischemia. Tech. Vasc. Interv. Radiol., 19 (2), 91–95.
- L'Artériopathie oblitérante, https://www.fedecardio.org/Les-maladies-cardio-vasculaires/Les-pathologies-cardio-vasculaires/larteriopathie-obliterante (18 January 2018).
- Esmon, C.T. (2009) Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev., 23 (5), 225–229.
- Weinberg, M.D., Lau, J.F., Rosenfield, K., and Olin, J.W. et al. (2011) Peripheral artery disease. Part 2: Medical and endovascular treatment. Nat. Rev. Cardiol., 8 (8), 429–441.
-
Foley, T.R., Waldo, S.W., and Armstrong, E.J. (2016) Antithrombotic therapy in peripheral artery disease. Vasc. Med. Lond. Engl., 21 (2), 156–169.
10.1177/1358863X15622987 Google Scholar
- Martin, B.-J. and Anderson, T.J. (2009) Risk prediction in cardiovascular disease: the prognostic significance of endothelial dysfunction. Can. J. Cardiol., 25 (Suppl A), 15A–20A.
- Sharma, S., Thapa, R., Jeevanantham, V. et al. (2014) Comparison of lipid management in patients with coronary versus peripheral arterial disease. Am. J. Cardiol., 113 (8), 1320–1325.
- Oduah, E.I., Linhardt, R.J., and Sharfstein, S.T. (2016) Heparin: past, present, and future. Pharmaceuticals (Basel), 9 (3), 38.
- Rosenberg, R.D. and Damus, P.S. (1973) Correlation between structure and function of heparin. J. Biol. Chem., 248, 6490–6495.
- Choay, J., Petitou, M., Lormeau, J.C. et al. (1983) Structure–activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem. Biophys. Res. Commun., 116 (2), 492–499.
- Klein, A.J. and Ross, C.B. (2016) Endovascular treatment of lower extremity peripheral arterial disease. Trends Cardiovasc. Med., 26, 495–512.
- Rooke, T.W., Hirsch, A.T., Misra, S. et al. (2012) 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society for Vascular Medicine, and Society for Vascular Surgery. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv., 79 (4), 501–531.
-
Collinson, D.J. and Donnelly, R. (2004) Therapeutic angiogenesis in peripheral arterial disease: can biotechnology produce an effective collateral circulation?
Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg., 28 (1), 9–23.
10.1016/j.ejvs.2004.03.021 Google Scholar
- Rissanen, T.T. and Ylä-Herttuala, S. (2007) Current status of cardiovascular gene therapy. Mol. Ther. J. Am. Soc. Gene Ther., 15 (7), 1233–1247.
- Pasqualoni, E., Messas, E., Fiessinger, J.-N. et al. (2008) Treatment perspectives for critical limb ischemia: gene and cell therapy. Presse Méd., 37 (6 Pt 2), 1039–1046.
- Kibbe, M.R., Hirsch, A.T., Mendelsohn, F.O. et al. (2016) Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene Ther., 23 (4), 399.
- Emmerich, J. (2005) Current state and perspective on medical treatment of critical leg ischemia: gene and cell therapy. Int. J. Low Extrem. Wounds, 4 (4), 234–241.
- Cooke, J.P. and Losordo, D.W. (2015) Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ. Res., 116 (9), 1561–1578.
- Shyu, K.-G., Chang, H., Wang, B.-W. et al. (2003) Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am. J. Med., 114 (2), 85–92.
- Baumgartner, I., Chronos, N., Comerota, A. et al. (2009) Local gene transfer and expression following intramuscular administration of FGF-1 plasmid DNA in patients with critical limb ischemia. Mol. Ther. J. Am. Soc. Gene Ther., 17 (5), 914–921.
- Lawall, H., Bramlage, P., and Amann, B. (2011) Treatment of peripheral arterial disease using stem and progenitor cell therapy. J. Vasc. Surg., 53 (2), 445–453.
- Liang, T.W., Jester, A., Motaganahalli, R.L. et al. (2016) Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J. Vasc. Surg., 63 (6), 1541–1545.
-
Ai, M., Yan, C.-F., Xia, F.-C.
et al. (2016) Safety and efficacy of cell-based therapy on critical limb ischemia: a meta-analysis. Cytotherapy, 18 (6), 712–724.
10.1016/j.jcyt.2016.02.009 Google Scholar
- Carmeliet, P. (2003) Angiogenesis in health and disease. Nat. Med., 9 (6), 653–660.
- Asahara, T., Kawamoto, A., and Masuda, H. (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells Dayt. Ohio, 29 (11), 1650–1655.
- Watt, S.M., Athanassopoulos, A., Harris, A.L. et al. (2010) Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J. R. Soc. Interface R. Soc., 7 (Suppl 6), S731–S751.
- Asahara, T., Masuda, H., Takahashi, T. et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res., 85 (3), 221–228.
-
Ho, T.K., Abraham, D.J., Black, C.M.
et al. (2006) Hypoxia-inducible factor 1 in lower limb ischemia. Vascular, 14 (6), 321–327.
10.2310/6670.2006.00056 Google Scholar
- Ho, T.K., Rajkumar, V., Ponticos, M. et al. (2006) Increased endogenous angiogenic response and hypoxia-inducible factor-1alpha in human critical limb ischemia. J. Vasc. Surg., 43 (1), 125–133.
-
Badorff, C. and Dimmeler, S. (2006) Neovascularization and cardiac repair by bone marrow-derived stem cells, in Stem Cells, Handbook of Experimental Pharmacology, vol. 174 (eds A.M. Wobus and K.R. Boheler), Springer-Verlag, Berlin Heidelberg, pp. 283–298.
10.1007/3-540-31265-X_12 Google Scholar
- Critser, P.J. and Yoder, M.C. (2010) Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr. Opin. Organ Transplant., 15 (1), 68–72.
-
Grisar, J.C., Haddad, F., Gomari, F.A.
et al. (2011) Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark. Med., 5 (6), 731–744.
10.2217/bmm.11.92 Google Scholar
- Asahara, T., Murohara, T., Sullivan, A. et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275 (5302), 964–967.
- Pearson, J.D. (2009) Endothelial progenitor cells – hype or hope? J. Thromb. Haemost., 7 (2), 255–262.
- Silvestre, J.-S., Smadja, D.M., and Lévy, B.I. (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol. Rev., 93 (4), 1743–1802.
- Chavakis, E., Urbich, C., and Dimmeler, S. (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J. Mol. Cell. Cardiol., 45 (4), 514–522.
- Frenette, P.S. and Weiss, L. (2000) Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood, 96 (7), 2460–2468.
- Sweeney, E.A., Lortat-Jacob, H., Priestley, G.V. et al. (2002) Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood, 99 (1), 44–51.
-
Roux, N., Brakenhielm, E., Freguin-Bouillant, C.
et al. (2012) Progenitor cell mobilizing treatments prevent experimental transplant arteriosclerosis. J. Surg. Res., 176 (2), 657–665.
10.1016/j.jss.2011.11.1014 Google Scholar
- Dimmeler, S. and Leri, A. (2008) Aging and disease as modifiers of efficacy of cell therapy. Circ. Res., 102 (11), 1319–1330.
-
Oda, M., Toba, K., Kato, K.
et al. (2012) Hypocellularity and insufficient expression of angiogenic factors in implanted autologous bone marrow in patients with chronic critical limb ischemia. Heart Vessels, 27 (1), 38–45.
10.1007/s00380-011-0125-5 Google Scholar
-
Bitterli, L., Afan, S., Bühler, S.
et al. (2016) Endothelial progenitor cells as a biological marker of peripheral artery disease. Vasc. Med. Lond. Engl., 21 (1), 3–11.
10.1177/1358863X15611225 Google Scholar
- Zemani, F., Silvestre, J.-S., Fauvel-Lafeve, F. et al. (2008) Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler. Thromb. Vasc. Biol., 28 (4), 644–650.
- Boisson-Vidal, C., Colliec-Jouault, S., Fischer, A.M. et al. (1991) Biological activities of fucans extracted from brown seaweeds. Drugs Future, 16 (6), 539–545.
- Springer, G.F., Wurzel, H.A., Mcneal, G.M. et al. (1957) Isolation of anticoagulant fractions from crude fucoidin. Proc. Soc. Exp. Biol. Med., 94 (2), 404–409.
-
Colliec, S., Boisson-Vidal, C., and Jozefonvicz, J. (1994) A low molecular weight fucoidan fraction from the brown seaweed Pelvetia canaliculata
. Phytochemistry, 35 (3), 697–700.
10.1016/S0031-9422(00)90590-9 Google Scholar
- Percival, E.G.V. and Ross, A.G. (1950) Fucoidin. Part I. The isolation and purification of fucoidin from brown seaweeds. J. Chem. Soc., 717–720.
- Pauw, N. and Persoone, G. (1988) Microalgae for aquaculture, in Micro-Algal Biotechnology (eds M.A. Borowitzka and L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 197–221.
- Nardella, A., Chaubet, F., Boisson-Vidal, C. et al. (1996) Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum . Carbohydr. Res., 289, 201–208.
- Berteau, O., McCort, I., Goasdoué, N. et al. (2002) Characterization of a new alpha-l-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of alpha-l-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology, 12 (4), 273–282.
- Boisson-Vidal, C., Chaubet, F., Chevolot, L. et al. (2000) Relationship between antithrombotic activities of fucans and their structure. Drug Dev. Res., 51, 216–224.
- Kloareg, B. and Quatrano, R.S. (1988) Structure of the cells walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev., 26, 259–315.
- Ustyuzhanina, N.E., Bilan, M.I., Ushakova, N.A. et al. (2014) Fucoidans: pro- or antiangiogenic agents? Glycobiology, 24 (12), 1265–1274.
- Chevolot, L., Mulloy, B., Ratiskol, J. et al. (2001) A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr. Res., 330 (4), 529–535.
- McLellan, D.S. and Jurd, K.M. (1992) Anticoagulants from marine algae. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb., 3 (1), 69–77.
- Casu, B., Oreste, P., Torri, G. et al. (1981) The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and13C nuclear-magnetic-resonance studies. Biochem. J., 197 (3), 599–609.
- Lindahl, U., Bäckström, G., Thunberg, L. et al. (1980) Evidence for a 3-O-sulfated d-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl. Acad. Sci. U.S.A., 77 (11), 6551–6555.
- de Jesus Raposo, M.F., de Morais, A.M.B., and de Morais, R.M.S.C. (2015) Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs, 13 (5), 2967–3028.
- Elsner, H., Broser, W., and Burgel, E. (1937) The presence of highly active anticoagulants in red algae. Z. Physiol. Chem., 246, 244–249.
- Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E. et al. (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17 (5), 541–552.
- Church, F.C., Meade, J.B., Treanor, R.E. et al. (1989) Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J. Biol. Chem., 264 (6), 3618–3623.
-
Colliec, S., Fischer, A.M., Tapon-Bretaudiere, J.
et al. (1991) Anticoagulant properties of a fucoïdan fraction. Thromb. Res., 64 (2), 143–154.
10.1016/0049-3848(91)90114-C Google Scholar
-
Durand, E., Helley, D., Al Haj Zen, A.
et al. (2008) Effect of low molecular weight fucoidan and low molecular weight heparin in a rabbit model of arterial thrombosis. J. Vasc. Res., 45 (6), 529–537.
10.1159/000129687 Google Scholar
- Richard, B., Bouton, M.-C., Loyau, S. et al. (2006) Modulation of protease nexin-1 activity by polysaccharides. Thromb. Haemost., 95 (2), 229–235.
-
Doctor, V.M., Hill, C., and Jackson, G.J. (1995) Effect of fucoidan during activation of human plasminogen. Thromb. Res., 79 (3), 237–247.
10.1016/0049-3848(95)00111-4 Google Scholar
-
Chabut, D., Fischer, A.M., Helley, D.
et al. (2004) Low molecular weight fucoidan promotes FGF-2-induced vascular tube formation by human endothelial cells, with decreased PAI-1 release and ICAM-1 downregulation. Thromb. Res., 113 (1), 93–95.
10.1016/j.thromres.2004.01.013 Google Scholar
- Matou, S., Helley, D., Chabut, D. et al. (2002) Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro . Thromb. Res., 106 (4–5), 213–221.
- Zemani, F., Benisvy, D., Galy-Fauroux, I. et al. (2005) Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochem. Pharmacol., 70 (8), 1167–1175.
-
Soeda, S., Kozako, T., Iwata, K.
et al. (2000) Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action. Biochim. Biophys. Acta, 1497 (1), 127–134.
10.1016/S0167-4889(00)00052-5 Google Scholar
- Sarlon, G., Zemani, F., David, L. et al. (2012) Therapeutic effect of fucoidan-stimulated endothelial colony-forming cells in peripheral ischemia. J. Thromb. Haemost., 10 (1), 38–48.
- Luyt, C.-E., Meddahi-Pellé, A., Ho-Tin-Noe, B. et al. (2003) Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J. Pharmacol. Exp. Ther., 305 (1), 24–30.
-
Omata, M., Matsui, N., Inomata, N.
et al. (1997) Protective effects of polysaccharide fucoidin on myocardial ischemia-reperfusion injury in rats. J. Cardiovasc. Pharmacol., 30 (6), 717–724.
10.1097/00005344-199712000-00003 Google Scholar
- Logeart, D., Prigent-Richard, S., Boisson-Vidal, C. et al. (1997) Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect. Eur. J. Cell Biol., 74 (4), 385–390.
- Patel, M.K., Mulloy, B., Gallagher, K.L. et al. (2002) The antimitogenic action of the sulphated polysaccharide fucoidan differs from heparin in human vascular smooth muscle cells. Thromb. Haemost., 87 (1), 149–154.
-
Deux, J.-F., Meddahi-Pellé, A., Le Blanche, A.F.
et al. (2002) Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model. Arterioscler. Thromb. Vasc. Biol., 22 (10), 1604–1609.
10.1161/01.ATV.0000032034.91020.0A Google Scholar
-
Hlawaty, H., Suffee, N., Sutton, A.
et al. (2011) Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression. Biochem. Pharmacol., 81 (2), 233–243.
10.1016/j.bcp.2010.09.021 Google Scholar
-
Freguin-Bouilland, C., Alkhatib, B., David, N.
et al. (2011) Syngeneic bone marrow cell therapy prevents intimal proliferation in allogeneic vascular transplantation. J. Surg. Res., 168 (1), 143–148.
10.1016/j.jss.2009.10.018 Google Scholar
-
Irhimeh, M.R., Fitton, J.H., and Lowenthal, R.M. (2007) Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp. Hematol., 35 (6), 989–994.
10.1016/j.exphem.2007.02.009 Google Scholar
-
Blondin, C., Fischer, E., Boisson-Vidal, C.
et al. (1994) Inhibition of complement activation by natural sulfated polysaccharides (fucans) from brown seaweed. Mol. Immunol., 31 (4), 247–253.
10.1016/0161-5890(94)90121-X Google Scholar
-
Alkhatib, B., Freguin-Bouilland, C., Lallemand, F.
et al. (2006) Low molecular weight fucan prevents transplant coronaropathy in rat cardiac allograft model. Transpl. Immunol., 16 (1), 14–19.
10.1016/j.trim.2006.03.003 Google Scholar
- Pomin, V.H. and Mourão, P.A.S. (2008) Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 18 (12), 1016–1027.
- Fonseca, R.J.C., Oliveira, S.-N.M.C.G., Melo, F.R. et al. (2008) Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb. Haemost., 99 (3), 539–545.
- Boisson-Vidal, C., Haroun, F., Ellouali, M. et al. (1995) Biological activities of polysaccharides from marine algae. Drugs Future, 20 (12), 1237–1249.
-
Teruya, T., Tatemoto, H., Konishi, T.
et al. (2009) Structural characteristics and in vitro macrophage activation of acetyl fucoidan from
Cladosiphon okamuranus. Glycoconj. J., 26 (8), 1019–1028.
10.1007/s10719-008-9221-x Google Scholar
- Hiramatsu, Y., Tsujishita, H., and Kondo, H. (1996) Studies on selectin blocker. 3. Investigation of the carbohydrate ligand sialyl Lewis X recognition site of P-selectin. J. Med. Chem., 39 (23), 4547–4553.
- Bouvard, C., Galy-Fauroux, I., Grelac, F. et al. (2015) Low-molecular-weight fucoidan induces endothelial cell migration via the PI3K/AKT pathway and modulates the transcription of genes involved in angiogenesis. Mar. Drugs, 13 (12), 7446–7462.
- Bouvard, C., Gafsou, B., Dizier, B. et al. (2010) α6-integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol., 30 (8), 1569–1575.
- Qian, H., Tryggvason, K., Jacobsen, S.E. et al. (2006) Contribution of α6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with α4 integrins. Blood, 107 (9), 3503–3510.
-
Pomin, V.H. (2012) Fucanomics and galactanomics: current status in drug discovery, mechanisms of action and role of the well-defined structures. Biochim. Biophys. Acta, 1820 (12), 1971–1979.
10.1016/j.bbagen.2012.08.022 Google Scholar
-
Sapharikas, E., Lokajczyk, A., Fischer, A.-M.
et al. (2015) Fucoidan stimulates monocyte migration via ERK/p38 signaling pathways and MMP9 secretion. Mar. Drugs, 13 (7), 4156–4170.
10.3390/md13074156 Google Scholar
-
Pineda, J.R.E.T., Kim, E.S.H., and Osinbowale, O.O. (2015) Impact of pharmacologic interventions on peripheral artery disease. Prog. Cardiovasc. Dis., 57 (5), 510–520.
10.1016/j.pcad.2014.12.001 Google Scholar
- Myers, S.P., O'Connor, J., Fitton, J.H. et al. (2010) A combined phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis. Biol. Targets Ther., 4, 33–44.