Poly(vinylidene fluoride)-Based Magnetoelectric Polymer Nanocomposite Films
Poly(vinylidene fluoride)-Based Magnetoelectric Polymer Nanocomposite Films
Thandapani Prabhakaran
National Institute of Technology, Advanced Materials Lab, Department of Physics, Tiruchirappalli, Tamilnadu, 620015 India
Search for more papers by this authorJawaharlal Hemalatha
National Institute of Technology, Advanced Materials Lab, Department of Physics, Tiruchirappalli, Tamilnadu, 620015 India
Search for more papers by this authorThandapani Prabhakaran
National Institute of Technology, Advanced Materials Lab, Department of Physics, Tiruchirappalli, Tamilnadu, 620015 India
Search for more papers by this authorJawaharlal Hemalatha
National Institute of Technology, Advanced Materials Lab, Department of Physics, Tiruchirappalli, Tamilnadu, 620015 India
Search for more papers by this authorSenentxu Lanceros-Méndez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSummary
This chapter discusses the main findings on the properties of poly(vinylidene fluoride) (PVDF)-based magnetoelectric polymer nanocomposite (MPNC) films fabricated through a solution casting method. It then elaborates the effect of CoFe2O4 (CFO), NiFe2O4 (NFO), and ZnFe2O4 (ZFO) nanofillers on the crystallization of PVDF matrix. It is noteworthy to mention that special efforts such as polar dimethyl formamide (DMF) solvent, evaporation temperature, electrical poling, and nanoferrite loading have been made to enhance the ferroelectric β phase of PVDF matrix and to produce good quality, flexible magnetoelectric films. Pure and single-phase magnetic nanofillers are synthesized through sol-gel combustion method. Electroactive polymers can be used as a ferroelectric matrix. However, for magnetic ordering, it is essential to select the fillers that show appreciable magnetic ordering near room temperature. Infrared (IR) vibrational spectrum is an excellent tool to identify the possible functional group vibrations in PVDF film.
References
- Spaldin, N.A. and Fiebig, M. (2005) The renaissance of magnetoelectric multiferroics. Science, 309, 391–392.
- Fiebig, M. (2005) Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys., 38, R123–R152.
- Eerenstein, W., Mathur, N.D., and Scott, J.F. (2006) Multiferroic and magnetoelectric materials. Nature, 442, 759–765.
- Srinivasan, G. and Fetisov, Y.K. (2006) Ferrite-piezoelectric layered structures: microwave magnetoelectric effects and electric field tunable devices. Ferroelectrics, 342, 65–71.
- Cheong, S.W. and Mostovoy, M. (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater., 6, 13–20.
- Prabhakaran, T. and Hemalatha, J. (2013) Ferroelectric and magnetic studies on unpoled poly (vinylidine fluoride)/Fe3O4 magnetoelectric nanocomposite structures. Mater. Chem. Phys., 137, 781–787.
- Zhai, F., Sun, A., Yuan, D., Wang, J., Wu, S., Volinsky, A.A., and Wang, Z. (2011) Epoxy resin effect on anisotropic Nd–Fe–B rubber-bonded magnets performance. J. Alloys Compd., 509, 687–690.
- Pan, D.A., Zhang, S.G., Tian, J.J., Sun, J.S., Volinsky, A.A., and Qiao, L.J. (2010) Resonant modes and magnetoelectric performance of PZT/Ni cylindrical layered composites. Appl. Phys. A, 98 (2), 449–454.
- Martins, P. and Lanceros-Mendez, S. (2013) Polymer-based magnetoelectric materials. Adv. Funct. Mater., 23, 3371–3385.
- Liu, X., Liu, S., Han, M.G., Zhao, L., Deng, H., Li, J., Zhu, Y., Elbaum, L.K., and O'Brien, S. (2013) Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films. Nanoscale Res. Lett., 8 (1), 374.
- Prabhakaran, T. and Hemalatha, J. (2008) Synthesis and characterization of magnetoelectric polymer nanocomposites. J. Polym. Sci., Part B: Polym. Phys., 46, 2418–2422.
- Hill, N.A. (2000) Why are there so few magnetic ferroelectrics? J. Phys. Chem. B, 104, 6694–6709.
-
Lines, M.E. and Glass, A.M. (2001) Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford.
10.1093/acprof:oso/9780198507789.001.0001 Google Scholar
- Khomskii, D.I. (2006) Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater., 306(1), 1–8.
- Katsufuji, T., Mori, S., Masaki, M., Moritomo, Y., Yamamoto, N., and Takagi, H. (2001) Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B, 64, 104419.
- Gonçalves, R., Martins, P.M., Caparrósa, C., Martins, P., Benelmekki, M., Botelho, G., Lanceros-Mendez, S., Lasheras, A., Gutiérrez, J., and Barandiarán, J.M. (2013) Nucleation of the electroactive β-phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. J. Non-Cryst. Solids, 361, 93–99.
- Martins, P., Costa, C.M., Botelho, G., Lanceros-Mendez, S., Barandiaran, J.M., and Gutierrez, J. (2012) Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater. Chem. Phys., 131 (3), 698–705.
- Jing, X., Shen, X., Song, H., and Song, F. (2011) Magnetic and dielectric properties of barium ferrite fibers/poly(vinylidene fluoride) composite films. J. Polym. Res., 18, 2017–2021.
- Qian, C., Piyi, D., Lu, J., Wenjian, W., and Gaorong, H. (2008) Microstructure and dielectric properties of beta-PVDF/NiZn ferrite composite films prepared by wet chemistry route. Rare Met. Mater. Eng., 37, 139–142.
- Alpatova, A., Meshref, M., McPhedran, K.N., and El-Din, M.G. (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J. Membr. Sci., 490, 227–235.
- Sethupathy, M., Pandey, P., and Manisankar, P. (2014) Evaluation of photovoltaic efficiency of dye-sensitized solar cells fabricated with electrospun PVDF-PAN-Fe2O3 composite membrane. J. Appl. Polym. Sci., 131(2), 41107 (1–8), doi:10.1002/app.41107.
- Bhatt, A.S., Bhat, D.K., and Santosh, M.S. (2011) Crystallinity, conductivity, and magnetic properties of PVDF-Fe3O4 composite films. J. Appl. Polym. Sci., 119, 968–972.
- Zhang, J.X., Dai, J.Y., So, L.C., Sun, C.L., Lo, C.Y., Or, S.W., and Chan, H.L.W. (2009) The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites. J. Appl. Phys., 105, 054102.
- Nalwa, H.S. (1995) Ferroelectric Polymers Chemistry, Physics and Applications, Marcel Dekker, Inc., New York, NY.
- Gregorio, R. Jr. (2006) Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci., 100 (4), 3272–3279.
- Davis, G.T., Wang, T.T., Herber, J.M., and Glass, A.M. (1988) The Applications of Ferroelectric Polymers, London, Blackie & Sons Ltd.
- Salimi, A. and Yousefi, A.A. (2003) Analysis Method – FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test., 22, 699–704.
- Wang, T.T. and Herbert, J.M. (1998) in The Applications of Ferroelectric Polymers (ed. A.M. Glass), Chapman and Hall, New York.
- Lovinger, A.J. (1982) Poly (vinylidene fluoride), in Developments in Crystalline Polymers: Polymers-1 (ed. D.C. Bessett), Applied Science Publisher Ltd, London.
- Rutledge, G.C., Carbeck, J.D., and Lacks, D. (1996) A method for studying conformational relaxations by molecular simulation: conformational defects in α-phase poly (vinylidene fluoride). Macromolecules, 29 (15), 5190–5199.
- Park, Y.J., Kang, Y.S., and Park, C. (2005) Micropatterning of semicrystalline poly (vinylidene fluoride) (PVDF) solutions. Eur. Polym. J., 41, 1002–1012.
- Martins, P., Lopes, A.C., and Lanceros-Mendez, S. (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci., 39, 683–706.
- Sencadas, V., Martins, P., Pitães, A., Benelmekki, M., Ribelles, J.L.G., and Lanceros-Mendez, S. (2011) Influence of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). Langmuir, 27, 7241–7249.
- Prabhakaran, T. and Hemalatha, J. (2016) Magnetoelectric investigations on poly(vinylidene fluoride)/NiFe2O4 flexible films fabricated through a solution casting method. RSC Adv., 6, 86880–86888.
- Prabhakaran, T. and Hemalatha, J. (2014) Flexible films of β-phase poly (vinylidene fluoride)/ZnFe2O4 polymer nanocomposite for magnetoelectric device applications. Sci. Adv. Mater., 6, 1313–1321.
- Cox, T. (2012) Instant Notes in Inorganic Chemistry, Taylor & Francis, p. P129.
- Izdebska, J., Thomas, S., and Andrew, W. (2015) Printing on Polymers: Fundamentals and Applications, Technology & Engineering, Matthew Deans, p. 46.
- Biliskov, N. (2011) Infrared optical constants, molar absorption coefficients, dielectric constants, molar polarisabilities, transition moments and dipole moment derivatives of liquid N,N-dimethylformamide–carbon tetrachloride mixtures. Spectrochim. Acta, 79 (2), 302–307.
- Gutmann, V. (2012) Coordination Chemistry in Non-Aqueous Solutions, Springer Science & Business Media Science, p. P152.
- Hsu, T.C. and Geil, P.H. (1989) Deformation and transformation mechanisms of poly (vinylidene fluoride)(PVF2). J. Mater. Sci., 24, 1219.
- Malmonge, L.F. (1989) Caracterização estrutural e elétrica do poli (fluoreto de vinilideno) para aplicação em transdutores. 74 f. Diss. Dissertação (Mestrado)-Instituto de Física e Química, Universidade de São Paulo, São Carlos.
- Song, D., Yang, D., and Feng, Z. (1990) Formation of β-phase microcrystals from the melt of PVF2-PMMA blends induced by quenching. J. Mater. Sci., 25, 57–64.
- Gregorio, R. Jr. and Cestari, M. (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys., 32, 859–870.
- Gregorio, R. Jr. and Borges, D.S. (2008) Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, 49, 4009–4016.
- Yang, X., Kong, X., Tan, S., Li, G., Ling, W., and Zhou, E. (2000) Spatially-confined crystallization of poly(vinylidene fluoride). Polym. Int., 49, 1525–1528.
- Mahadeva, S.K., Berring, J., Walus, K., and Stoeber, B. (2013) Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling. J. Phys. D: Appl. Phys., 46, 285305 (7 pp).
- Kaura, T., Nath, R., and Perlman, M.M. (1991) Simultaneous stretching and coronapoling of PVDF films. J. Phys. D: Appl. Phys., 24, 1848–1852.
- Mohammadi, B., Ali, A.Y., and Bellah, S.M. (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test., 26, 42–50.
- Huan, Y., Liu, Y., and Yang, Y. (2007) Simultaneous stretching and static electric field poling of poly(vinylidene fluoride-hexafluoropropylene) copolymer films. Polym. Eng.Sci., 47, 1630–1633.
- Das-Gupta, D.K. and Doughty, K. (1980) Piezoelectricity in uniaxially stretched and corona poled polyvinylidene fluoride. J. Phys. D: Appl. Phys., 13, 95–105.
- Jiang, Y., Yun, Y., Yu, J., Wu, Z., Li, W., Xu, J., and Xie, G. (2007) Study of thermally poled and corona charged poly(vinylidene fluoride) films. Polym. Eng. Sci., 47, 1344–1350.
- Sencadas, V., Lanceros-Méndez, S., and Mano, J.F. (2004) Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochim. Acta, 424, 201–207.
- Martins, P.M., Ribeiro, S., Ribeiro, C., Sencadas, V., Gomes, A.C., Gamae, F.M., and Lanceros-Méndez, S. (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv., 3, 17938–17944.
- Martins, P., Kolen'ko, Y.V., Rivas, J., and Lanceros-Méndez, S. (2015) Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces, 7 (27), 15017–15022.
- Martins, P., Larrea, A., Gonçalves, R., Botelho, G., Ramana, E.V., Mendiratta, S.K., Sebastian, V., and Lanceros-Mendez, S. (2015) Novel anisotropic magnetoelectric effect on δ-FeO(OH)/P(VDF-TrFE) multiferroic composites. ACS Appl. Mater. Interfaces, 7 (21), 11224–11229.
- Garg, A.B., Mittal, R., and Mukhopadhyay, R. (2011) Ferroelectric studies on poly (vinylidene fluoride)/NiFe2O4 polymer nanocomposite structures. AIP Conf. Proc., 1349, 343–344; Proceedings of the 55th DAE Solid State Physics Symposium, Manipal, India, December 26–30, 2010.
- Martins, P., Costa, C.M., and Lanceros-Mendez, S. (2011) Nucleation of electroactive β-phase poly (vinylidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl. Phys. A, 103, 233–237.
- Mittal, R., Chauhan, A.K., and Mukhopadhyay, R. (2012) Highly flexible poly (vinyldene fluoride)/bismuth iron oxide multiferroic polymer nanocomposites. AIP Conf. Proc., 1447, 1309–1310; Proceedings of the 56th DAE Solid State Physics Symposium, Tamilnadu, India, December 19–23, 2011.
- Kumar, A., Scott, J.F., Martinez, R., Srinivasan, G., and Katiyar, R.S. (2012) In-plane dielectric and magnetoelectric studies of BiFeO3 . Phys. Status Solidi A, 309, 1207–1212.
-
Stefanita, C.G. (2008) From Bulk to Nano: the Many Sides of Magnetism, Springer Science & Business Media Science, p. P54.
10.1007/978-3-540-70548-2 Google Scholar
- MacCrone, R.K. (2013) Properties and Microstructure: Treatise on Materials Science and Technology, vol. 11, Elsevier Technology & Engineering, p. 395.
- Srinivasan, G. (2010) Magnetoelectric composites. Annu. Rev. Mater. Res., 40, 153–178.
- Prabhakaran, T. and Hemalatha, J. (2011) Combustion synthesis and characterization of highly crystalline single phase nickel ferrite nanoparticles. J. Alloys Compd., 509, 7071–7077.
- Prabhakaran, T. and Hemalatha, J. (2016) Combustion synthesis and characterization of cobalt ferrite nanoparticles. Ceram. Inter., 42, 14113–14120.
- Wu, T., Xie, T., and Yang, G. (2009) Characterization of poly (vinylidene fluoride)/Na+-MMT composites: an investigation into the β-crystalline nucleation effect of Na+-MMT. J. Polym. Sci., Part B: Polym. Phys., 47, 903–911.
- Chen, S., Yao, K., Tay, F.E.H., and Liow, C.L. (2007) Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J. Appl. Phys., 102, 104108.
- Miranda, D., Sencadas, V., Sánchez-Iglesias, A., Pastoriza-Santos, I., Liz-Marzán, L.M., Gómez Ribelles, J.L., and Lanceros-Mendez, S. (2009) Influence of silver nanoparticles concentration on the alpha- to beta-phase transformation and the physical properties of silver nanoparticles doped poly(vinylidene fluoride) nanocomposites. J. Nanosci. Nanotechnol., 9 (5), 2910–2916.
- Sanchez, F.A., Redondo, M., and Gonzalez-Benito, J. (2015) Influence of BaTiO3 submicrometric particles on the structure, morphology, and crystallization behavior of Poly(vinylidene fluoride). J. Appl. Polym. Sci., 132(8), 41497 (1–10), doi: 10.1002/APP.41497.
- Xu, C., Ouyang, C., Jia, R., Li, Y., and Wang, X. (2009) Magnetic and optical properties of poly(vinylidenedifluoride)/Fe3O4 nanocomposite prepared by coprecipitation approach. J. Appl. Polym. Sci., 111, 1763–1768.
- Martins, P., Lasheras, A., Gutierrez, J., Barandiaran, J.M., Orue, I., and Lanceros-Mendez, S. (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J. Phys. D: Appl. Phys., 44, 495303.
- Kusuma, D.Y., Nguyen, C.A., and Lee, P.S. (2010) Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J. Phys. Chem. B, 114 (42), 13289–13293.
- Li, W., Li, H., and Zhang, Y.M. (2009) Preparation and investigation of PVDF/PMMA/TiO2 composite film. J. Mater. Sci., 44, 2977–2984.
- Martins, P., Moya, X., Caparrós, C., Fernandez, J., Mathur, N.D., and Lanceros-Mendez, S. (2013) Large linear anhysteretic magnetoelectric voltage coefficients in CoFe2O4/polyvinylidene fluoride 0-3 nanocomposites. J. Nanopart. Res., 15, 1825–1826.