Engineered Nanomaterials: a Discussion of the Major Categories of Nanomaterials
Marcel Van de Voorde
University of Technology Delft, Institute of Technical Natural Sciences, Eeuwigelaan, 33, 1861 CL, Bergen, The Netherlands
Search for more papers by this authorMaciej Tulinski
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland
Search for more papers by this authorMieczyslaw Jurczyk
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland
Search for more papers by this authorMarcel Van de Voorde
University of Technology Delft, Institute of Technical Natural Sciences, Eeuwigelaan, 33, 1861 CL, Bergen, The Netherlands
Search for more papers by this authorMaciej Tulinski
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland
Search for more papers by this authorMieczyslaw Jurczyk
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland
Search for more papers by this authorDr. Elisabeth Mansfield
National Inst. of Standards & TechnologyMaterials Measurement Laboratory MS 647, 325 Broadway, Boulder CO, 8305 United States
Search for more papers by this authorDr. Debra L. Kaiser
National Inst. of Standards & TechnologyMaterial Measurement Laboratory MS 8301, 100 Bureau Drive, Gaithersburg MD, 20899 United States
Search for more papers by this authorDaisuke Fujita Professor
National Inst. for Materials ScienceAdvanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorMarcel Van de Voorde Professor
TU DelftFakulteit Technical Natuurwetenschappen, Eeuwige Laan 33, CL Bergen, 1861 Netherlands
Search for more papers by this authorAbstract
This chapter provides a comprehensive and complete knowledge about the major categories of nanomaterials. A more comprehensive attempt constitutes classification of nanostructured materials according to their dimensionality. In addition to classification by dimensionality, nanomaterials can be categorized by composition. The chapter reviews the broadest categories, including inorganic and organic and gives examples of each. The properties of nanomaterials typically differ significantly from the corresponding coarser bulk material. Nanomaterials have unique beneficial physical, chemical, biological, and mechanical properties and these properties are used for a wide range of applications in the environment. Applications of dispersed systems, such as suspensions of particles and emulsions, and colloidal and nanometric systems are vast. Since many nanomaterials will reach the market in the future decennia, it will become of vital importance to characterize their properties, to develop evaluated test methodologies, and to standardize nanomaterial on worldwide principles and agreements.
References
- International Organization for Standardization (2015), Standard no. ISO/TS 80004-1:2015: Nanotechnologies: Vocabulary — Part 1: Core terms. Available online: http://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en (accessed 28 September 2016).
- Gleiter, H. (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater., 48, 1–29.
-
Ngo, Ch. and
Van de Voorde, M.
(2014)
Nanotechnology in a Nutshell,
Springer Verlag/Atlantis Press.
10.2991/978-94-6239-012-6 Google Scholar
- Tiwari, J.N., Tiwari, R.N., and Kim, K.S. (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci., 57, 724–803.
- Alivisatos, A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.
- Pokropivny, V.V. and Skorokhod, V.V. (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C, 27, 990–993.
- Mori, K., Hara, T., Mizugaki, T., Ebitani, K., and Kaneda, K. (2004) Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc., 126, 10657–10666.
- Williams, G.L., Vohs, J.K., Brege, J.J., and Fahlman, B.D. (2005) Supercritical fluid facilitated growth of copper and aluminum oxide nanoparticles. J. Chem. Educ., 82, 771–774.
- Leconte, Y., Maskrot, H., Herlin-Boime, N., Porterat, D., Reynaud, C., Gierlotka, S., Swiderska-Sroda, A., and Vicens, J. (2006) TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics. J. Phys. Chem. B, 110, 158–163.
- Wang, Z.L. (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater., 12, 1295–1298.
- Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354, 56–58.
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004) Electric field effect in atomically thin carbon films. Science, 306, 666–669.
- Mody, V.V., Siwale, R., Singh, A., and Mody, H.R. (2010) Introduction to metallic nanoparticles. J. Pharm. Bioallied. Sci., 2 (4), 282–289.
- Aili, D., Gryko, P., Sepulveda, B., Dick, J.A., Kirby, N., and Heenan, R. (2011) Polypeptide folding-mediated tuning of the optical and structural properties of gold nanoparticle assemblies. Nano Lett., 11, 5564–5573.
- Ruan, J., Ji, J., Song, H., Qian, Q., Wang, K., and Wang, C. (2012) Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res. Lett., 7, 1–12.
- Kiani, A., Rahmani, M., Manickam, S., and Tan, B. (2014) Nanoceramics: synthesis, characterization, and applications. J. Nanomater., 2014, 1–2.
-
Yu, P.Y. and
Cardona, M.
(1996)
Fundamentals of Semiconductors,
Springer.
10.1007/978-3-662-03313-5 Google Scholar
- Chen, X., Lou, Y., Dayal, S., Qiu, X., Krolicki, R., Burda, C., Zhao, C., and Becker, J. (2005) Doped semiconductor nanomaterials. J. Nanosci. Nanotech., 5 (9), 1408–1420.
- Rao, C.N.R., Cheetham, A.K., and Thirumurugan, A. (2008) Hybrid inorganic–organic materials: a new family in condensed matter physics. J. Phys. Condens Matter, 20 (083202), 1–21.
- Vivero-Escoto, J.L. and Huang, T.Z. (2011) Inorganic–organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int. J. Mol. Sci., 12, 3888–3927.
- Klajnert, B. and Bryszewska, M. (2001) Dendrimers: properties and applications. Acta Biochim. Pol., 48, 199–208.
- Camargo, P.H.C., Satyanarayana, K.G., and Wypych, F. (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res., 12, 1–39.
- Lium, H. and Webster, T.J. (2010) Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomed., 5, 299–313.
- Saito, R., Dresselhaus, M.S., and Dresselhaus, G. (1998) Physical properties of carbon nanotubes. World Sci, 59–72.
- Bandaru, P.R. (2007) Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotech., 7, 1–29.
- Sellmyer, D.J. (2002) Applied physics: strong magnets by self-assembly. Nature, 420, 374–375.
-
Jo, Y.,
Jung, M.H.,
Kyum, M.C.,
Park, K.H., and
Kim, Y.N.
(2006)
Nano-sized effect on the magnetic properties of Ag clusters.
J. Magn.,
11 (4),
160–163.
10.4283/JMAG.2006.11.4.160 Google Scholar
-
Eastman, J.A.,
Choi, U.S.,
Li, S.,
Soyez, G.,
Thompson, L.J., and
DiMelfi, R.J.
(1999)
Novel thermal properties of nanostructured materials.
Mater. Sci. Forum,
112–114,
629–634.
10.4028/www.scientific.net/MSF.312-314.629 Google Scholar
- Gao, Y. and Bando, Y. (2002) Carbon nanothermometer containing gallium. Nature, 415, 599–600.
- Fu, Y. and Qiu, M. (2011) Optical Properties of Nanostructures, 1st edn, Pan Stanford Publishing Pte Ltd.
- Eustis, S. and El-Sayed, M.A. (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shape. Chem. Soc. Rev., 35, 209–217.
- Webster, T.J. and Ejiofor, J.U. (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25, 4731–4739.
- Kaczmarek, M., Jurczyk, M.U., Rubis, B., Banaszak, A., Kolecka, A., Paszel, A., Jurczyk, K., Murias, M., Sikora, J., and Jurczyk, M. (2014) In vitro biocompatibility of Ti-45S5 Bioglass nanocomposites and their scaffolds. J. Biomed. Mater. Res. A., 102, 1316–1324.
- Rai, M., Yadav, A., and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27 (1), 76–83.
- Marambio-Jones, C. and Hoek, E.M.V. (2010) A review of the antibacterial effects on silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res., 12, 1531–1551.
- Sondi, I. and Salopek-Sondi, B. (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interf. Sci., 275, 177–182.
-
Patra, J.K. and
Gouda, S.
(2013)
Application of nanotechnology in textile engineering: an overview.
J. Eng. Technol. Res.,
5,
104–111.
10.5897/JETR2013.0309 Google Scholar
- Ultra Hydrophobic Coating (2016), ultrahydrophobiccoatin.com/tech (accessed 28 September 2016).
- Tullo, A.H. (2009) Stretching tires' magic triangle. Chem. Eng. News, 87 (46), 10–14.
- Miller, G. (2008) Nanotechnology: the new threat to food, Global Research, October 30, http://www.globalresearch.ca/PrintArticle.php?articleId=10755 (accessed 28 September 2016).
- Hu, X. and Liu, S. (2015) Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures. Dalton Trans., 44, 3904–3922.
- Wu, X., Gao, Y., and Dong, C.M. (2015) Polymer/gold hybrid nanoparticles: from synthesis to cancer theranostic applications. RSC Adv., 5, 13787–13796.
- Yu, M.K., Park, J., and Jon, S. (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2 (1), 3–44.
- Park, S.K., Kim, K.D., and Kim, H.T. (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf. A, 197 (1–3), 7–17.
- Ruckenstein, E. and Manciu, M. (2010) Nanodispersions, Interactions, Stability, and Dynamics, Springer.
- Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V. (2000) Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 45, 103–189.
- Valiev, R.Z., Semenova, I.P., Latysh, V.V., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Hrusak, D., and Sochova, J. (2009) Nanostructured titanium for biomedical applications. Adv. Eng. Mater., 10, B15–B17.
- Tulinski, M. and Jurczyk, M. (2008) Mechanical and corrosion properties of Ni-free austenitic stainless steels. Arch. Metall. Mater., 53, 955–959.
- Tulinski, M. and Jurczyk, M. (2010) Mechanical properties and corrosion resistance of nickel-free nanocrystalline austenitic steel. Adv. Manuf. Sci. Technol., 34, 73–79.
- Furusawa, S., Tabuchi, H., and Tsurui, T. (2007) Ionic conductivity of lithium alumino-silicate thin films on SiO2 glass and Al2O3 substrates. Solid State Ionics, 178 (15–18), 1033–1038.
- Nohynek, G.J., Lademann, J., Ribaud, C., and Roberts, M.S. (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol., 37, 251–277.
- Ma, R. and Tang, T. (2014) Current strategies to improve the bioactivity of PEEK. Int. J. Mol. Sci., 15 (4), 5426–5445.
- Kokubo, T., Kim, H.-M., and Kawashita, M. (2003) Novel bioactive materials with different mechanical properties. Biomaterials, 24, 2161–2175.
- Ruoff, R.S., Qian, D., and Liu, W.K. (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C.R. Phys., 4, 993–1008.
- Das, R., Ali, E., Hamid, S.B.A., Ramakrishna, S., and Chowdhury, Z.Z. (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination, 336, 97–109.
- Peretz, S. and Regev, O. (2012) Carbon nanotubes as nanocarriers in medicine. Curr. Opin. Colloid. Interface. Sci., 17, 360–368.
- Peng, L., Zhang, Z., and Wang, S. (2014) Carbon nanotube electronics: recent advances. Mater. Today, 17, 433–442.
- Duana, K., Zhua, F., Tanga, K., Hea, L., Chenb, Y., and Liua, S. (2016) Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comp. Mater. Sci., 117, 294–299.
- Guhaa, S. and Nakamotob, K. (2005) Electronic structures and spectral properties of endohedral fullerenes. Coordin. Chem. Rev., 249, 1111–1132.
-
Jurczyk, M. and
Nowak, M.
(2008)
Nanomaterials for hydrogen storage synthesized by mechanical alloying, in
Nanostructured Materials in Electrochemistry
(ed. Ali Eftekhari),
John Wiley & Sons, Chapter 9.
10.1002/9783527621507.ch9 Google Scholar
- Balcerzak, M., Jakubowicz, J., Kachlicki, T., and Jurczyk, M. (2015) Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. J. Power Sources, 280, 435–445.
- Jurczyk, M., Nowak, M., Smardz, L., and Szajek, A. (2011) Mg-based nanocomposites for room temperature hydrogen storage. TMS Annu. Meet., 1, 229–236.
-
M. Jurczyk (ed.)
(2012)
Bionanomaterials for Dental Applications,
Pan Stanford Publishing.
10.1201/b13255 Google Scholar
- Jurczyk, K., Niespodziana, K., Jurczyk, M.U., and Jurczyk, M. (2011) Synthesis and characterization of titanium-45S5 Bioglass nanocomposites. Mater. Design, 32, 2554–2560.
- Jurczyk, K., Miklaszewski, A., Jurczyk, M.U., and Jurczyk, M. (2015) Development of βtype Ti23Mo-45S5 Bioglass nanocomposites for dental applications. Materials, 8, 8032–8046.
- Miklaszewski, A., Jurczyk, M.U., Jurczyk, K., and Jurczyk, M. (2011) Plasma surface modification of titanium by TiB precipitation for biomedical applications. Surf. Coat. Technol., 206, 330–337.
- Skomski, R. and Coey, J.M.D. (1998) Giant energy product in nanostructured two-phase magnets. Phys. Rev. B, 48, 15812–15816.
- Jurczyk, M., Collocott, S.J., Dunlop, J.B., and Gwan, P.G. (1996) Magnetic properties of nanocomposite (Nd,Dy)2(Fe,Co,Zr)14B and Nd(Fe, Mo)12N x materials with an excess of Fe. J. Phys. D, 29, 2284–2289.
- Fischer, H. (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater. Sci. Eng. C, 23, 763–772.
- Osada, M. and Sasaki, T. (2012) Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater., 24, 210–228.
- Yano, H. and Nakahara, S. (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J. Mater. Sci., 39, 1635–1638.
- Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., and Dai, H. (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 395, 878–881.