Tribological Testing and Standardization at the Micro- and Nanoscale
Esteban Broitman
Linköping University, IFM 58183 Linköping, Sweden
Search for more papers by this authorEsteban Broitman
Linköping University, IFM 58183 Linköping, Sweden
Search for more papers by this authorDr. Elisabeth Mansfield
National Inst. of Standards & TechnologyMaterials Measurement Laboratory MS 647, 325 Broadway, Boulder CO, 8305 United States
Search for more papers by this authorDr. Debra L. Kaiser
National Inst. of Standards & TechnologyMaterial Measurement Laboratory MS 8301, 100 Bureau Drive, Gaithersburg MD, 20899 United States
Search for more papers by this authorDaisuke Fujita Professor
National Inst. for Materials ScienceAdvanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorMarcel Van de Voorde Professor
TU DelftFakulteit Technical Natuurwetenschappen, Eeuwige Laan 33, CL Bergen, 1861 Netherlands
Search for more papers by this authorAbstract
This chapter introduces tribology and discusses scale effects at macro-, micro-, and nanoscale. It highlights the lack of international standardization in micro- and nanotribology. With the increasing advance of computational capabilities, different numerical methods have been employed to predict the tribological behavior at the nanoscale. Analytical methods such as molecular dynamics (MD), Monte Carlo, and ab initio calculations are used by different research groups. It is usual that researchers speak about tribology in terms of a scale, such as macrotribology, microtribology, and nanotribology. The three most common methods used for the tribological characterization at micro- and nanoscale are the surface force apparatus, the lateral force microscope, and the Triboindenter. The Technical Report ISO/TR 11811 is titled “Nanotechnologies: Guidance on methods for nano- and microtribology measurements“. This report describes procedures for undertaking these kinds of measurements, and provides guidance on the effects of parameters on test results.
References
- Jost, H.P. (1966) A Report on the Present Position and Industry's Need, H.M. Stationery Office, London.
-
Broitman, E.
(2014)
The nature of the frictional force at the macro-, micro-, and nanoscale.
Friction,
2 (1),
40–46.
10.1007/s40544-014-0037-3 Google Scholar
- Dowson, D. (1998) History of Tribology, Professional Engineering Publishing, London.
- da Vinci, L. (1998) The Notebooks of Leonardo da Vinci, Oxford University Press, New York.
- Amontons, G. (1699) De la résistance causée dans les machines. Mém. Acad. R. A, 257–282.
- Coulomb, C.A. (1781) Théorie des machines simples, en ayant égard au frottement de leur partie, et à la raideur des cordages, avec 5 planches. Rec. Savants Étran. Acad. R. Sci., T.10, 161–332.
-
Tower, B.
(1883)
First report on friction experiments.
Proc. Inst. Mech. Eng.,
34 (1),
632–659.
10.1243/PIME_PROC_1883_034_028_02 Google Scholar
-
Reynolds, O.
(1886)
On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil.
Phil. Trans. R. Soc. Lond.,
177,
157–234.
10.1098/rstl.1886.0005 Google Scholar
- Bowden, E. and Tabor, D. (1954) The Friction and Lubrication of Solids, Oxford University Press, London.
- Greenwood, J.A. and Williamson, J.B.P. (1966) Contact of nominally flat surfaces. Proc. R. Soc. Lond. A, 19, 295–300.
-
Hardy, W.B. and
Doubleday, I.
(1922)
Boundary lubrication. The paraffin series.
Proc. R. Soc. Lond. A,
100 (707),
550–574.
10.1098/rspa.1922.0017 Google Scholar
- Archard, J.F. (1953) Contact and rubbing of flat surfaces. J. Appl. Phys., 24, 981–988.
-
Tomlinson, G.
(1929)
A molecular theory of friction.
Philos. Mag.,
46,
905–939.
10.1080/14786440608564819 Google Scholar
- Kontorova, T. and Frenkel, Y.I. (1938) On the theory of the plastic deformation and twinning. Z. Eksp. Teor. Fiz., 8, 89–95.
- Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S. (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 59 (17), 1942–1945.
-
Mate, C.M.
(2007)
Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear,
Oxford University Press,
Oxford.
10.1093/acprof:oso/9780198526780.001.0001 Google Scholar
- Braun, O.M. and Naumovets, A.G. (2006) Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep., 60, 79–158.
-
Bennewitz, R.
(2014)
Nanotribology. Encyclopedia of Lubricants and Lubrication,
Springer-Verlag,
Heidelberg,
pp. 1245–1259.
10.1007/978-3-642-22647-2_253 Google Scholar
- Holmberg, K. and Matthews, A. (2009) Coatings Tribology, Elsevier, Amsterdam.
- Urbakh, M. and Meyer, E. (2010) The renaissance of friction. Nat. Mater., 9 (1), 8–10.
- Scharf, T.W. and Singer, I.L. (2002) Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans., 45 (3), 363–371.
- Holmberg, K., Ronkainen, H., Laukkanen, A., and Wallin, K. (2007) Friction and wear of coated surfaces: scales, modelling and simulation of tribomechanics. Surf. Coat. Tech., 202, 1034–1049.
- Hsu, S., Ying, C., and Zhao, F. (2014) The nature of friction: a critical assessment. Friction, 2 (1), 1–26.
- Enachescu, M. (2012) Nanoscale effects of friction, adhesion and electrical conduction in AFM experiments, in Atomic Force Microscopy: Imaging, Measuring and Manipulating Surfaces at the Atomic Scale (ed. by Victor Bellitto), Intechopen.com, Chapter 6.
- Axén, N., Hogmark, S., and Jacobson, S. (2000) Friction and wear measurement techniques, in Modern Tribology Handbook (ed. Bharat Bhushan), CRC Press, Boca Raton, pp. 13.1–13.18.
- Tabor, D. and Winterton, R.H.S. (1969) The direct measurement of normal and retarded van der Waals forces. Proc. R. Soc. Lond. A, 312, 435–450.
- Israelachvili, J.N. and Tabor, D. (1972) The measurement of the van der Waals dispersion forces in the range of 1.5 to 130nm. Proc. R. Soc. Lon. A, 331, 19–38.
- Heuberger, M. (2001) The extended Surface Forces Apparatus (eSFA). Available online: http://science.sciencemag.org/content/sci/suppl/2001/05/03/292.5518.905.DC1/eSFA.html (accessed 17 January 2016).
- Moldovan, A. and Enachescu, M. (2015) Wetting properties at nanometer scale, in Wetting and Wettability, InTech, Rijeka, Chapter 2.
- Asha, G. and Kumawat, S.C. (2011) Nanotribology. Int. J. Adv. Eng. Tech., 2 (2), 300–310.
- ULVAC-RIKO (2010). Available online: http://www.ulvac.co.jp/en/information/ulvac-riko-announces-resonance-shear-measurement-system-rsm-1-worlds-first-ever-commercially-available-solution-evaluation-viscosity-friction-lubrication-properties-f/ (accessed 23 January 2016).
-
Bhushan, B.
(2005)
Nanotribology and Nanomechanics: An Introduction,
Springer-Verlag,
Heidelberg.
10.1007/3-540-28248-3 Google Scholar
- Bennewitz, R. (2005) Friction force microscopy. Mater. Today, 8 (5), 42–48.
- Hysitron Inc (2010) Trboindenter Users Manual, 2001, Hysitron Inc., Minneapolis.
- Srivastava, A. (2006) Dynamic friction measurement and modeling at the micro/nano scale. Thesis, University of Califorcia, Santa Barbara.
- Broitman, E., Hellgren, N., Wanstrand, O., Johansson, M., Berlind, T., Sjostrom, H., Sundgren, J.-E., Larsson, M., and Hultman, L. (2001) Mechanical and tribological properties of CN X films deposited by reactive magnetron sputtering. Wear, 248, 55–64.
- International Organization for Standardization (2011) ISO/IEC directives – Part 2: Rules for the structure and drafting of International Standards, ISO, Geneve.
- Blau, P.J. (1993) A compilation of international standards for friction and wear testing of materials: VAMAS Report Nr. 14. NIST, Gaithersburg.
- National Physics Laboratory (1998) Wear testing methods and their relevance to industrial wear problems: NPL Report CMMT(A)92. National Physics Laboratory (NPL), Middlesex.
- Dašić, P., Franek, F., Assenova, E., and Radovanović, M. (2003) International standarization and the organizations in the field of tribology. Ind. Lubr. Tribol., 55 (6), 287–291.
- ISO – International Organization for Standardization (2012) ISO/TR 11811:2012 – Nanotechnologies: guidance on methods for nano- and microtribology measurements, International Organization for Standardization, Geneva.
- ASTM – American Society for Testing and Materials (2015) ASTM G40: standard terminology relating to wear and erosion, ASTM International, West Conshohocken.
- Broitman, E. and Florez-Ruiz, F.J. (2015) Novel method for in-situ and simultaneous nanofriction and nanowear characterization of materials. J. Vac. Sci. Technol. A, 33, 043201.
- Broitman, E., Florez-Ruiz, F.J., Di Giulio, M., Gontad, F., Lorusso, A., and Perrone, A. (2016) Microstructural, nanomechanical and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques. J. Vac. Sci. Technol. A, 34, 021505.