Small-Volume Hyphenated NMR Techniques
Andrew Webb
Leiden University Medical Center, C.J. Gorter Center for High Field MRI, Department of Radiology, C3Q, Albinusdreef 2, 2333 AZ Leiden, The Netherlands
Search for more papers by this authorAndrew Webb
Leiden University Medical Center, C.J. Gorter Center for High Field MRI, Department of Radiology, C3Q, Albinusdreef 2, 2333 AZ Leiden, The Netherlands
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorSummary
This chapter considers the hyphenation of small-scale sample preparation and/or separation techniques to nuclear magnetic resonance (NMR) spectroscopy. Four general modes of hyphenation are covered, namely: online continuous monitoring of column-based microseparations, online stopped-flow monitoring of column-based microseparations, off-line hyphenation of individual microsamples with microcoil detection, and integrated on-chip hyphenated microseparation/NMR detection. An essential component in the purification and analysis of unknown compounds is the efficient separation of individual components from an often complex chemical or biological mixture. The most common separation technique is high-pressure liquid chromatography (HPLC). The hyphenation of NMR detection to microfluidics can also be used to measure the reaction kinetics of very small amounts of material. In terms of future developments, the very rapid nature of chip-based electrophoretic separations may allow techniques such as hyperpolarization to be incorporated to increase the sensitivity; cryogenic radio-frequency (RF) coil technology at the microscale can also be anticipated to lead to substantial improvements in limits-of-detection.
References
- Webb, A.G. (1997) Radiofrequency microcoils in magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc., 31, 1–42.
-
Jones, C.J. and Larive, C.K. (2012) Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem., 402 (1), 61–68.
10.1007/s00216-011-5330-7 Google Scholar
- Kautz, R., Wang, P., and Giese, R.W. (2013) Nuclear magnetic resonance at the picomole level of a DNA adduct. Chem. Res. Toxicol., 26 (10), 1424–1429.
- Kautz, R.A., Goetzinger, W.K., and Karger, B.L. (2005) High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis. J. Comb. Chem., 7 (1), 14–20.
- Kautz, R.A., Lacey, M.E., Wolters, A.M., Foret, F., Webb, A.G., Karger, B.L., and Sweedler, J.V. (2001) Sample concentration and separation for nanoliter-volume NMR spectroscopy using capillary isotachophoresis. J. Am. Chem. Soc., 123 (13), 3159–3160.
- Wolters, A.M., Jayawickrama, D.A., Larive, C.K., and Sweedler, J.V. (2002) Insights into the cITP process using on-line NMR spectroscopy. Anal. Chem., 74 (16), 4191–4197.
- Wolters, A.M., Jayawickrama, D.A., Larive, C.K., and Sweedler, J.V. (2002) Capillary isotachophoresis/NMR: extension to trace impurity analysis and improved instrumental coupling. Anal. Chem., 74 (10), 2306–2313.
- Castro, E.R. and Manz, A. (2015) Present state of microchip electrophoresis: state of the art and routine applications. J. Chromatogr. A, 1382, 66–85.
- Harrison, D.J., Manz, A., Fan, Z.H., Ludi, H., and Widmer, H.M. (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem., 64 (17), 1926–1932.
- Jacobson, S.C., Hergenroder, R., Koutny, L.B., and Ramsey, J.M. (1994) High-speed separations on a microchip. Anal. Chem., 66 (7), 1114–1118.
- Jacobson, S.C., Hergenroder, R., Koutny, L.B., and Ramsey, J.M. (1994) Open-channel electrochromatography on a microchip. Anal. Chem., 66 (14), 2369–2373.
- Nuchtavorn, N., Suntornsuk, W., Lunte, S.M., and Suntornsuk, L. (2015) Recent applications of microchip electrophoresis to biomedical analysis. J. Pharm. Biomed. Anal., 113, 72–96.
- Terry, S.C., Jerman, J.H., and Angell, J.B. (1979) Gas-chromatographic air analyzer fabricated on a silicon-wafer. IEEE Trans. Electron Devices, 26 (12), 1880–1886.
-
Stocker, J.E., Peck, T.L., Webb, A.G., Feng, M., and Magin, R.L. (1997) Nanoliter volume, high-resolution NMR microspectroscopy using a 60-µm planar microcoil. IEEE Trans. Biomed. Eng., 44 (11), 1122–1127.
10.1109/10.641340 Google Scholar
-
Ehrmann, K., Gersbach, M., Pascoal, P., Vincent, F., Massin, C., Stamou, D., Besse, P.A., Vogel, H., and Popovic, R.S. (2006) Sample patterning on NMR surface microcoils. J. Magn. Reson., 178 (1), 96–105.
10.1016/j.jmr.2005.08.018 Google Scholar
-
Gimi, B., Eroglu, S., Leoni, L., Desai, T.A., Magin, R.L., and Roman, B.B. (2003) NMR spiral surface microcoils: applications. Concepts Magn. Reson. Part B, 18b (1), 1–8.
10.1002/cmr.b.10073 Google Scholar
- Hoult, D.I. and Richards, R.E. (1976) Signal-to-noise ratio of nuclear magnetic-resonance experiment. J. Magn. Reson., 24 (1), 71–85.
- Peck, T.L., Magin, R.L., and Lauterbur, P.C. (1995) Design and analysis of microcoils for NMR microscopy. J. Magn. Reson., Ser. B, 108 (2), 114–124.
- Peti, W., Norcross, J., Eldridge, G., and O'Neil-Johnson, M. (2004) Biomolecular NMR using a microcoil NMR probe – new technique for the chemical shift assignment of aromatic side chains in proteins. J. Am. Chem. Soc., 126 (18), 5873–5878.
-
Yamauchi, K., Janssen, J.W.G., and Kentgens, A.P.M. (2004) Implementing solenoid microcoils for wide-line solid-state NMR. J. Magn. Reson., 167 (1), 87–96.
10.1016/j.jmr.2003.12.003 Google Scholar
- Janssen, H., Brinkmann, A., van Eck, E.R.H., van Bentum, P.J.M., and Kentgens, A.P.M. (2006) Microcoil high-resolution magic angle spinning NMR spectroscopy. J. Am. Chem. Soc., 128 (27), 8722–8723.
- Fratila, R.M. and Velders, A.H. (2011) Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem., 4, 227–249.
-
Olson, D.L., Lacey, M.E., and Sweedler, J.V. (1998) The nanoliter niche – NMR detection for trace analysis and capillary separations. Anal. Chem., 70 (7), 257a–264a.
10.1021/ac9818071 Google Scholar
- Webb, A.G. and Grant, S.C. (1996) Signal-to-noise and magnetic susceptibility trade-offs in solenoidal microcoils for NMR. J. Magn. Reson., Ser. B, 113 (1), 83–87.
- Pusecker, K., Schewitz, J., Gfrorer, P., Tseng, L.H., Albert, K., and Bayer, E. (1998) On line coupling of capillary electrochromatography, capillary electrophoresis, and capillary HPLC with nuclear magnetic resonance spectroscopy. Anal. Chem., 70 (15), 3280–3285.
- Minard, K.R. and Wind, R.A. (2001) Solenoidal microcoil design. Part I: Optimizing RF homogeneity and coil dimensions. Concepts Magn. Reson., 13 (2), 128–142.
- Minard, K.R. and Wind, R.A. (2001) Solenoidal microcoil design – Part II: Optimizing winding parameters for maximum signal-to-noise performance. Concepts Magn. Reson., 13 (3), 190–210.
- Badilita, V., Kratt, K., Baxan, N., Mohmmadzadeh, M., Burger, T., Weber, H., von Elverfeldt, D., Hennig, J., Korvink, J.G., and Wallrabe, U. (2010) On-chip three dimensional microcoils for MRI at the microscale. Lab Chip, 10 (11), 1387–1390.
- Kratt, K., Badilita, V., Burger, T., Korvink, J.G., and Wallrabe, U. (2010) A fully MEMS-compatible process for 3D high aspect ratio micro coils obtained with an automatic wire bonder. J. Micromech. Microeng., 20 (1), 015021.
-
Mohmmadzadeh, M., Baxan, N., Badilita, V., Kratt, K., Weber, H., Korvink, J.G., Wallrabe, U., Hennig, J., and von Elverfeldt, D. (2011) Characterization of a 3D MEMS fabricated micro-solenoid at 9.4 T. J. Magn. Reson., 208 (1), 20–26.
10.1016/j.jmr.2010.09.021 Google Scholar
-
Demas, V., Bernhardt, A., Malba, V., Adams, K.L., Evans, L., Harvey, C., Maxwell, R.S., and Herberg, J.L. (2009) Electronic characterization of lithographically patterned microcoils for high sensitivity NMR detection. J. Magn. Reson., 200 (1), 56–63.
10.1016/j.jmr.2009.06.003 Google Scholar
- Olson, D.L., Lacey, M.E., Webb, A.G., and Sweedler, J.V. (1999) Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis. Anal. Chem., 71 (15), 3070–3076.
- Wu, N., Peck, T.L., Webb, A.G., Magin, R.L., and Sweedler, J.V. (1994) Nanoliter volume sample cells for 1H NMR – application to online detection in capillary electrophoresis. J. Am. Chem. Soc., 116 (17), 7929–7930.
-
Eroglu, S., Gimi, B., Roman, B., Friedman, G., and Magin, R.L. (2003) NMR spiral surface microcoils: design, fabrication, and imaging. Concepts Magn. Reson. Part B, 17b (1), 1–10.
10.1002/cmr.b.10068 Google Scholar
- Dechow, J., Lanz, T., Stumber, M., Forchel, A., and Haase, A. (2003) Preamplified planar microcoil on GaAs substrates for microspectroscopy. Rev. Sci. Instrum., 74 (11), 4855–4857.
- Boero, G., Frounchi, J., Furrer, B., Besse, P.A., and Popovic, R.S. (2001) Fully integrated probe for proton nuclear magnetic resonance magnetometry. Rev. Sci. Instrum., 72 (6), 2764–2768.
-
Massin, C., Vincent, F., Homsy, A., Ehrmann, K., Boero, G., Besse, P.A., Daridon, A., Verpoorte, E., de Rooij, N.F., and Popovic, R.S. (2003) Planar microcoil-based microfluidic NMR probes. J. Magn. Reson., 164 (2), 242–255.
10.1016/S1090-7807(03)00151-4 Google Scholar
- Trumbull, J.D., Glasgow, I.K., Beebe, D.J., and Magin, R.L. (2000) Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans. Biomed. Eng., 47 (1), 3–7.
-
Meier, R.C., Hofflin, J., Badilita, V., Wallrabe, U., and Korvink, J.G. (2014) Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance. J. Micromech. Microeng., 24 (4), 045021.
10.1088/0960-1317/24/4/045021 Google Scholar
-
Spengler, N., Moazenzadeh, A., Meier, R.C., Badilita, V., Korvink, J.G., and Wallrabe, U. (2014) Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. J. Micromech. Microeng., 24 (3), 034004.
10.1088/0960-1317/24/3/034004 Google Scholar
-
Bart, J., Janssen, J.W.G., van Bentum, P.J.M., Kentgens, A.P.M., and Gardeniers, J.G.E. (2009) Optimization of stripline-based microfluidic chips for high-resolution NMR. J. Magn. Reson., 201 (2), 175–185.
10.1016/j.jmr.2009.09.007 Google Scholar
-
Bart, J., Kolkman, A.J., Oosthoek-de Vries, A.J., Koch, K., Nieuwland, P.J., Janssen, H., van Bentum, P.J.M., Ampt, K.A.M., Rutjes, F.P.J.T., Wijmenga, S.S., Gardeniers, H., and Kentgens, A.P.M. (2009) A microfluidic high-resolution NMR flow probe. J. Am. Chem. Soc., 131 (14), 5014.
10.1021/ja900389x Google Scholar
- Falck, D., Oosthoek-de Vries, A.J., Kolkman, A., Lingeman, H., Honing, M., Wijmenga, S.S., Kentgens, A.P.M., and Niessen, W.M.A. (2013) EC-SPE-stripline-NMR analysis of reactive products: a feasibility study. Anal. Bioanal. Chem., 405 (21), 6711–6720.
- Kentgens, A.P.M., Bart, J., van Bentum, P.J.M., Brinkmann, A., Van Eck, E.R.H., Gardeniers, J.G.E., Janssen, J.W.G., Knijn, P., Vasa, S., and Verkuijlen, M.H.W. (2008) High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys., 128 (5), 052202.
-
Tayler, M.C.D., van Meerten, S.G.J., Kentgens, A.P.M., and van Bentum, P.J.M. (2015) Analysis of mass-limited mixtures using supercritical-fluid chromatography and microcoil NMR. Analyst, 140 (18), 6217–6221.
10.1039/C5AN00772K Google Scholar
- van Bentum, P.J.M., Janssen, J.W.G., Kentgens, A.P.M., Bart, J., and Gardeniers, J.G.E. (2007) Stripline probes for nuclear magnetic resonance. J. Magn. Reson., 189 (1), 104–113.
- Finch, G., Yilmaz, A., and Utz, M. (2016) An optimized detector for in-situ high-resolution NMR in microfluidic devices. J. Magn. Reson., 262, 73–80.
-
Maguire, Y., Chuang, I.L., Zhang, S.G., and Gershenfeld, N. (2007) Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. Proc. Natl. Acad. Sci. U.S.A., 104 (22), 9198–9203.
10.1073/pnas.0703001104 Google Scholar
- Kalfe, A., Telfah, A., Lambert, J., and Hergenroder, R. (2015) Looking into living cell systems: planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Anal. Chem., 87 (14), 7402–7410.
- Krojanski, H.G., Lambert, J., Gerikalan, Y., Suter, D., and Hergenroder, R. (2008) Microslot NMR probe for metabolomics studies. Anal. Chem., 80 (22), 8668–8672.
- Kuhnle, M., Holtin, K., and Albert, K. (2009) Capillary NMR detection in separation science. J. Sep. Sci., 32 (5–6), 719–726.
-
Jayawickrama, D.A. and Sweedler, J.V. (2003) Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. J. Chromatogr. A, 1000 (1–2), 819–840.
10.1016/S0021-9673(03)00447-3 Google Scholar
- Lewis, R.J., Bernstein, M.A., Duncan, S.J., and Sleigh, C.J. (2005) A comparison of capillary-scale LC-NMR with alternative techniques: spectroscopic and practical considerations. Magn. Reson. Chem., 43 (9), 783–789.
- Sandvoss, M., Roberts, A.D., Ismail, I.M., and North, S.E. (2004) Direct on-line hyphenation of capillary liquid chromatography to nuclear magnetic resonance spectroscopy: practical aspects and application to drug metabolite identification. J. Chromatogr. A, 1028 (2), 259–266.
-
Putzbach, K., Krucker, M., Grynbaum, M.D., Hentschel, P., Webb, A.G., and Albert, K. (2005) Hyphenation of capillary high-performance liquid chromatography to microcoil magnetic resonance spectroscopy – determination of various carotenoids in a small-sized spinach sample. J. Pharm. Biomed. Anal., 38 (5), 910–917.
10.1016/j.jpba.2005.01.049 Google Scholar
- Krucker, M., Lienau, A., Putzbach, K., Grynbaum, M.D., Schuger, P., and Albert, K. (2004) Hyphenation of capillary HPLC to microcoil 1H NMR spectroscopy for the determination of tocopherol homologues. Anal. Chem., 76 (9), 2623–2628.
- Xiao, H.B., Krucker, M., Putzbach, K., and Albert, K. (2005) Capillary liquid chromatography-microcoil 1H nuclear magnetic resonance spectroscopy and liquid chromatography-ion trap mass spectrometry for on-line structure elucidation of isoflavones in Radix astragali . J. Chromatogr. A, 1067 (1–2), 135–143.
- Kuhnle, M., Kreidler, D., Holtin, K., Czesla, H., Schuler, P., Schaal, W., Schurig, V., and Albert, K. (2008) Online coupling of gas chromatography to nuclear magnetic resonance spectroscopy: method for the analysis of volatile stereoisomers. Anal. Chem., 80 (14), 5481–5486.
- Grynbaum, M.D., Kreidler, D., Rehbein, J., Purea, A., Schuler, P., Schaal, W., Czesla, H., Webb, A., Schurig, V., and Albert, K. (2007) Hyphenation of gas chromatography to microcoil 1H nuclear magnetic resonance spectroscopy. Anal. Chem., 79 (7), 2708–2713.
- Wu, N.A., Peck, T.L., Webb, A.G., Magin, R.L., and Sweedler, J.V. (1994) 1H NMR spectroscopy on the nanoliter scale for static and online measurements. Anal. Chem., 66 (22), 3849–3857.
- Pusecker, K., Schewitz, J., Gfrorer, P., Tseng, L.H., Albert, K., Bayer, E., Wilson, I.D., Bailey, N.J., Scarfe, G.B., Nicholson, J.K., and Lindon, J.C. (1998) On-flow identification of metabolites of paracetamol from human urine using directly coupled CZE-NMR and CEC-NMR spectroscopy. Anal. Commun., 35 (7), 213–215.
- Schewitz, J., Gfrorer, P., Pusecker, K., Tseng, L.H., Albert, K., Bayer, E., Wilson, I.D., Bailey, N.J., Scarfe, G.B., Nicholson, J.K., and Lindon, J.C. (1998) Directly coupled CZE-NMR and CEC-NMR spectroscopy for metabolite analysis: paracetamol metabolites in human urine. Analyst, 123 (12), 2835–2837.
- Lacey, M.E., Subramanian, R., Olson, D.L., Webb, A.G., and Sweedler, J.V. (1999) High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chem. Rev., 99 (10), 3133.
-
Li, Y., Lacey, M.E., Sweedler, J.V., and Webb, A.G. (2003) Spectral restoration from low signal-to-noise, distorted NMR signals: application to hyphenated capillary electrophoresis-NMR. J. Magn. Reson., 162 (1), 133–140.
10.1016/S1090-7807(03)00055-7 Google Scholar
- Lacey, M.E., Webb, A.G., and Sweedler, J.V. (2000) Monitoring temperature changes in capillary electrophoresis with nanoliter-volume NMR thermometry. Anal. Chem., 72 (20), 4991–4998.
-
Gfrorer, P., Schewitz, J., Pusecker, K., and Bayer, E. (1999) On-line coupling of capillary separation techniques with 1H NMR. Anal. Chem., 71 (9), 315a–321a.
10.1021/ac990358h Google Scholar
- Rapp, E., Jakob, A., Schefer, A.B., Bayer, E., and Albert, K. (2003) Splitless on-line coupling of capillary high-performance liquid chromatography, capillary electrochromatography and pressurized capillary electrochromatography with nuclear magnetic resonance spectroscopy. Anal. Bioanal. Chem., 376 (7), 1053–1061.
- Gfrorer, P., Schewitz, J., Pusecker, K., Tseng, L.H., Albert, K., and Bayer, E. (1999) Gradient elution capillary electrochromatography and hyphenation with nuclear magnetic resonance. Electrophoresis, 20 (1), 3–8.
- Eldridge, S.L., Almeida, V.K., Korir, A.K., and Larive, C.K. (2007) Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR. Anal. Chem., 79 (22), 8446–8453.
- Eldridge, S.L., Korir, A.K., and Larive, C.K. (2007) Development of cITP-NMR to facilitate structure elucidation of heparin-derived oligosaccharides. Abstr. Pap. Am. Chem. Soc., 234, U115.
- Eldridge, S.L., Korir, A.K., and Larive, C.K. (2006) Separation and analysis of trace compounds using cITP-NMR. Abstr. Pap. Am. Chem. Soc., 232, U142.
- Korir, A.K., Almeida, V., Malkin, D.S., and Larive, C.K. (2005) Use of CITP-NMR for separation and analysis of sulfated oligosaccharides. Abstr. Pap. Am. Chem. Soc., 229, U108.
- Korir, A.K., Almeida, V.K., and Larive, C.K. (2006) Visualizing ion electromigration during isotachophoretic separations with capillary isotachophoresis-NMR. Anal. Chem., 78 (20), 7078–7087.
- Korir, A.K., Almeida, V.K., Malkin, D.S., and Larive, C.K. (2005) Separation and analysis of nanomole quantities of heparin oligosaccharides using on-line capillary isotachophoresis coupled with NMR detection. Anal. Chem., 77 (18), 5998–6003.
-
Korir, A.K. and Larive, C.K. (2007) On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR. Anal. Bioanal. Chem., 388 (8), 1707–1716.
10.1007/s00216-007-1400-2 Google Scholar
- Wolters, A.M., Jayawickrama, D.A., and Sweedler, J.V. (2005) Comparative analysis of a neurotoxin from Calliostoma canaliculatum by on-line capillary isotachophoresis/1H NMR and diffusion 1H NMR. J. Nat. Prod., 68 (2), 162–167.
-
Jones, C.J. and Larive, C.K. (2012) Microcoil NMR study of the interactions between doxepin, beta-cyclodextrin, and acetate during capillary isotachophoresis. Anal. Chem., 84 (16), 7099–7106.
10.1021/ac301401p Google Scholar
- Kautz, R.A. and Karger, B.L. (2003/2010) Method of efficient transport of small liquid volumes to, from, or within microfluidic devices. US Patent 07687269.
- Kautz, R. (2011) NMR in Trace Analysis: The Future of CE-NMR, Conference on Small Molecule Science, Chapel Hill, NC.
- Behnia, B. and Webb, A.G. (1998) Limited-sample NMR using solenoidal microcoils perfluouocarbon plugs, and capillary spinning. Anal. Chem., 70 (24), 5326–5331.
-
Schlotterbeck, G. and Ceccarelli, S.M. (2009) LC-SPE-NMR-MS: a total analysis system for bioanalysis. Bioanalysis, 1 (3), 549–559.
10.4155/bio.09.50 Google Scholar
- Lin, Y.Q., Schiavo, S., Orjala, J., Vouros, P., and Kautz, R. (2008) Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal. Chem., 80 (21), 8045–8054.
- Gathungu, R.M., Oldham, J.T., Bird, S.S., Lee-Parsons, C.W.T., Vouros, P., and Kautz, R. (2012) Application of an integrated LC-UV-MS-NMR platform to the identification of secondary metabolites from cell cultures: benzophenanthridine alkaloids from elicited Eschscholzia californica (California poppy) cell cultures. Anal. Methods (UK), 4 (5), 1315–1325.
- Ciobanu, L., Jayawickrama, D.A., Zhang, X.Z., Webb, A.G., and Sweedler, J.V. (2003) Measuring reaction kinetics by using multiple microcoil NMR spectroscopy. Angew. Chem. Int. Ed., 42 (38), 4669–4672.
- Kakuta, M., Jayawickrama, D.A., Wolters, A.M., Manz, A., and Sweedler, J.V. (2003) Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation. Anal. Chem., 75 (4), 956–960.
-
Wensink, H., Benito-Lopez, F., Hermes, D.C., Verboom, W., Gardeniers, H.J.G.E., Reinhoudt, D.N., and van den Berg, A. (2005) Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR. Lab Chip, 5 (3), 280–284.
10.1039/b414832k Google Scholar
- Bracher, A., Hoch, S., Albert, K., Kost, H.J., Werner, B., von Harbou, E., and Hasse, H. (2014) Thermostatted micro-reactor NMR probe head for monitoring fast reactions. J. Magn. Reson., 242, 155–161.
- Zhang, X.F. and Webb, A.G. (2005) Magnetic resonance microimaging and numerical simulations of velocity fields inside enlarged flow cells used for coupled NMR microseparations. Anal. Chem., 77 (5), 1338–1344.
-
Demas, V., Franck, J.M., Bouchard, L.S., Sakellariou, D., Meriles, C.A., Martin, R., Prado, P.J., Bussandri, A., Reimer, J.A., and Pines, A. (2009) ‘Ex situ’ magnetic resonance volume imaging. Chem. Phys. Lett., 467 (4–6), 398–401.
10.1016/j.cplett.2008.11.069 Google Scholar
- Halpern-Manners, N.W., Kennedy, D.J., Trease, D.R., Teisseyre, T.Z., Malecek, N.S., Pines, A., and Bajaj, V.S. (2014) Gradient-free microfluidic flow labeling using thin magnetic films and remotely detected MRI. J. Magn. Reson., 249, 135–140.
- Harel, E., Hilty, C., Koen, K., McDonnell, E.E., and Pines, A. (2007) Time-of-flight flow imaging of two-component flow inside a microfluidic chip. Phys. Rev. Lett., 98 (1), 017601(1–4).
- Bajaj, V.S., Paulsen, J., Harel, E., and Pines, A. (2010) Zooming in on microscopic flow by remotely detected MRI. Science, 330 (6007), 1078–1081.
-
Paulsen, J., Bajaj, V.S., and Pines, A. (2010) Compressed sensing of remotely detected MRI velocimetry in microfluidics. J. Magn. Reson., 205 (2), 196–201.
10.1016/j.jmr.2010.04.016 Google Scholar
- Ardenkjaer-Larsen, J.H., Boebinger, G.S., Comment, A., Duckett, S., Edison, A.S., Engelke, F., Griesinger, C., Griffin, R.G., Hilty, C., Maeda, H., Parigi, G., Prisner, T., Ravera, E., van Bentum, J., Vega, S., Webb, A., Luchinat, C., Schwalbe, H., and Frydman, L. (2015) Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed., 54 (32), 9162–9185.
-
Dumez, J.N., Milani, J., Vuichoud, B., Bornet, A., Lalande-Martin, J., Tea, I., Yon, M., Maucourt, M., Deborde, C., Moing, A., Frydman, L., Bodenhausen, G., Jannin, S., and Giraudeau, P. (2015) Hyperpolarized NMR of plant and cancer cell extracts at natural abundance. Analyst, 140 (17), 5860–5863.
10.1039/C5AN01203A Google Scholar
- Brey, W.W., Edison, A.S., Nast, R.E., Rocca, J.R., Saha, S., and Withers, R.S. (2006) Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. J. Magn. Reson., 179 (2), 290–293.
- Ramaswamy, V., Hooker, J.W., Withers, R.S., Nast, R.E., Brey, W.W., and Edison, A.S. (2013) Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe. J. Magn. Reson., 235, 58–65.