Microcoils for Broadband Multinuclei Detection
Jens Anders
Department of Electrical Engineering and Information Technology, Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Center for Integrated Quantum Science and Technology (IQST), Baden-Württemberg, Germany
Search for more papers by this authorAldrik H. Velders
Laboratory of BioNanoTechnology, Wageningen University & Research, P.O. Box 8038, 6700 EK Wageningen, The Netherlands
MAGNEtic resonance research FacilitY – MAGNEFY, Wageningen, The Netherlands
Instituto Regional de Investigació Científica Aplicada, Universidad de Castilla-La Mancha (UCLM), Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
Search for more papers by this authorJens Anders
Department of Electrical Engineering and Information Technology, Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Center for Integrated Quantum Science and Technology (IQST), Baden-Württemberg, Germany
Search for more papers by this authorAldrik H. Velders
Laboratory of BioNanoTechnology, Wageningen University & Research, P.O. Box 8038, 6700 EK Wageningen, The Netherlands
MAGNEtic resonance research FacilitY – MAGNEFY, Wageningen, The Netherlands
Instituto Regional de Investigació Científica Aplicada, Universidad de Castilla-La Mancha (UCLM), Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorSummary
To date, NMR microcoils are mostly used for enhancing the spin sensitivity in homonuclear 1D NMR experiments because the design and manufacturing of standard microcoil probes for multinuclear detection require complex and sophisticated electronic circuitry. In this chapter, an alternative approach toward microcoil NMR, which uses a simplified front-end consisting of a planar spiral microcoil-on-a-chip terminating a coaxial cable with no tuning and matching circuitry, is discussed, both experimentally and theoretically. Due to the simple nature of the front-end without tuning or matching elements, the proposed solution can operate as a high-resolution “all-in-one” NMR system, with broadband character. Moreover, this relatively simple setup is capable of executing 1D broadband as well as complex heteronuclear 2D pulse sequences, on practically any combination of nuclides and with excellent mass sensitivity. The exciting broadband properties of microcoils require a radical shift in the conceptual thinking of RF circuitry for NMR applications and probe design and, moreover, the broadband coil concept provides a low-cost alternative to commercial NMR probe systems, enabling mono- and multidimensional experiments using a single microcoil. It is therefore somewhat surprising that broadband circuit probes are not in the normal arsenal of commercially available probes, which in turn raises the question how widely applicable and robust the concept is. To answer this question, in this chapter, we will also discuss how non-tuned circuits demand a different view on the classical electronics in NMR probes and open up the window to explore (micro) technologies to make integrated small NMR systems. We will further motivate why for these systems it becomes particularly attractive to co-design the spectrometer electronics together with the broadband coils to enhance system performance and robustness. Finally, in the conclusions and outlook section, we will outline how the paradigm-shifting idea of a non-resonant system opens up new horizons for NMR spectrometers, such as the reality of magnetic field-independent NMR probes.
References
- Bloch, F. (1952) The Principle of Nuclear Induction (Nobel lecture) 1952, https://www.nobelprize.org/nobel_prizes/physics/laureates/1952/bloch-lecture.html (accessed 11 November 2017).
- Purcell, E.M. (1952) Research in Nuclear Magnetism (Nobel lecture) 1952, https://www.nobelprize.org/nobel_prizes/physics/laureates/1952/purcell-lecture.html (accessed 11 November 2017).
- Ernst, R.R. (1992) Nuclear magnetic resonance fourier transform spectroscopy (Nobel lecture). Angew. Chem. Int. Ed. Engl., 31 (7), 805–823.
- Wuthrich, K. (2003) NMR studies of structure and function of biological macromolecules (Nobel lecture). J. Biomol. NMR, 27 (1), 13–39.
- Mansfield, P. (2004) Snapshot magnetic resonance imaging (Nobel lecture). Angew. Chem. Int. Ed., 43 (41), 5456–5464.
- Lauterbur, P.C. (2005) All science is interdisciplinary – from magnetic moments to molecules to men (Nobel lecture). Angew. Chem. Int. Ed., 44 (7), 1004–1011.
-
Zalesskiy, S.S., Danieli, E., Bluemich, B., and Ananikov, V.P. (2014) Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and “NMR on a chip” for chemistry, biochemistry, and industry. Chem. Rev., 114 (11), 5641–5694.
10.1021/cr400063g Google Scholar
- Olson, D.L., Peck, T.L., Webb, A.G., Magin, R.L., and Sweedler, J.V. (1995) High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples. Science, 270 (5244), 1967–1970.
- Fratila, R.M. and Velders, A.H. (2011) Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem., 4, 227–249.
- van Bentum, P.J.M., Janssen, J.W.G., Kentgens, A.P.M., Bart, J., and Gardeniers, J.G.E. (2007) Stripline probes for nuclear magnetic resonance. J. Magn. Reson., 189 (1), 104–113.
- Webb, A.G. (1997) Radiofrequency microcoils in magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc., 31, 1–42.
- Webb, A.G. (2013) Radiofrequency microcoils for magnetic resonance imaging and spectroscopy. J. Magn. Reson., 229, 55–66.
- Schlotterbeck, G., Ross, A., Hochstrasser, R., Senn, H., Kuhn, T., Marek, D. et al. (2002) High-resolution capillary tube NMR. A miniaturized 5-μL high-sensitivity TXI probe for mass-limited samples, off-line LC NMR, and HT NMR. Anal. Chem., 74 (17), 4464–4471.
- Trumbull, J.D., Glasgow, I.K., Beebe, D.J., and Magin, R.L. (2000) Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans. Biomed. Eng., 47 (1), 3–7.
- Swyer, I., Soong, R., Dryden, M.D.M., Fey, M., Maas, W.E., Simpson, A. et al. (2016) Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy. Lab Chip, 16 (22), 4424–4435.
- Ciobanu, L., Jayawickrama, D.A., Zhang, X.Z., Webb, A.G., and Sweedler, J.V. (2003) Measuring reaction kinetics by using multiple microcoil NMR spectroscopy. Angew. Chem. Int. Ed., 42 (38), 4669–4672.
-
Gomez, M.V., Rodriguez, A.M., de la Hoz, A., Jimenez-Marquez, F., Fratila, R.M., Barneveld, P.A.
et al. (2015) Determination of kinetic parameters within a single nonisothermal on-flow experiment by nano liter NMR spectroscopy. Anal. Chem., 87 (20), 10547–10555.
10.1021/acs.analchem.5b02811 Google Scholar
-
Bart, J., Kolkman, A.J., Oosthoek-de Vries, A.J., Koch, K., Nieuwland, P.J., Janssen, H.
et al. (2009) A microfluidic high-resolution NMR flow probe. J. Am. Chem. Soc., 131 (14), 5014.
10.1021/ja900389x Google Scholar
-
Oosthoek-de Vries, A.J., Bart, J., Tiggelaar, R.M., Janssen, J.W.G., van Bentum, P.J.M., Gardeniers, H.
et al. (2017) Continuous flow H-1 and C-13 NMR spectroscopy in microfluidic stripline NMR chips. Anal. Chem., 89 (4), 2296–2303.
10.1021/acs.analchem.6b03784 Google Scholar
-
Wensink, H., Benito-Lopez, F., Hermes, D.C., Verboom, W., Gardeniers, H.J.G.E., Reinhoudt, D.N.
et al. (2005) Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR. Lab Chip, 5 (3), 280–284.
10.1039/b414832k Google Scholar
- Gomez, M.V. and de la Hoz, A. (2017) NMR reaction monitoring in flow synthesis. Beilstein J. Org. Chem., 13, 285–300.
-
Jones, C.J. and Larive, C.K. (2012) Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem., 402 (1), 61–68.
10.1007/s00216-011-5330-7 Google Scholar
- Gokay, O. and Albert, K. (2012) From single to multiple microcoil flow probe NMR and related capillary techniques: a review. Anal. Bioanal. Chem., 402 (2), 647–669.
- Subramanian, R., Kelley, W.P., Floyd, P.D., Tan, Z.J., Webb, A.G., and Sweedler, J.V. (1999) A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy. Anal. Chem., 71 (23), 5335–5339.
- Wolters, A.M., Jayawickrama, D.A., Larive, C.K., and Sweedler, J.V. (2002) Insights into the cITP process using on-line NMR spectroscopy. Anal. Chem., 74 (16), 4191–4197.
- Almeida, V.K. and Larive, C.K. (2005) Insights into cyclodextrin interactions during sample stacking using capillary isotachophoresis with on-line microcoil NMR detection. Magn. Reson. Chem., 43 (9), 755–761.
- Gomez, M.V., Reinhoudt, D.N., and Velders, A.H. (2008) Supramolecular interactions at the picomole level studied by F-19 NMR spectroscopy in a microfluidic chip. Small, 4 (9), 1293–1295.
-
Jones, C.J. and Larive, C.K. (2012) Microcoil NMR study of the interactions between doxepin, beta-cyclodextrin, and acetate during capillary isotachophoresis. Anal. Chem., 84 (16), 7099–7106.
10.1021/ac301401p Google Scholar
- Gomez, M.V., Reinhoudt, D.N., and Velders A.H. (2007) Supramolecular chemistry in an NMR-chip. 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Paris.
- Lee, H., Sun, E., Ham, D., and Weissleder, R. (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med., 14 (8), 869–874.
- Castro, C.M., Ghazani, A.A., Chung, J., Shao, H.L., Issadore, D., Yoon, T.J. et al. (2014) Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. Lab Chip, 14 (1), 14–23.
-
Grisi, M., Vincent, F., Volpe, B., Guidetti, R., Harris, N., Beck, A.
et al. (2017) NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes. Sci. Rep., 7, 44670.
10.1038/srep44670 Google Scholar
-
Price, K.E., Vandaveer, S.S., Lunte, C.E., and Larive, C.K. (2005) Tissue targeted metabonomics: metabolic profiling by microdialysis sampling and microcoil NMR. J. Pharm. Biomed. Anal., 38 (5), 904–909.
10.1016/j.jpba.2005.02.034 Google Scholar
- Gloggler, S., Rizzitelli, S., Pinaud, N., Raffard, G., Zhendre, V., Bouchaud, V. et al. (2016) In vivo online magnetic resonance quantification of absolute metabolite concentrations in microdialysate. Sci. Rep., 6, 36080.
- Kalfe, A., Telfah, A., Lambert, J., and Hergenroder, R. (2015) Looking into living cell systems: planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Anal. Chem., 87 (14), 7402–7410.
- Fratila, R.M., Gomez, M.V., Sykora, S., and Velders, A.H. (2014) Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat. Commun., 5, 3025.
- Wu, N.A., Peck, T.L., Webb, A.G., Magin, R.L., and Sweedler, J.V. (1994) H-1-NMR spectroscopy on the nanoliter scale for static and online measurements. Anal. Chem., 66 (22), 3849–3857.
- Peck, T.L., Magin, R.L., and Lauterbur, P.C. (1995) Design and analysis of microcoils for NMR microscopy. J. Magn. Reson., Ser. B, 108 (2), 114–124.
- Schroeder, F.C. and Gronquist, M. (2006) Extending the scope of NMR spectroscopy with microcoil probes. Angew. Chem. Int. Ed., 45 (43), 7122–7131.
- Sakellariou, D., Le Goff, G., and Jacquinot, J.F. (2007) High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature, 447 (7145), 694.
- Tang, J.A. and Jerschow, A. (2010) Practical aspects of liquid-state NMR with inductively coupled solenoid coils. Magn. Reson. Chem., 48 (10), 763–770.
-
Saggiomo, V. and Velders, A.H. (2015) Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci., 2, 1500125. doi: 10.1002/advs.201500125
10.1002/advs.201500125 Google Scholar
-
Maguire, Y., Chuang, I.L., Zhang, S.G., and Gershenfeld, N. (2007) Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. Proc. Natl. Acad. Sci. U.S.A., 104 (22), 9198–9203.
10.1073/pnas.0703001104 Google Scholar
- Krojanski, H.G., Lambert, J., Gerikalan, Y., Suter, D., and Hergenroder, R. (2008) Microslot NMR probe for metabolomics studies. Anal. Chem., 80 (22), 8668–8672.
-
Gogiashvili, M., Telfah, A., Lambert, J., and Hergenroer, R. (2017) A flow microslot NMR probe coupled with a capillary isotachophoresis system exhibits improved properties compared to solenoid designs. Anal. Bioanal. Chem., 409 (9), 2471–2475.
10.1007/s00216-017-0196-y Google Scholar
-
Bart, J., Janssen, J.W.G., van Bentum, P.J.M., Kentgens, A.P.M., and Gardeniers, J.G.E. (2009) Optimization of stripline-based microfluidic chips for high-resolution NMR. J. Magn. Reson., 201 (2), 175–185.
10.1016/j.jmr.2009.09.007 Google Scholar
-
Massin, C., Vincent, F., Homsy, A., Ehrmann, K., Boero, G., Besse, P.A.
et al. (2003) Planar microcoil-based microfluidic NMR probes. J. Magn. Reson., 164 (2), 242–255.
10.1016/S1090-7807(03)00151-4 Google Scholar
-
Gomez, M.V., Verputten, H.H.J., Diaz-Ortiz, A., Moreno, A., de la Hoz, A., and Velders, A.H. (2010) On-line monitoring of a microwave-assisted chemical reaction by nanolitre NMR-spectroscopy. Chem. Commun., 46 (25), 4514–4516.
10.1039/b924936b Google Scholar
- Massin, C., Boero, C., Vincent, F., Abenhaim, J., Besse, P.A., and Popovic, R.S. (2002) High-Q factor RF planar microcoils for micro-scale NMR spectroscopy. Sens. Actuators, A, 97-8, 280–288.
-
Anders, J., Handwerker, J., Ortmanns, M., and Boero, G. (2016) A low-power high-sensitivity single-chip receiver for NMR microscopy. J. Magn. Reson., 266, 41–50.
10.1016/j.jmr.2016.03.004 Google Scholar
-
Spengler, N., Moazenzadeh, A., Meier, R.C., Badilita, V., Korvink, J.G., and Wallrabe, U. (2014) Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. J. Micromech. Microeng., 24 (3), 034004.
10.1088/0960-1317/24/3/034004 Google Scholar
-
Goloshevsky, A.G., Walton, J.H., Shutov, M.V., de Ropp, J.S., Collins, S.D., and McCarthy, M.J. (2005) Development of low field nuclear magnetic resonance microcoils. Rev. Sci. Instrum., 76 (2), 024101.
10.1063/1.1848659 Google Scholar
-
Mohmmadzadeh, M., Baxan, N., Badilita, V., Kratt, K., Weber, H., Korvink, J.G.
et al. (2011) Characterization of a 3D MEMS fabricated micro-solenoid at 9.4 T. J. Magn. Reson., 208 (1), 20–26.
10.1016/j.jmr.2010.09.021 Google Scholar
- Grant, S.C., Murphy, L.A., Magin, R.L., and Friedman, G. (2001) Analysis of multilayer radio frequency microcoils for nuclear magnetic resonance spectroscopy. IEEE Trans. Magn., 37 (4), 2989–2998.
- Kc, R., Henry, I.D., Park, G.H.J., and Raftery, D. (2009) Design and construction of a versatile dual volume heteronuclear double resonance microcoil NMR probe. J. Magn. Reson., 197 (2), 186–192.
-
Li, Y., Logan, T.M., Edison, A.S., and Webb, A. (2003) Design of small volume HX and triple-resonance probes for improved limits of detection in protein NMR experiments. J. Magn. Reson., 164 (1), 128–135.
10.1016/S1090-7807(03)00184-8 Google Scholar
- Subramanian, R., Sweedler, J.V., and Webb, A.G. (1999) Rapid two-dimensional inverse detected heteronuclear correlation experiments with < 100 nmol samples with solenoidal microcoil NMR probes. J. Am. Chem. Soc., 121 (10), 2333–2334.
- Velders, A.H. (2005) Unpublished data.
- Lowe, I.J. and Tarr, C.E. (1968) A high-power, untuned radio-frequency transmitter for pulsed nuclear magnetic resonance spectroscopy. J. Sci. Instrum., 2, 604–606.
- Pollak, V.L., Slater, R.R., Pollak, V.L., and Slater, R.R. (1966) Input circuits for pulsed NMR. Rev. Sci. Instrum., 37, 268–272.
- Hopper, T., Mandal, S., Cory, D., Huerlimann, M., and Song, Y.-Q. (2011) Low-frequency NMR with a non-resonant circuit. J. Magn. Reson., 210, 69–74.
-
Kubo, A. and Ichikawa, S. (2003) Ultra-broadband NMR probe: numerical and experimental study of transmission line NMR probe. J. Magn. Reson., 162, 284–299.
10.1016/S1090-7807(03)00014-4 Google Scholar
-
Murphree, D., Cahn, S.B., Rahmow, D., and DeMille, D. (2007) An easily constructed, tuning free, ultra-broadband probe for NMR. J. Magn. Reson., 188, 160–167.
10.1016/j.jmr.2007.05.025 Google Scholar
- Scott, E., Stettler, J., and Reimer, J.A. (2012) Utility of a tuneless plug and play transmission line probe. J. Magn. Reson., 221, 117–119.
-
Grisi, M., Gualco, G., and Boero, G. (2015) A broadband single-chip transceiver for multi-nuclear NMR probes. Rev. Sci. Instrum., 86, 044703.
10.1063/1.4916206 Google Scholar
- Tang, J.A., Wiggins, G.C., Sodickson, D.K., and Jerschow, A. (2011) Cutoff-free traveling wave NMR. Concepts Magn. Reson. Part A., 38a (5), 253–267.
-
Ha, D., Paulsen, J., Sun, N., Song, Y.Q., and Ham, D. (2014) Scalable NMR spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci. U.S.A., 111 (33), 11955–11960.
10.1073/pnas.1402015111 Google Scholar
- Sun, N., Yoon, T.J., Lee, H., Andress, W., Weissleder, R., and Ham, D. (2011) Palm NMR and 1-Chip NMR. IEEE J. Solid-State Circuits, 46 (1), 342–352.
- Hoult, D.I. (2000) The principle of reciprocity in signal strength calculations – a mathematical guide. Concepts Magn. Reson., 12 (4), 173–187.
- Pozar, D.M. (2012) Microwave Engineering, 4th edn, John Wiley & Sons, Inc., Hoboken, NJ, p. 732. xvii.
- Sun, N., Liu, Y., Qin, L., Lee, H., Weissleder, R., and Ham, D. (2013) Small NMR biomolecular sensors. Solid State Electron., 84, 13–21.
- Sun, N., Liu, Y., Lee, H., Weissleder, R., and Ham, D. (2010) Silicon RF NMR biomolecular sensor – review. Proceedings of 2010 International Symposium on VLSI Design, Automation and Test (Vlsi-Dat), pp. 121–124.
- Sun, N. and Ham, D. (2016) Hardware developments: handheld NMR systems for biomolecular sensing, in Mobile NMR and MRI: Developments and Applications, New Developments in NMR, vol. 5, Royal Society of Chemistry, pp. 158–182.
- Handwerker, J., Eder, M., Tibiletti, M., Rasche, V., Scheffler, K., Becker, J., et al. (2016) An array of fully-integrated quadrature TX/RX NMR field probes for MRI trajectory mapping. ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, pp. 12-15.
- Badilita, V., Kratt, K., Baxan, N., Anders, J., Elverfeldt, D., Boero, G. et al. (2011) 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, pp. 809–812. doi: 10.1109/MEMSYS.2011.5734548.
- Anders, J., SanGiorgio, P., Deligianni, X., Santini, F., Scheffler, K., and Boero, G. (2012) Integrated active tracking detector for MRI-guided interventions. Magn. Reson. Med., 67 (1), 290–296.
-
Anders, J., SanGiorgio, P., and Boero, G. (2011) A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson., 209 (1), 1–7.
10.1016/j.jmr.2010.12.005 Google Scholar
- Anders, J., SanGiorgio, P., and Boero, G. (2009) An Integrated CMOS receiver chip for nmr-applications. IEEE Custom Integrated Circuits Conference, pp. 471-474.
- Anders, J., Reymond, S., Boero, G., and Scheffler, K. (2009) A low-noise CMOS receiver frontend for NMR-based surgical guidance. IFMBE Proc., 23 (1-3), 89–93.
- Anders, J., Handwerker, J., Ortmanns, M., and Boero, G. (2013) A fully-integrated detector for NMR microscopy in 0.13 µm CMOS. IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 437–440.
- Anders, J., Chiaramonte, G., SanGiorgio, P., and Boero, G. (2009) A single-chip array of NMR receivers. J. Magn. Reson., 201 (2), 239–249.
- Anders, J, and Boero, G. (2008) A low-noise CMOS receiver frontend for MRI. IEEE Biomedical Circuits and Systems Conference – Intelligent Biomedical Systems (Biocas), pp. 165–168.
- Gruschke, O.G., Baxan, N., Clad, L., Kratt, K., von Elverfeldt, D., Peter, A. et al. (2012) Lab on a chip phased-array MR multi-platform analysis system. Lab Chip, 12 (3), 495–502.
-
Kong, T.F., Peng, W.K., Luong, T.D., Nguyen, N.T., and Han, J. (2012) Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab Chip, 12 (2), 287–294.
10.1039/C1LC20853E Google Scholar
- Kamata, K., Suzuki, S., Ohtsuka, M., Nakagawa, M., Iyoda, T., and Yamada, A. (2011) Fabrication of left-handed metal microcoil from spiral vessel of vascular plant. Adv. Mater., 23 (46), 5509–5513.
- Kentgens, A.P.M., Bart, J., van Bentum, P.J.M., Brinkmann, A., Van Eck, E.R.H., Gardeniers, J.G.E. et al. (2008) High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys., 128 (5), 052202.
- Mompeán, M., Sánchez-Donoso, R.M., De la Hoz, A., Saggiomo, V., Velders, A.H., and Gomez, M.V. (2018) Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photochemical-induced dynamic nuclear polarization. Nat. Commun. doi 10.1038/s41467-017-02575-0.