Computational Studies on Sigmatropic Rearrangements via π-Activation by Palladium and Gold Catalysts
Osvaldo Gutierrez
University of Pennsylvania, Department of Chemistry, Roy and Diana Vagelos Laboratories, 231 S. 34 Street, Philadelphia, 19104-6323, PA USA
Search for more papers by this authorMarisa C. Kozlowski
University of Pennsylvania, Department of Chemistry, Roy and Diana Vagelos Laboratories, 231 S. 34 Street, Philadelphia, 19104-6323, PA USA
Search for more papers by this authorOsvaldo Gutierrez
University of Pennsylvania, Department of Chemistry, Roy and Diana Vagelos Laboratories, 231 S. 34 Street, Philadelphia, 19104-6323, PA USA
Search for more papers by this authorMarisa C. Kozlowski
University of Pennsylvania, Department of Chemistry, Roy and Diana Vagelos Laboratories, 231 S. 34 Street, Philadelphia, 19104-6323, PA USA
Search for more papers by this authorValentine P. Ananikov
Russian Academy of Sciences, Zelinsky, Institute of Organic Chemistry, 47 Leninski Prospect, 119991 Moscow, Russia
Search for more papers by this authorSummary
A sigmatropic shift or rearrangement is an intramolecular pericyclic reaction along a π-framework where one σ-bond is formed at the cost of breaking another σ-bond. Many metals catalyze sigmatropic rearrangements including several that likely function by π-activation such as mercury, palladium, platinum, and, most recently, gold. Computational examination of palladium- and gold-catalyzed sigmatropic rearrangements reveals no universal outcome. π-Coordination to reactive alkenes, alkynes, and allenes is highly favorable, and the resultant polarization generates an electrophilic π-system, which can undergo intramolecular attack by another nucleophilic π-system. This stepwise cyclization-induced mechanism leads to a cyclic cationic intermediate bearing a metal substituent. Concerted pathways have been computed for metal catalysts that activate substrates by either π-coordination or heteroatom coordination showing that even with strong π-coordinating metals, such as palladium (II) and gold (I), caution must be exercised in drawing conclusions about the relevant mechanistic pathways.
References
-
(a) Nubbenmeyer, U. (2003) Synthesis, 96101008;
(b) Allin, S.M. and Baird, R.D. (2001) Curr. Org. Chem., 5, 395–415;
(c) Dewar, M.J. and Jie, C. (1992) Acc. Chem. Res., 25, 537–543;
(d) Houk, K.N., Gonzalez, J., and Li, Y. (1995) Acc. Chem. Res., 28, 81–90;
(e) Doering, W.v.E. and Wang, Y. (1999) J. Am. Chem. Soc., 121, 10112–10118;
(f) Gajewski, J.J. (1980) Acc. Chem. Res., 13, 142–148;
(g) Woodward, R.B. and Hoffmann, R. (1970) The Conservation of Orbital Symmetry, Wiley-VCH Verlag GmbH, Weinheim;
(h) Woodward, R.B. and Hoffmann, R. (1969) Angew. Chem., Int. Ed. Engl., 8, 781–853;
(i) Woodward, R.B. and Hoffmann, R. (1969) Angew. Chem., 81, 797–869.
10.1002/ange.19690812102 Google Scholar
- (a) Rondan, N.G. and Houk, K.N. (1984) Tetrahedron Lett., 24, 2519–2522; (b) Black, K.A., Wilsey, S., and Houk, K.N. (1998) J. Am. Chem. Soc., 120, 5622–5627; (c)For a review, see: Enders, D., Knopp, M., and Schiffers, R. (1996) Tetrahedron, 17, 1847–1882; (d) McGuire, M.J. and Piecich, P. (2005) J. Am. Chem. Soc., 127, 2608–2614.
- Overman, L.E. (1984) Angew. Chem., Int. Ed. Engl., 23, 579–586.
- Overman, L.E. and Knoll, F.M. (1980) J. Am. Chem. Soc., 102, 865–867.
- For studies where a dissociative process has been invoked with Pd(0), see: Nakamura, H., Iwana, H., Ito, M., and Yamamoto, Y. (1999) J. Am. Chem. Soc., 121, 10850–10851.
- Overman, L.E. and Renaldo, A.F. (1990) J. Am. Chem. Soc., 112, 3945–3949.
- Koh, J.H. and Gagnê, M.R. (2004) Angew. Chem. Int. Ed., 43, 3459–3461.
- Korotchenko, V.N. and Gagnê, M.R. (2007) J. Org. Chem., 72, 4877–4881.
- Siebert, M.R. and Tantillo, D.J. (2007) J. Am. Chem. Soc., 129, 8686–8687.
- Doering, W.v.E. and Wang, Y. (1999) J. Am. Chem. Soc., 121, 10112–10118.
- Gutierrez, O., Harrison, J.G., Felix, R.J., Guzman, F.C., Gagne, M.R., and Tantillo, D.J. (2013) Chem. Sci., 4, 3894–3898.
- For a review, see: Overman, L.E. and Carpenter, N.E. (2005) in Organic Reactions, vol. 66 (ed. L.E. Overman), John Wiley & Sons, Inc., Haboken, NJ, pp. 1–107.
- Anderson, C.E. and Overman, L.E. (2003) J. Am. Chem. Soc., 125, 12412–12413.
- Watson, M.P., Overman, L.E., and Bergman, R.G. (2007) J. Am. Chem. Soc., 129, 5031–5044.
- Lee, E.E. and Batey, R.A. (2004) Angew. Chem. Int. Ed., 43, 1865–1865.
- Lee, E.E. and Batey, R.A. (2005) J. Am. Chem. Soc., 127, 14887–14893.
- Rodrigues, A., Lee, E.E., and Batey, R.A. (2010) Org. Lett., 12, 260–263.
-
M. Hiersemann and U. Nubbemeyer (eds) (2007) The Claisen Rearrangement, Wiley-VCH Verlag GmbH, Weinheim.
10.1002/9783527610549 Google Scholar
- Akiyama, K. and Mikami, K. (2004) Tetrahedron Lett., 45, 7217–7220.
-
(a) Abraham, L., Czerwonka, R., and Hiersemann, M. (2001) Angew. Chem. Int. Ed., 40, 4700–4703;
10.1002/1521-3773(20011217)40:24<4700::AID-ANIE4700>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar(b) Helmbolt, H. and Hiersemann, M. (2003) Tetrahedron, 59, 4031–4028; (c) Abraham, L., Koerner, M., and Hiersemann, M. (2004) Tetrahedron, 45, 3647–3650; (d) Abraham, L., Koerner, M., Schwab, P., and Hiersemann, M. (2004) Adv. Synth. Catal., 326, 1281–1294; (e) Uyeda, C. and Jacobsen, E.N. (2008) J. Am. Chem. Soc., 130, 9228–9229.
- Linton, E.C. and Kozlowski, M.C. (2008) J. Am. Chem. Soc., 130, 16162–16163.
- Cao, T., Linton, E.C., Deitch, J., Berritt, S., and Kozlowski, M.C. (2012) J. Org. Chem., 77, 11034–11055.
- Bao, H., Qi, X., and Tambar, U.T. (2011) J. Am. Chem. Soc., 133, 1206–1208.
- Bao, H. and Tambar, U.T. (2012) J. Am. Chem. Soc., 134, 18495–18498.
- Cao, T., Deitch, J., Linton, E.C., and Kozlowski, M.C. (2012) Angew. Chem. Int. Ed., 51, 2448–2451.
- Asao, N., Nogami, T., Takahashi, K., and Yamamoto, Y. (2002) J. Am. Chem. Soc., 124, 764–765.
- Felix, R.J., Weber, D., Gutierrez, O., Tantillo, D.J., and Gagné, M.R. (2012) Nat. Chem., 4, 405–409.
- (a) Johnson, W.T.G. and Borden, W.T. (1997) J. Am. Chem. Soc., 119, 5930–5933; (b) Bach, R.D. and Dmitrenko, O. (2004) J. Am. Chem. Soc., 126, 4444–4452.
- Felix, R.J., Gutierrez, O., Tantillo, D.J., and Gagné, M.R. (2013) J. Org. Chem., 78, 5685–5690.
- Vidhani, D.V., Cran, J.W., Krafft, M.E., Manoharan, M., and Alabugin, I.V. (2013) J. Org. Chem., 78, 2059–2073.
- Krafft, M.E., Hallal, K.M., Vidhani, D.V., and Cran, J.W. (2011) Org. Biomol. Chem., 9, 7535–7538.
- Istrate, F.M. and Gagosz, F. (2007) Org. Lett., 9, 3181–3184.
- Istrate, F.M. and Gagosz, F. (2011) Beilstein J. Org. Chem., 7, 878–885.
- Hong, Y.J. and Tantillo, D.J. (2011) Organometallics, 30, 5825–5831.
- Ariafard, A., Asadollah, E., Ostadebrahim, M., Rajabi, N.A., and Yates, B.Y. (2012) J. Am. Chem. Soc., 134, 16882–16890, and references therein.
- Sherry, B.D. and Toste, F.D. (2004) J. Am. Chem. Soc., 126, 15978–15979.
- Mauleon, P., Krinsky, J.L., and Toste, F.D. (2009) J. Am. Chem. Soc., 131, 4513–4520.
- Correa, A., Marion, N., Fensterbank, L., Malacria, M., Nolan, S.P., and Cavallo, L. (2008) Angew. Chem. Int. Ed., 47, 718–721.
- Schwier, T., Sromek, A.W., Yap, D.M.L., Chernyak, D., and Gevorgyan, V. (2007) J. Am. Chem. Soc., 129, 9868–9878.
-
Fang, R., Yang, L., and Wang, Y. (2011) Org. Biomol. Chem., 9, 2769–2770.
10.1039/c0ob01098g Google Scholar
- Shapiro, N.D. and Toste, F.D. (2007) J. Am. Chem. Soc., 129, 4160–4161.
- Li, G. and Zhang, L. (2007) Angew. Chem. Int. Ed., 46, 5156–5159.
- Cuenca, A.B., Monserrai, S., Hossain, K.M., Mancha, G., Lledos, A., Medio-Simon, N., Ujaque, G., and Asensio, G. (2009) Org. Lett., 11, 4906–4909.
- Lu, B., Li, Y., Wang, Y., Aue, D.H., Luo, Y., and Zhang, L. (2013) J. Am. Chem. Soc., 135, 8512–8524.
- Fang, R. and Yang, L. (2012) Organometallics, 31, 3043–3055.