Fundamental Aspects of the Metal-Catalyzed C–H Bond Functionalization by Diazocarbenes: Guiding Principles for Design of Catalyst with Non-redox-Active Metal (Such as Ca) and Non-Innocent Ligand
Adrian Varela-Alvarez
Emory University, Cherry L. Emerson Center for Scientific Computation, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
Search for more papers by this authorDjamaladdin G. Musaev
Emory University, Cherry L. Emerson Center for Scientific Computation, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
Search for more papers by this authorAdrian Varela-Alvarez
Emory University, Cherry L. Emerson Center for Scientific Computation, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
Search for more papers by this authorDjamaladdin G. Musaev
Emory University, Cherry L. Emerson Center for Scientific Computation, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
Search for more papers by this authorValentine P. Ananikov
Russian Academy of Sciences, Zelinsky, Institute of Organic Chemistry, 47 Leninski Prospect, 119991 Moscow, Russia
Search for more papers by this authorSummary
We analyzed electronic factors affecting the mechanism of metal-catalyzed C–H bond alkylation by diazocarbene precursors. The analyses showed that e efficient metal-catalyzed alkylation of C–H bond by diazocarbenes requires a fine balance (i) of the triplet and singlet electronic states of carbenes: availability of singlet and triplet states is crucial for electrophilic and nucleophilic character of carbene fragment of metallocarbenes; and (ii) in the metal–carbene bond strength: a strong metal–carbene bond is required for facile diazocarbene decomposition, while weak metal–carbene interaction is beneficiary for the metallo-carbene reaction with various substrates. The aforementioned delicate balance is predicted to be achieved by utilizing a combination of (i) transition metals with smaller energy gap between their s1dn−1 and s0dn electron configurations, and triplet carbenes with an energetically close singlet electronic state or/and (ii) transition metals with a ground s0dn electron configuration and carbenes with a singlet ground electronic state.
Bearing in mind these analyses and our previous studies in the field, we proposed a conceptually new approach based on the use of an earth-abundant transition-metal complex containing a non-redox-active metal center and redox-active (non-innocent) ligand as a catalyst. We demonstrated our prediction using [(PDI)Ca(THF)3], where PDI is a non-innocent pyridine-2,6-diimine ligand, to catalyze the benzylic (of MeCH2Ph substrate) C–H bond alkylation by unsubstituted and diphenyl (known as donor-donor)-substituted diazocarbene precursors, N2CH2 and N2CPh2. It was shown that the [(PDI)Ca(THF)3], 4, complex containing the non-redox Ca(II)-center and a non-innocent PDI ligand promotes the C–H bond alkylation of MeCH2Ph by unsubstituted N2CH2 diazocarbene. Reaction of 4 with N2CH2 is found to proceed with a barrier of about 17.6 kcal mol−1 and is only slightly (2.8 kcal mol−1) exergonic. During this reaction, only one electron is transferred from the PDI ligand to the carbene fragment of the metallocarbene intermediate 8. Thus, the resultant [(PDI)Ca(THF)2]-carbene intermediate is diradical with one unpaired electron each on the PDI and carbene ligands. This intermediate reacts with benzylic C–H bond via the H-atom abstraction mechanism of a 20.3 kcal mol−1 energy barrier. We predicted and demonstrated that inclusion of donor substituents to the carbene fragment, that is, using N2CPh2 as a substituent diazo precursor in place of N2CH2, makes the diazocarbene decomposition more exergonic (about 17.8 kcal mol−1) and the [(PDI)Ca(THF)3]-catalyzed benzylic (of the MeCH2Ph substrate) C–H bond alkylation more practical.
References
-
(a) Ziegler, T. and Autschbach, J. (2005) Chem. Rev., 105, 2695;
(b) Ananikov, V.P., Musaev, D.G., and Morokuma, K. (2010) J. Mol. Catal. A, 324, 104;
(c) Harvey, J.N. (2010) in Physical Inorganic Chemistry: Principles, Methods, and Models (ed. A. Bakac), John Wiley & Sons, Inc., Hoboken, NJ, p. 459;
10.1002/9780470602539.ch10 Google Scholar(d) Foley, N.A., Lee, J.P., Ke, Z., Gunnoe, T.B., and Cundari, T.R. (2009) Acc. Chem. Res., 42, 585; (e) Balcells, D., Clot, E., and Eisenstein, O. (2010) Chem. Rev., 110, 749.
- (a)For selected reviews on C–H activation see: Shilov, A.E. and Shul'pin, G.B. (1997) Chem. Rev., 97, 2879; (b) Jia, C., Kitamura, T., and Fujiwara, Y. (2001) Acc. Chem. Res., 34, 633; (c) Ritleng, V., Sirlin, C., and Pfeffer, M. (2002) Chem. Rev., 102, 1731; (d) Godula, K. and Sames, D. (2006) Science, 312, 67; (e) Alberico, D., Scott, M.E., and Lautens, M. (2007) Chem. Rev., 107, 174; (f) Arndtsen, B.A., Bergman, R.G., Mobley, T.A., and Peterson, T.H. (1995) Acc. Chem. Res., 28, 154; (g) Colby, D.A., Bergman, R.G., and Ellman, J.A. (2010) Chem. Rev., 110, 624; (h) Mkhalid, I.A.I., Barnard, J.H., Marder, T.B., Murphy, J.M., and Hartwig, J.F. (2010) Chem. Rev., 110, 890; (i) Gunay, A. and Theopold, K.H. (2010) Chem. Rev., 110, 1060; (j) Chen, D.Y.-K. and Youn, S.W. (2012) Chem. Eur. J., 18, 9452.
- Díaz-Requejo, M.M. and Pérez, P.J. (2008) Chem. Rev., 108, 3379.
- (a) Doyle, M.P., McKervey, M.A., and Ye, T. (1998) Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylide, John Wiley & Sons, Inc., New York; (b) Davies, H.M.L. and Beckwith, R.E.J. (2003) Chem. Rev., 103, 2861–2904; (c) Moody, C.J. (2007) Angew. Chem. Int. Ed., 46, 9148–9150; (d) Zhang, Z. and Wang, J. (2008) Tetrahedron, 64, 6577–6605; (e) Davies, H.M.L. and Manning, J.R. (2008) Nature, 451, 417–424; (f) Doyle, M.P., Duffy, R., Ratnikov, M., and Zhou, L. (2010) Chem. Rev., 110, 704–724; (g) Ackermann, L. (2011) Chem. Rev., 111, 1315; (h) Davies, H.M.L., Du Bois, J., and Yu, J.-Q. (2011) Chem. Soc. Rev., 40, 1855; (i) Zhang, S.-T., Zhang, F.-M., and Tu, Y.-Q. (2011) Chem. Soc. Rev., 40, 1937; (j) Doyle, M.P. and Golberg, K.I. (2012) Acc. Chem. Res., 45, 777; (k) Hartwig, J.F. (2012) Acc. Chem. Res., 45, 864; (l) Roizen, J., Harvey, M.E., and Du Bois, J. (2012) Acc. Chem. Res., 45, 911.
- (a) Crabtree, R.H. (2001) J. Chem. Soc., Dalton Trans., 2437; (b) Crabtree, R.H. (2004) J. Organomet. Chem., 689, 4083; (c) Dick, A.R. and Sanford, M.S. (2006) Tetrahedron, 62, 2439; (d) Gaillard, S., Cazin, C.S., and Nolan, S.P. (2012) Acc. Chem. Res., 45, 778.
- (a) Davies, H.M.L. and Morton, D. (2011) Chem. Soc. Rev., 40, 1857; (b) Davies, H.M.L. and Morton, D. (2012) Acc. Chem. Res., 45, 923; (c) Davies, H.M.L. and Hedley, S.J. (2007) Chem. Soc. Rev., 36, 1109; (d) Davies, H.M.L. and Denton, J.R. (2009) Chem. Soc. Rev., 38, 3061; (e) Engle, K.M., Mei, T.-S., Wasa, M., and Yu, J.-Q. (2012) Acc. Chem. Res., 45, 788; (f) Ackermann, L. (2011) Chem. Rev., 111, 1315; (g) Satoh, T. and Miura, M. (2010) Chem. Eur. J., 16, 11212.
- (a) Tomioka, T. (1997) Acc. Chem. Res., 30, 315; (b) Bourissou, D., Guerret, O., Gabbaï, F.P., and Bertrand, G. (2000) Chem. Rev., 100, 39; (c) Gritsan, N.P. and Platz, M.S. (2006) Chem. Rev., 106, 3844.
- (a) Nicewicz, D.A. and MacMillan, D.W.C. (2008) Science, 322, 77; (b) Nagib, D.A., Scott, M.E., and MacMillan, D.W.C. (2009) J. Am. Chem. Soc., 131, 10875; (c) Shih, H.-W., Wal, M.N.V., Grange, R.L., and MacMillan, D.W.C. (2010) J. Am. Chem. Soc., 132, 13600; (d) Pham, P.V., Nagib, D.A., and MacMillan, D.W.C. (2011) Angew. Chem. Int. Ed., 50, 6119; (e) Du, J., Espelt, L.R., Guzei, I.A., and Yoon, T.P. (2011) Chem. Sci., 2, 2115; (f) Ischay, M.A., Anzovino, M.E., Du, J., and Yoon, T.P. (2008) J. Am. Chem. Soc., 130, 12886; (g) Ischay, M.A., Lu, Z., and Yoon, T.P. (2010) J. Am. Chem. Soc., 132, 8572; (h) Lu, Z., Shen, M., and Yoon, T.P. (2011) J. Am. Chem. Soc., 133, 1162; (i) Yoon, T.P., Ischay, M.A., and Du, J. (2010) Nat. Chem., 2, 527; (j) Furst, L., Matsuura, B.S., Narayanam, J.M.R., Tucker, J.W., and Stephenson, C.R. (2010) J. Org. Lett., 12, 3104; (k) Narayanam, J.M.R. and Stephenson, C.R. (2011) J. Chem. Soc. Rev., 40, 102; (l) Nguyen, J.D., Tucker, J.W., Konieczynska, M.D., and Stephenson, C.R.J. (2011) J. Am. Chem. Soc., 133, 4160; (m) Hari, D.P. and Koenig, B. (2011) Org. Lett., 13, 3852; (n) Neumann, M., Fueldner, S., Koenig, B., and Zeitler, K. (2011) Angew. Chem. Int. Ed., 50, 951; (o) Larraufie, M.-H., Pellet, R., Fensterbank, L., Goddard, J.-P., Lacôte, E., Malacria, M., and Ollivier, C. (2011) Angew. Chem. Int. Ed., 50, 4463; (p) McNally, A., Prier, C.K., and MacMillan, D.W.C. (2011) Science, 334, 1114; (q) Rueping, M., Leonori, D., and Poisson, T. (2011) Chem. Commun., 47, 9615; (r) Zou, Y.-Q., Lu, L.-Q., Fu, L., Chang, N.-J., Rong, J., Chen, J.-R., and Xiao, W.-J. (2011) Angew. Chem. Int. Ed., 50, 7171.
- (a) Cano-Yelo, H. and Deronzier, A. (1984) J. Chem. Soc., Perkin Trans. 2, 1093; (b) Cano-Yelo, H. and Deronzier, A. (1984) J. Chem. Soc., Faraday Trans. 1, 80, 3011; (c) Cano-Yelo, H. and Deronzier, A. (1984) Tetrahedron Lett., 25, 5517; (d) Cano-Yelo, H. and Deronzier, A. (1987) J. Photochem., 37, 315; (e) Kalyani, D., McMurtrey, K.B., Neufeldt, S.R., and Sanford, M.S. (2011) J. Am. Chem. Soc., 133, 18566; (f) Hari, D.P., Schroll, P., and Koenig, B. (2012) J. Am. Chem. Soc., 134, 2958.
- (a) Bückl, T., Baxter, R.D., Ishimara, Y., and Baran, P.S. (2012) Acc. Chem. Res., 45, 826; (b) Giri, R., Shi, B.-F., Engle, K.M., Maugel, M., and Yu, J.-Q. (2009) Chem. Soc. Rev., 38, 3242; (c) Engle, K.M., Mei, T.-S., Wasa, M., and Yu, J.-Q. (2012) Acc. Chem. Res., 45, 788; (d) Cho, S.H., Kim, J.W., Kwak, J., and Chang, S. (2011) Chem. Soc. Rev., 40, 5068; (e) Lyons, T.W. and Sanford, M.S. (2010) Chem. Rev., 110, 1147; (f) Bellina, F. and Rossi, R. (2010) Chem. Rev., 110, 1082; (g) Ackermann, L. (2011) Chem. Rev., 111, 1315–1345; (h) Gorelsky, S.I. (2013) Coord. Chem. Rev., 257, 153–164.
- Silberrad, O. and Roy, C.S. (1906) J. Chem. Soc., 89, 179.
- Paulissenen, R., Reimlinger, H., Hayez, E., Hubert, A.J., and Teyssie, P. (1973) Tetrahedron Lett., 2233.
- (a) Doyle, M.P., Bagheri, V., Wandless, T.J., Harn, N.K., Brinker, D.A., Eagle, C.T., and Hoh, K.-L. (1990) J. Am. Chem. Soc., 112, 1906; (b) Doyle, M.P., Westrum, L.J., Wolthuis, W.N.E., See, M.M., Boone, W.P., Bagheri, V., and Pearson, M.M. (1993) J. Am. Chem. Soc., 115, 958.
- (a) Padwa, A. and Krumpe, K.E. (1992) Tetrahedron, 48, 5385; (b) Padwa, A. and Austin, D.J. (1994) Angew. Chem., Int. Ed. Engl., 33, 1797; (c) Padwa, A. and Hornbuckle, S.F. (1991) Chem. Rev., 91, 263.
- Davies, H.M.L. (1991) in Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry, vol. 4, Chapter 4.8 pp. 201–297 (eds B.M. Trost and I. Fleming), Pergamon Press, New York.
- Gronert, S., Keeffe, J.R., and O'Ferrall, R.A.M. (2011) J. Am. Chem. Soc., 133, 3381, and 11817.
- (a) Gallop, M.A. and Roper, W.R. (1986) Adv. Organomet. Chem., 25, 121; (b) Brothers, P.J. and Roper, W.R. (1988) Chem. Rev., 88, 1293; (c) Rosemberg, L. (2012) Coord. Chem. Rev., 256, 606; (d) Crabtree, R.H. (2009) The Organometallic Chemistry of Transition Metals, John Wiley & Sons, Inc., Hoboken, NJ.
- Musaev, D.G., Koga, N., and Morokuma, K. (1993) J. Phys. Chem., 97, 4064.
- Musaev, D.G., Morokuma, K., Koga, N., Nguyen, K.A., Gordon, M.S., and Cundari, T.R. (1993) J. Phys. Chem., 97, 11435.
- Musaev, D.G. and Morokuma, K. (1993) Isr. J. Chem., 33, 307.
- Musaev, D.G. and Morokuma, K. (1996) J. Phys. Chem., 100, 11600.
- (a) Suematsu, H. and Katsuki, T. (2009) J. Am. Chem. Soc., 131, 14218; (b) Owens, C.P., Varela-Álvarez, A., Boyarskikh, V., Musaev, D.G., Davies, H.M.L., and Blakey, S.B. (2013) Chem. Sci., 4, 2590; (c) Wang, H., Guptill, D.M., Varela-Alvarez, A., Musaev, D.G., and Davies, H.M.L. (2013) Chem. Sci., 4, 2844.
- Harvey, M.E., Musaev, D.G., and Du Bois, J. (2011) J. Am. Chem. Soc., 133, 17207.
- (a) Diaz-Requejo, M.M., Belderrain, T.R., Nicasio, M.C., Trofimenko, S., and Perez, P.J. (2002) J. Am. Chem. Soc., 124, 896; (b) Caballero, A., Diaz-Requejo, M.M., Belderrain, T.R., Nicasio, M.C., Trofimenko, S., and Perez, P.J. (2003) J. Am. Chem. Soc., 125, 1446; (c) Mbuvi, H.M. and Woo, K.L. (2008) Organometallics, 27, 637; (d) King, E.R., Henessy, E.T., and Betley, T.A. (2011) J. Am. Chem. Soc., 133, 4917; (e) Nakamura, E., Yoshikai, N., and Yamanaka, M. (2002) J. Am. Chem. Soc., 124, 7181; (f) Lin, X., Zhao, C., Che, C.-M., Ke, Z., and Phillips, D.L. (2007) Chem. Asian J., 2, 1101; (g) Hansen, J.H., Dikarev, E., Autschbach, J., and Davies, H.M.L. (2009) J. Org. Chem., 74, 6564; (h) Hansen, J.H., Autschbach, J., and Davies, H.M.L. (2009) J. Org. Chem., 74, 6555; (i) Hansen, J.H., Gregg, T.M., Ovalles, S.R., Lian, Y., Autschbach, J., and Davies, H.M.L. (2011) J. Am. Chem. Soc., 133, 5076; (j) Qin, C., Boyarskikh, V., Hansen, J.H., Hardcastle, K.E., Musaev, D.G., and Davies, H.M.L. (2011) J. Am. Chem. Soc., 133, 19198; (k) Li, Z., Boyarskikh, V., Hansen, J.H., Autschbach, J., Musaev, D.G., and Davies, H.M.L. (2012) J. Am. Chem. Soc., 134, 15497; (l) Braga, A.A.C., Maseras, F., Urbano, J., Caballero, A., Diaz-Requejo, M.M., and Perez, P.J. (2006) Organometallics, 25, 5292; (m) Rivilla, I., Sameera, W.M.C., Alvarez, E., Diaz-Requejo, M.M., Maseras, F., and Perez, P.J. (2013) Dalton Trans., 42, 4132; (n) Braga, A.A.C., Caballero, A., Urbano, J., Diaz-Requejo, M.M., Perez, P.J., and Maseras, F. (2011) ChemCatChem, 3, 1646.
- Varela-.lvarez, A. and Musaev, D.G. (2013) Chem. Sci., 4, 3758–3764.
- (a) Chirik, P.J. (2011) Inorg. Chem., 50, 9737; (b) Eisenberg, R. and Gray, H.B. (2011) Inorg. Chem., 50, 9741; (c) Kaim, W. (2011) Inorg. Chem., 50, 9752; (d) Dzik, W.I., van der Vlugt, J.I., Reek, J.N.H., and de Bruin, B. (2011) Angew. Chem. Int. Ed., 50, 3356; (e) Lyaskovskyy, V. and de Briun, B. (2012) ACS Catal., 2, 270; (f) Praneeth, V.K.K., Ringenberg, M.R., and Ward, T.R. (2012) Angew. Chem. Int. Ed., 51, 10228.
- (a) Bart, S.C., Lobkovsky, E., and Chirik, P.J. (2004) J. Am. Chem. Soc., 126, 13794; (b) Bowkamp, M.W., Bart, S.C., Hawrelack, E.J., Trovitch, R.J., Lobkovsky, E., and Chirik, P.J. (2005) Chem. Commun., 3406; (c) Bouwkamp, M.W., Bowman, E., Lobkovsky, E., and Chirik, P.J. (2006) J. Am. Chem. Soc., 128, 13340; (d) Sylvester, K.T. and Chirik, P.J. (2009) J. Am. Chem. Soc., 131, 8772; (e) Chirik, P.J. and Wieghardt, K. (2010) Science, 327, 794; (f) Stieber, S.C.E., Milsmann, C., Hoyt, J.M., Turner, Z.R., Finkelstein, K.D., Wieghardt, K., DeBeer, S., and Chirik, P.J. (2012) Inorg. Chem., 51, 3770.
- Zhao, Y. and Truhlar, D.G. (2006) J. Chem. Phys., 125, 194101.
- (a) Hehre, W.J., Radom, L., Schleyer, P.v.R., and Pople, J.A. (1986) Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc., New York; (b) Schäfer, A., Horn, H., and Ahlrichs, R. (1992) J. Chem. Phys., 97, 2571.
- (a) Varela-Álvarez, A., Rayón, V.M., Redondo, P., Barrientos, C., and Sordo, J.A. (2009) J. Chem. Phys., 131, 144309; (b) Varela-Álvarez, A., Sordo, J.A., Redondo, P., Largo, A., Barrientos, C., and Rayón, V.M. (2011) Theor. Chem. Acc., 128, 609.
- Tomasi, J., Menucci, B., and Cammi, R. (2005) Chem. Rev., 105, 2999.
- Frisch, M.J. et al. (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallington, CT.
- Orzechowski, L. and Harder, S. (2007) Organometallics, 26, 2144.