Surface Treatment and Characterization of Natural Fibers: Effects on the Properties of Biocomposites
Donghwan Cho
Kumoh National Institute of Technology, Department of Polymer Science and Engineering, Polymer/Bio-Composites Research Lab, 61 Daehak-ro, Gumi, Gyeongbuk 730-701, Korea
Search for more papers by this authorHyun-Joong Kim
Seoul National University, Laboratory of Adhesion and Bio-Composites, 1 Daehak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
Seoul National University, Research Institute for Agriculture and Life Sciences, 1 Daehak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
Search for more papers by this authorLawrence T. Drzal
Michigan State University, Composite Materials and Structures Center, 428 S. Shaw Lane, 2100 Engineering Building, East Lansing, MI 48824, USA
Search for more papers by this authorDonghwan Cho
Kumoh National Institute of Technology, Department of Polymer Science and Engineering, Polymer/Bio-Composites Research Lab, 61 Daehak-ro, Gumi, Gyeongbuk 730-701, Korea
Search for more papers by this authorHyun-Joong Kim
Seoul National University, Laboratory of Adhesion and Bio-Composites, 1 Daehak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
Seoul National University, Research Institute for Agriculture and Life Sciences, 1 Daehak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
Search for more papers by this authorLawrence T. Drzal
Michigan State University, Composite Materials and Structures Center, 428 S. Shaw Lane, 2100 Engineering Building, East Lansing, MI 48824, USA
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills P.O., School of Chemical Sciences, Kottayam 686 560, Kerala, India
Search for more papers by this authorKuruvilla Joseph
Indian Institute of Space Science and, Technology, ISRO P. O., Veli, Thiruvananthapuram 695 022, Kerala, India
Search for more papers by this authorDr. S. K. Malhotra
Flat-YA, Kings Mead, Srinagar Colony, South Mada Street 14/3, Srinagar Colony, Saidapet, Chennai 600 015, India
Search for more papers by this authorProf. Koichi Goda
Faculty of Engineering, Yamaguchi University, Tokiwadai 2-16-1, Yamaguchi University, 755-8611 Ube, Yamaguchi, Japan
Search for more papers by this authorDr. M. S. Sreekala
Department of Chemistry, Sree Sankara College, Kalady 683 574, Kerala, India
Search for more papers by this authorSummary
During the last years, there has been an increasing interest in natural fiber-reinforced polymer composites, referred to as biocomposites, which are also referred to as green composites or eco-composites. Industrial natural fibers have been increasingly utilized to fill and reinforce not only conventional thermoplastic and thermosetting polymers but also biodegradable polymers. Their advantages and disadvantages mostly rely on those of natural fibers, which are also referred to as biofibers. Natural fiber reinforcements have a number of merits over conventional glass fiber reinforcement, for example, natural abundance, low cost, low density, environmental friendliness, carbon dioxide sequestration, acceptable specific mechanical properties, damping and insulation characteristics, biodegradability. However, they also have some drawbacks, such as poor natural fiber–matrix interfacial adhesion, fiber variability, surface irregularity, finite fiber length, limited thermal stability, and restricted processing temperature. The strong adhesion or bonding at the interfaces between natural fibers and a polymer matrix is critical to promote the properties and performances of biocomposites. In general, such strong adhesion cannot be established in the biocomposite system using natural fibers if appropriate surface treatment or modification is not performed. Therefore, a large number of studies on chemical and physical surface treatments of various natural fibers have been devoted not only to increasing the interfacial adhesion between the natural fiber and the polymer matrix but also enhancing mechanical, thermal, and other properties of biocomposites consisting of different types of natural fibers and polymers. It is worth overviewing extensively current research efforts on the effects of surface treatment of natural fibers on the properties of biocomposites in terms of interfacial, static mechanical, dynamic mechanical, impact, thermal, physical, morphological, fracture behavior, and water absorption. The present chapter was described focusing mostly on the results reported in recent years.
References
- Cho, D., Lee, S.G., Park, W.H., and Han, S.O. (2002) Eco-friendly biocomposite materials using biofibers. Polym. Sci. Technol., 13, 460–476.
- Joshi, S.V., Drzal, L.T., Mohanty, A.K., and Arora, S. (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A, 35, 371–378.
- Fisher, R. (2006) Natural fibers and green composites. Compos. Manuf., March, 20–23.
- Mohanty, A.K., Misra, M., and Drzal, L.T. (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos. Interfaces, 8 (5), 313–343.
- Mohanty, A.K., Misra, M., and Hinrichsen, G. (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng., 276–277, 1–24.
- Nishino, K., Hirao, K., Kotera, M., Nakamae, K., and Inagaki, H. (2003) Kenaf reinforced biodegradable composite. Compos. Sci. Technol., 63, 1281–1286.
- Oksman, K., Skrifvars, M., and Selin, J.-F. (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol., 63, 1317–1324.
- Seo, J.M., Cho, D., Park, W.H., Han, S.O., Hwang, T.W., Choi, C.H., and Jung, S.J. (2007) Fiber surface treatments for improvement of the interfacial adhesion and flexural and thermal properties of jute/poly(lactic acid) biocomposites. J. Biobased Mater. Bioenergy, 1, 331–340.
-
Müssig, J. (2010) Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, John Wiley & Sons, Ltd, Chichester.
10.1002/9780470660324 Google Scholar
-
Mohanty, A.K., Misra, M., and Drzal, L.T. (2005) Natural Fibers, Biopolymers, and Biocomposites, Taylor & Francis, Boca Raton, FL.
10.1201/9780203508206 Google Scholar
- Mukhopadhyay, S. and Fangueiro, R. (2009) Physical modification of natural fibers and thermoplastic films for composites–a review. J. Thermoplast. Compos. Mater., 22, 135–162.
- Lackey, E., Inamdar, K., Vaughan, J., and O'Haver, J. (2008) Fiber treatment for hemp fiber using pultrusion. SAMPE J., 44 (3), 67–77.
- Herrera-Franco, P.J. and Valadez-González, A. (2005) in Fiber-Matrix Adhesion in Natural Fiber Composites in Natural Fibers, Biopolymers, and Biocomposites (eds A.K. Mohanty, M. Misra, and L.T. Drzal), Taylor & Francis, Boca Raton, FL, pp. 177–230.
- Aziz, S.H., Ansell, M.P., Clarke, S.J., and Panteny, S.R. (2005) Modified polyester resin for natural fibre composites. Compos. Sci. Technol., 65, 525–535.
- Han, S.O., Cho, D., Park, W.H., and Drzal, L.T. (2006) Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Compos. Interfaces, 13, 231–247.
- Lee, H.S., Cho, D., and Han, S.O. (2008) Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol. Res., 16, 411–417.
- Cho, D., Lee, H.S., and Han, S.O. (2009) Effect of fiber surface modification on the interfacial and mechanical properties of kenaf fiber-reinforced thermoplastic and thermosetting polymer composites. Compos. Interfaces, 16, 711–729.
- Zhou, Q., Cho, D., Song, B.K., and Kim, H.-J. (2009) Novel jute/polycardanol biocomposites: effect of fiber surface treatment on their properties. Compos. Interfaces, 16, 781–795.
- Mehta, G., Drzal, L.T., Mohanty, A.K., and Misra, M. (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J. Appl. Polym. Sci., 99, 1055–1068.
- Arbelaiz, A., Cantero, G., Fernandez, B., Mondragon, I., Ganan, P., and Kenny, J.M. (2005) Flax fiber surface modifications: effects on fiber physico mechanical and flax/polypropylene interface properties. Polym. Compos., February, 324–332.
- Bledzki, A.K., Reihmane, S., and Gassan, J. (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci., 59, 1329–1336.
- George, J., Sreekala, M.S., and Thomas, S. (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci., 41, 1471–1485.
- Strong, A.B. (2008) Fundamentals of Composites Manufacturing: Materials, Methods, and Applications, 2nd edn, Society for Manufacturing Engineer, Dearborn.
- Lee, S.M., Cho, D., Park, W.H., Lee, S.G., Han, S.O., and Drzal, L.T. (2005) Novel silk/poly(butylene succinate) biocomposites: the effect of short fiber content on their mechanical and thermal properties. Compos. Sci. Technol., 65, 647–657.
- Lee, S.M., Han, S.O., Cho, D., Park, W.H., and Lee, S.G. (2005) Influence of chopped fiber length on the mechanical and thermal properties of silk fiber-reinforced poly(butylene succinate) biocomposites. Polym. Polym. Compos., 13, 479–488.
- Drzal, L.T., Rich, M.J., and Lloyd, P.F. (1983) Adhesion of graphite fibers to epoxy matrices. Part I. The role of fiber surface treatment. J. Adhes., 16, 1–30.
- Drzal, L.T. and Madhukar, M. (1993) Fiber-matrix adhesion and its relationship to composite mechanical properties. J. Mater. Sci., 28, 569–610.
- Xie, Y., Hill, C.A.S., Xia, Z., Militz, H., and Mai, C. (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Composites Part A, 41, 806–819.
- Cho, D. and Kim, H.-J. (2009) Naturally cyclable biocomposites. Elast. Compos., 44 (1), 13–21.
- Prasad, S.V., Pavithran, C., and Rohatgi, P.K. (1983) Alkali treatment of coir fibres for coir-polyester composites. J. Mater. Sci., 18, 1443–1454.
- Owolabi, O., Ozvikovzki, T., and Kovacs, I. (1985) Coconut-fiber-reinforced thermosetting plastics. J. Appl. Polym. Sci., 30, 1827–1836.
- Chand, N. and Rohatgi, P.K. (1986) Adhesion of sisal fiber-polyester system. Polym. Compos., 27, 157–160.
- Tsuji, W., Nakao, T., Ohigashi, K., Maegawa, K., Kobayashi, N., Shukri, S., Kasai, S., and Miyanaga, K. (1986) Chemical modification of cotton fiber by alkali-swelling and substitution reactions-acetylation, cyanoethylation, benzoylation, and oleoylation. J. Appl. Polym. Sci., 32, 5175–5192.
- Bisanda, E.T.N. and Ansell, M.P. (1991) The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos. Sci. Technol., 41, 165–178.
- Geethamma, V.G., Joseph, R., and Thomas, S. (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J. Appl. Polym. Sci., 55, 583–594.
- Sreekala, M.S., Kumaran, M.G., and Thomas, S. (1997) Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. J. Appl. Polym. Sci., 66, 821–835.
- Kalia, S., Kaith, B.S., and Kaur, I. (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polym. Eng. Sci., 49, 1253–1272.
- Gassan, J. and Bledzki, A.K. (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol., 59, 1303–1309.
- Sreenivasan, S., Bahama, I.P., and Krishnan, K.R.I. (1996) Influence of delignification and alkali treatment on the fine structure of coir fibres (Cocos Nucifera). J. Mater. Sci., 31, 721–726.
- de Albuquerque, A.C., Joseph, K., de Carvalho, L.H., and d'Almeida, J.R.M. (2000) Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos. Sci. Technol., 60, 833–844.
- Ray, D., Sarkar, B.K., Das, S., and Rana, A.K. (2002) Dynamic mechanical and thermal analysis of vinylester-rein-matrix composites reinforced with untreated and alkali-treated jute fibres. Compos. Sci. Technol., 62, 911–917.
- Cao, Y., Shibata, S., and Fukumoto, I. (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre and after alkali treatments. Composites Part A, 37, 421–429.
- Han, Y.H., Han, S.O., Cho, D., and Kim, H.-I. (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos. Interfaces, 14, 559–578.
- Ishiaku, U.S., Yang, X.Y., Leong, Y.W., Hamada, H., Semba, T., and Kitagawa, K. (2007) Effects of fiber content and alkali treatment on the mechanical and morphological properties of poly(lactic acid)/poly(caprolactone) blend jute fiber-filled biodegradable composites. J. Biobased Mater. Bioenergy, 1, 78–86.
- Pickering, K.L., Li, Y., Farrell, R.L., and Lay, M. (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J. Biobased Mater. Bioenergy, 1, 109–117.
- Balnois, E., Busnel, F., Baley, C., and Grohens, Y. (2007) An AFM study of the effect of chemical treatments on the surface microstructure and adhesion properties of flax fibres. Compos. Interfaces, 14, 715–731.
- Kushwaha, P. and Kumar, R. (2009) Enhanced mechanical strength of BFRP composites using modified bamboos. J. Reinf. Plast. Compos., 28, 2851–2859.
- Suizu, N., Uno, T., Goda, K., and Ohgi, J. (2009) Tensile and impact properties of fully green composites reinforced with mercerized ramie fibers. J. Mater. Sci., 44, 2477–2482.
- Favaro, S.L., Lopes, M.S., de Carvalho Neto, A.G.V., de Santana, R.R., and Radovanovic, E. (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites Part A, 41, 154–160.
- Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., and Pazhanivel, B. (2010) Influence of alkali-treated fibers on the mechanical properties and machinability of roselle and sisal fiber hybrid polyester composites. Polym. Compos., 31, 723–731.
- Huda, M.S., Drzal, L.T., Mohanty, A.K., and Misra, M. (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos. Sci. Technol., 68, 424–432.
- Threepopnatkul, P., Kaerkitcha, N., and Athipongarporn, N. (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Composites Part B, 40, 628–632.
- Seki, Y. (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater. Sci. Eng., A, 508, 247–252.
- Wu, H.F., Dwight, D.W., and Huff, N.T. (1997) Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Compos. Sci. Technol., 57, 975–983.
- Park, J.M., Subramanian, R.V., and Bayoumi, A.E. (1994) Interfacial shear strength and durability improvement by silanes in single-filament composite specimens of basalt fiber in brittle phenolic and isocyanate resins. J. Adhes. Sci. Technol., 8, 133–150.
-
Plueddemann, E.P. (1991) Silane Coupling Agents, 2nd edn, Plenum Press, New York.
10.1007/978-1-4899-2070-6 Google Scholar
- Abdelmouleh, M., Boufi, S., Belgacem, M.N., Dufresne, A., and Gandini, A. (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. J. Appl. Polym. Sci., 98, 974–984.
- Herrera-Franco, P.J. and Valadez-González, A. (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites Part A, 35, 339–345.
- Salon, M.-C.B., Abdelmouleh, M., Boufi, S., Belgacem, M.N., and Gandini, A. (2005) Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J. Colloid Interface Sci., 289, 249–261.
- Abdelmouleh, M., Boufi, S., Belgacem, M.N., and Dufresne, A. (2006) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos. Sci. Technol., 67, 1627–1639.
- Maziad, N.A., El-Nashar, D.E., and Sadek, E.M. (2009) The effect of a silane coupling agent on properties of rice husk-filled maleic acid anhydride compatibilized natural rubber/low-density polyethylene blend. J. Mater. Sci., 44, 2665–2673.
- Kushwaha, P. and Kumar, R. (2009) Effect of silanes on mechanical properties of bamboo fiber-epoxy composites. J. Reinf. Plast. Compos., 29, 718–724.
- Xu, Y., Kawata, S., Hosoi, K., Kawai, T., and Kurota, S. (2009) Thermomechanical properties of the silanized-kenaf/polystyrene composites. Express Polym. Lett., 3, 657–664.
- Marsyahyo, E., Rochardjo, H.S.B., and Seokrisno (2009) Preliminary investigation on bulletproof panels made from ramie fiber reinforced composites for NIJ Level II, IIA, and IV. J. Ind. Text., 39, 13–26.
- Herrera-Franco, P.J. and Valadez-González, A. (2005) A study of the mechanical properties of short natural-fiber reinforced polymer composites. Composites Part B, 36, 597–608.
- Towo, A.N. and Ansell, M.P. (2008) Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre-thermosetting resin composites. Compos. Sci. Technol., 68, 925–932.
- Tesoro, G. and Wu, Y. (1991) Silane coupling agents: the role of the organofunctional group. J. Adhes. Sci. Technol., 5, 771–784.
- Salon, M.C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S., and Belgacem, M.N. (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn. Reson. Chem., 45, 473–483.
- Arkles, B., Steinmetz, J.R., Zazyczny, J., and Mehta, P. (1992) Factors contributing to the stability of alkoxysilanes in aqueous solution. J. Adhes. Sci. Technol., 6, 193–206.
- Sreekala, M.S., Kumaran, M.G., Joseph, S., Jacob, M., and Thomas, S. (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl. Compos. Mater., 7, 295–329.
- Matuana, I.M., Woodhams, R.T., Balatinecz, J.I., and Park, C.B. (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym. Compos., 19, 446–455.
- Pothan, L.A. and Thomas, S. (2003) Polarity parameters and dynamic mechanical behaviours of chemically modified banana fiber reinforced polyester composites. Compos. Sci. Technol., 63, 1231–1240.
- Anderson, M. and Tillman, A.M. (1989) Acetylation of jute: effects on strength, rot resistance, and hydrophobicity. J. Appl. Polym. Sci., 37, 3437–3447.
- Hill, C.A.S., Khalil, A., and Hale, M.D. (1998) A study of the potential of acetylation to improve the properties of plant fibre. Ind. Crops. Prod., 8, 53–63.
- Nair, K.C.M., Thomas, S., and Groeninckx, G. (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos. Sci. Technol., 61, 2519–2529.
- Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K., and Tripathy, S.S. (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos. Sci. Technol., 63, 1377–1385.
- Pothan, L.A., Thomas, S., and Groeninckx, G. (2006) The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Composites Part A, 37, 1260–1269.
- Paul, S.A., Boudenne, A., Ibos, L., Candau, Y., Joseph, K., and Thomas, S. (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A, 39, 1582–1588.
- Nair, K.C.M., Diwan, S.M., and Thomas, S. (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J. Appl. Polym. Sci., 60, 1483–1491.
- Nair, K.C.M. and Thomas, S. (2003) Effect of interface modification on the mechanical properties of polystyrene-sisal fiber composites. Polym. Compos., 24, 332–343.
- Lu, X., Zhang, M.Q., Rong, M.Z., Shi, G., and Yang, G.C. (2002) All-plant fiber composites. I: unidirectional sisal fiber reinforced benzylated wood. Polym. Compos., 23, 624–633.
- Lu, X., Zhang, M.Q., Rong, M.Z., Yue, D.L., and Yang, G.C. (2004) Environmental degradability of self-reinforced composites made from sisal. Compos. Sci. Technol., 64, 1301–1310.
- Feng, D., Caulfield, D.F., and Sanadi, A.R. (2001) Effect of compatibilizer on the structure–property relationships of kenaf-fiber/polypropylene composites. Polym. Compos., 22, 506–517.
- Fung, K.L., Li, R.K.Y., and Tjong, S.C. (2002) Interface modification on the properties of sisal fiber-reinforced polypropylene composites. J. Appl. Polym. Sci., 85, 169–176.
- Rana, A.K., Mandal, A., and Bandyopadhyay, S. (2003) Short jute fibre reinforced polypropylene composites: effect of compatibilizer, impact modifier and fibre loading. Compos. Sci. Technol., 63, 801–806.
- Arbelaiz, A., Cantero, G., Fernández, B., and Mondragon, I. (2005) Flax fiber surface modifications: effects on fiber physic mechanical and flax/polypropylene interface properties. Polym. Compos., 26, 324–332.
- Doan, T.-T.-L., Gao, S.-L., and Mäder, E. (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos. Sci. Technol., 66, 952–963.
- Mechraoui, A., Riedl, B., and Rodgrigue, D. (2007) The effect of fibre and coupling agent content on the mechanical properties of hemp/polypropylene composites. Compos. Interfaces, 14, 837–848.
- Snijder, M.H.B. and Bos, H.L. (2000) Reinforcement of polypropylene by annual plant fibers. Optimization of the coupling agent efficiency. Compos. Interfaces, 7, 69–75.
- Lee, S., Shi, S., Groom, L.H., and Xue, Y. (2010) Properties of unidirectional kenaf fiber-polyolefin laminates. Polym. Compos., 31, 1067–1074.
- Sreekala, M.S., Kumaran, M.G., and Thomas, S. (2002) Water sorption in oil palm fibre reinforced phenol formaldehyde composites. Composites Part A, 33, 763–777.
- Mittal, K.L. (ed.) (2000) Polymer Surface Modification: Relevance to Adhesion, Vol. 2, VSP, Utrecht.
- Wakida, T. and Tokino, S. (1996) Surface modification of fiber and polymeric materials by discharge treatment and its application to textile processing. Ind. J. Fiber Text. Res., 21, 69–79.
- Sinha, E. and Panigrahi, S. (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composites. J. Compos. Mater., 43, 1791–1802.
- Yuan, X., Jayaraman, K., and Bhattacharyya, D. (2004) Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composites. J. Adhes. Sci. Technol., 18, 1027–1045.
- Ahlbad, G. and Kron, A. (1994) Effect of plasma treatment on mechanical properties of rubber/cellulose fibre composites. Polym. Int., 33, 103–109.
- Chu, B.Y., Kwon, M.Y., Lee, S.G., Cho, D., Park, W.H., and Han, S.O. (2004) Interfacial adhesion of silk/PLA biocomposites by plasma surface treatment. J. Adhes. Interface, 5 (4), 9–16.
- Marias, S., Gouanve, F., Bonnesoeur, A., Grenet, J., Poncin-Epaillard, F., Morvan, C., and Metayeret, M. (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites Part A, 36, 975–986.
- Sinha, E. (2009) Effect of cold plasma treatment on macromolecular structure, thermal and mechanical behavior of jute fiber. J. Ind. Text., 38, 317–339.
- Goa, S. and Zeng, Y. (1993) Surface modification of ultrahigh molecular weight polyethylene fibers by plasma treatment. I. Improving surface adhesion. J. Appl. Polym. Sci., 47, 2065–2071.
- Belgacem, M.N., Bataille, P., and Sapieha, S. (1994) Effect of corona modification on cellulose/PP composites. J. Appl. Polym. Sci., 53, 379–385.
- Dong, S., Sapieha, S., and Schreiber, H.P. (1992) Effect of corona discharge on cellulose polyethylene composites. Polym. Eng. Sci., 32, 1737–1741.
- Gassan, J. and Gutowski, S. (2000) Effects of corona discharge and UV treatment on the properties of jute-fiber epoxy composites. Compos. Sci. Technol., 60, 2857–2863.
- Zenkiewicz, M. (2004) Effects of electron-beam irradiation on some mechanical properties of polymer films. Radiat. Phys. Chem., 69, 373–378.
- Pang, Y., Cho, D., Han, S.O., and Park, W.H. (2005) Interfacial shear strength and thermal properties of electron beam-treated henequen fibers reinforced unsaturated polyester composites. Macromol. Res., 13, 453–459.
- Kondo, Y., Miyazaki, K., Yamaguchi, Y., Sasaki, T., Irie, S., and Sakurai, K. (2006) Mechanical properties of fiber reinforced styrene-butadiene rubbers using surface-modified UHMWPE fibers under EB irradiation. Eur. Polym. J., 42, 1008–1014.
- Ji, S.G., Cho, D., and Lee, B.C. (2010) Chemical and thermal characterization of electron beam irradiated jute fibers. J. Adhes. Interface, 11 (4), 162–167.
- Pruzinec, J., Kadlecik, J., Varga, S., and Pivovarnicek, F. (1981) Study of the effect of high-energy radiation on cellulose. Radiochem. Radioanal. Lett., 49, 395–404.
- Cho, D., Lee, H.S., Han, S.O., and Drzal, L.T. (2007) Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Adv. Compos. Mater., 16 (4), 315–334.
- Ji, S.G., Park, W.H., Cho, D., and Lee, B.C. (2010) Electron beam effect on the tensile properties and topology of jute fibers and the interfacial strength of jute-PLA green composites. Macromol. Res., 18, 919–922.
- Takacs, E., Wojnarovits, L., Foldvary, C., Hargittai, P., Borsa, J., and Sajo, I. (2000) Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat. Phys. Chem., 57, 399–403.
- Han, Y.H., Han, S.O., Cho, D., and Kim, H.-I. (2006) Henequen/unsaturated polyester biocomposites: electron beam irradiation treatment and alkali treatment effects on the henequen fiber. Macromol. Symp., 245–246, 539–548.
- Khan, M.A., Shehrzade, S., and Hassan, M.M. (2004) Effect of alkali and ultraviolet (UV) radiation pretreatment on physical and mechanical properties of 1,6-hexanediol diacrylate-grafted jute yarn by UV radiation. J. Appl. Polym. Sci., 92, 18–24.
- Rahman, M.M. and Khan, M.A. (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers' physic-mechanical properties. Compos. Sci. Technol., 67, 2369–2376.
- Willems, P. (1962) Kinematic high-frequency and ultrasonic treatment of pulp. Pulp Pap. Mag. Can., 63, T455–T462.
- Cho, D., Yoon, S.B., and Drzal, L.T. (2009) Cellulose-based natural fiber topography and the interfacial shear strength of henequen/unsaturated polyester composites: influence of water and alkali treatments. Compos. Interfaces, 16, 769–779.
- Ouajai, S. and Shanks, R.A. (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stab., 89, 327–335.
- Han, S.O. and Jung, Y.M. (2008) Characterization of henequen natural fiber by using two-dimensional correlation spectroscopy. J. Mol. Struct., 883–884, 142–148.
- Oh, S.Y., Yoo, D.I., Shin, Y., and Seo, G. (2005) FRIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res., 340, 417–428.
- Botaro, V.R., Siqueira, G., Megiatto, Jr. J.D., and Frollini, E. (2010) Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic resin. J. Appl. Polym. Sci., 115, 269–276.
- Cho, D., Lee, S.M., Lee, S.G., and Park, W.H. (2006) Effect of acetylation and plasma treatment on the interfacial and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/woven flax fabric biocomposites. Am. J. Appl. Sci. (Special Issue: Bio-compatible and Bio-composite Materials), 17–24.
- Lee, S.G., Choi, S.-S., Park, W.H., and Cho, D. (2003) Characterization of surface modified flax fibers and their biocomposites with PHB. Macromol. Symp., 197, 89–99.
- Sever, K., Erden, S., Gülec, H.A., Seki, Y., and Sarikanat, M. (2011) Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites. Mater. Chem. Phys., 129, 275–280.
- Pan, M.-Z., Zhou, D.-G., Deng, J., and Zhang, S.Y. (2009) Preparation and properties of wheat straw fiber-polypropylene composites. I. Investigation of surface treatments on the wheat straw fiber. J. Appl. Polym. Sci., 114, 3049–3056.
- Liu, L., Yu, J., Cheng, L., and Qu, W. (2009) Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A, 40, 669–674.
- Seo, J.M., Cho, D., and Park, W.H. (2008) Alkali treatment of kenaf fibers on the characteristics of kenaf/PLA biocomposites. J. Adhes. Interface, 9 (4), 1–11.
- Rong, M.Z., Zhong, M.Q., Liu, Y., Yang, G.G., and Zheng, H.M. (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol., 61, 1437–1447.
- Rout, J., Misra, M., Tripathy, S.S., Nayak, R.K., and Mohanty, A.K. (2001) Novel eco-friendly biodegradable coir-polyester amide biocomposites: fabrication and properties evaluation. Polym. Compos., 22, 770–778.
- Alawar, A., Hamed, A.M., and Al-Kaabi, K. (2009) Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B, 40, 601–606.
- Haque, M.M., Hasan, M., Islam, M.S., and Ali, M.E. (2009) Physic-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol., 100, 4903–4906.
- Okubo, K., Fujii, T., and Thostenson, E.T. (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composites Part A, 40, 469–475.
- Paul, S.A., Joseph, K., Mathew, G.D.G., Pothen, L.A., and Thomas, S. (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Composites Part A, 41, 1380–1387.
- Goda, K., Sreekala, M.S., Gomes, A., Kaji, T., and Ohgi, J. (2006) Improvement of plant based natural fibers for toughening green composites–effect of load application during mercerization of ramie fibers. Composites Part A, 37, 2213–2220.
- Beckermann, G.W. and Pickering, K.L. (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Composites Part A, 39, 979–988.
- Ganan, P. and Mondragon, I. (2002) Surface modification of fique fibers, effects on their physic-mechanical properties. Polym. Compos., 23, 383–394.
- Ray, D. and Sarkar, B.K. (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J. Appl. Polym. Sci., 80, 1013–1020.
- Cho, D., Choi, Y., and Drzal, L.T. (2003) Characterization, properties, and processing of LaRC PETI-5 as a high-temperature sizing material. III. Adhesion enhancement of carbon/BMI composites. J. Adhes., 79, 1–23.
- Cho, D., Yun, S.H., Kim, J., Lim, S., Park, M., Lee, S.-S., and Lee, G.-W. (2004) Influence of silane coupling agents on the interlaminar and thermal properties of woven glass fabric/nylon 6 composites. Macromol. Res., 12, 119–126.
- Acha, B.A., Reboredo, M.M., and Marcovich, N.E. (2007) Creep and dynamic mechanical behavior of PP-jute composites: effect of the interfacial adhesion. Composites Part A, 38, 1507–1516.
- Ji, S.G., Hwang, J.H., Cho, D., and Lee, B.C. (2010) A role of modification of jute fibers by electron beam irradiation in jute/PLA green composites. Proceedings of the Sixth International Workshop on Green Composites (IWGC-6), Gumi, Korea, September 8–10, 2010, p. 139–142.
- Ahmed, K.S. and Vijayarangan, S. (2008) Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. Mater. Process. Technol., 207, 330–335.
- Sever, K., Erden, S., Gülec, H.A., Seki, Y., and Sarikanat, M. (2011) Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites. Mater. Chem. Phys., 129, 275–280.
- Huda, M.S., Drzal, L.T., Mohanty, A.K., and Misra, M. (2007) The effect of silane treated- and untreated-talc on the mechanical and physic-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Composites Part B, 38, 367–379.
- Sreekumar, P.A., Thomas, S.P., Saiter, J.M., Joseph, K., Unnikrishnan, G., and Thomas, S. (2009) Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites Part A, 40, 1777–1784.
- Yu, T., Ren, J., Li, S., Yuan, H., and Li, Y. (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A, 41, 499–505.
- Huda, M.S., Drzal, L.T., and Misra, M. (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind. Eng. Chem. Res., 44, 5593–5601.
- Bledzki, A.K., Mamun, A.A., Jaszkiewicz, A., and Erdmann, K. (2010) Propylene composites with enzyme modified abaca fibre. Compos. Sci. Technol., 70, 854–860.
- Liu, W., Drzal, L.T., Mohanty, A.K., and Misra, M. (2006) Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Composites Part B, 38, 352–359.
- Pinho, S.T., Iannucci, L., and Robinson, P. (2006) Physically-based failure models and criteria for laminated fiber reinforced composites with emphasis on fiber kinking: part I: development. Composites Part A, 37, 63–73.
- Ray, D., Sarkar, B.K., Rana, A.K., and Bose, N.R. (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibers. Composites Part A, 32, 119–127.
- Han, Y.H., Han, S.O., Cho, D., and Kim, H.-I. (2008) Dynamic mechanical properties of natural fiber/polymer biocomposites: the effect of fiber treatment with electron beam. Macromol. Res., 16, 253–260.
- Qin, L., Qin, J., Liu, M., Dong, S., Shao, L., Lu, S., Zhang, G., Zhao, Y., and Fu, X. (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem. Eng. J., 166, 772–778.
- Kim, Y.H., Won, K., Kwon, J.M., Jeong, H.S., Park, S.Y., An, E.S., and Song, B.K. (2005) Synthesis of polycardanol from a renewable resource using a fungal peroxidase from Coprinus cinereus. J. Mol. Catal. B: Enzym., 34, 33–38.
- Zhou, Q., Cho, D., Song, B.K., and Kim, H.-J. (2010) Curing behavior of polycardanol by MEKP and cobalt naphthenate using differential scanning calorimetry. J. Therm. Anal. Calorim., 99, 277–284.
- Zhou, Q., Cho, D., Park, W.H., Song, B.K., and Kim, H.-J. (2011) FT-IR studies on the curing behavior of polycardanol from naturally renewable resources. J. Appl. Polym. Sci., 122, 2774–2778.
- Ji, S. G., Hwang, J. H., Cho, D., Kim, H.-J. (2013) Influence of electron beam treatment of jute on the thermal properties of random and two-directional jute/poly(lactic acid) green composites. J. Adhes. Sci. Technol., 27, 1359–1373.
- Li, S., Ren, J., Yuan, H., Yu, T., and Yuan, W. (2009) Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polym. Int., 59, 242–248.
- Dhakal, H.N., Zhang, Z.Y., and Richardson, M.O.W. (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol., 67, 1674–1683.
- Lee, S.-H. and Wang, S. (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A, 37, 80–91.
- La Mantia, F.P. and Morreale, M. (2011) Green composites: a brief review. Composites Part A, 42, 579–588.
- Fowler, P.A., Hughes, J.M., and Elias, R.M. (2006) Biocomposites: technology, environmental credentials and market forces. J. Sci. Food Agric., 86, 1781–1789.