Colorimetric and Fluorescence-Based Screening
Jean-Louis Reymond
University of Berne, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Berne, Switzerland
Search for more papers by this authorJean-Louis Reymond
University of Berne, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Berne, Switzerland
Search for more papers by this authorProf. Dr. Stefan Lutz
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
Search for more papers by this authorProf. Dr. Uwe T. Bornscheuer
Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Enzyme-Coupled Assays
-
Fluorogenic and Chromogenic Substrates
-
Chemosensors and Biosensors
-
Enzyme Fingerprinting with Multiple Substrates
-
Conclusions
-
Acknowledgments
-
References
References
-
Reymond, J.L.
(2005)
Enzyme Assays: High-Throughput Screening, Genetic Selection and Fingerprinting,
Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim.
10.1002/3527607846 Google Scholar
-
Baumann, M.,
Sturmer, R. and
Bornscheuer, U.T.
(2001)
A high-throughput-screening method for the identification of active and enantioselective hydrolases.
Angewandte Chemie – International Edition,
40,
4201–4.
10.1002/1521-3773(20011119)40:22<4201::AID-ANIE4201>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- Williams, G.J., Domann, S., Nelson, A. and Berry, A. (2003) Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 100, 3143–8.
- Woodhall, T., Williams, G., Berry, A. and Nelson, A. (2005). Creation of a tailored aldolase for the parallel synthesis of sialic acid mimetics. Angewandte Chemie – International Edition, 44, 2109–12.
- Abato, P. and Seto, C.T. (2001) EMDee: an enzymatic method for determining enantiomeric excess. Journal of the American Chemical Society, 123, 9206–7.
- Li, Z., Butikofer, L. and Witholt, B. (2004) High-throughput measurement of the enantiomeric excess of chiral alcohols by using two enzymes. Angewandte Chemie – International Edition, 43, 1698–702.
- Dey, S., Karukurichi, K.R., Shen, W.J. and Berkowitz, D.B. (2005) Double-cuvette ISES: in situ estimation of enantioselectivity and relative rate for catalyst screening. Journal of the American Chemical Society, 127, 8610–11.
- Hamberg, A., Lundgren, S., Penhoat, M., Moberg, C. and Hult, K. (2006) High-throughput enzymatic method for enantiomeric excess determination of O-acetylated cyanohydrins. Journal of the American Chemical Society, 128, 2234–5.
- Hamberg, A., Lundgren, S., Wingstrand, E., Moberg, C. and Hult, K. (2007) High-throughput synthesis and analysis of acylated cyanohydrins. Chemistry – a European Journal, 13, 4334–41.
-
Alexeeva, M.,
Enright, A.,
Dawson, M.J.,
Mahmoudian, M. and
Turner, N.J.
(2002)
Deracemization of alpha-methylbenzylamine using an enzyme obtained by in vitro evolution.
Angewandte Chemie – International Edition,
41,
3177–80.
10.1002/1521-3773(20020902)41:17<3177::AID-ANIE3177>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- Carr, R., Alexeeva, M., Enright, A., Eve, T.S.C., Dawson, M.J. and Turner, N.J. (2003) Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. Angewandte Chemie – International Edition, 42, 4807–10.
- Joo, H., Arisawa, A., Lin, Z.L. and Arnold, F.H. (1999) A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases. Chemistry and Biology, 6, 699–706.
- Joo, H., Lin, Z.L. and Arnold, F.H. (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature, 399, 670–3.
- Avila, C., Kornilayev, B.A. and Blagg, B.S.J. (2006) Development and optimization of a useful assay for determining Hsp90's inherent ATPase activity. Bioorganic and Medicinal Chemistry, 14, 1134–42.
- Dicioccio, R.A., Piskorz, C., Salamida, G., Barlow, J.J. and Matta, K.L. (1981) Synthesis and use of para-nitrophenyl-2-O-(alpha-L-fucopyranosyl)-beta-D-galactopyranoside for the rapid detection of substrate-specific alpha-L-fucosidases. Analytical Biochemistry, 111, 176–83.
- Vankayalapati, H. and Singh, G. (1999) Synthesis of fucosidase substrates using propane-1,3-diyl phosphate as the anomeric leaving group. Tetrahedron Letters, 40, 3925–8.
- Indurugalla, D., Watson, J.N. and Bennet, A.J. (2006) Natural sialoside analogues for the determination of enzymatic rate constants. Organic and Biomolecular Chemistry, 4, 4453–9.
- Mayer, C., Jakeman, D.L., Mah, M., Karjala, G., Gal, L., Warren, R.A.J. and Withers, S.G. (2001) Directed evolution of new glycosynthases from Agrobacterium beta-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis. Chemistry and Biology, 8, 437–43.
- Garciaecheverria, C., Kofron, J.L., Kuzmic, P., Kishore, V. and Rich, D.H. (1992) Continuous fluorometric direct (uncoupled) assay for peptidyl prolyl cis-trans-isomerases. Journal of the American Chemical Society, 114, 2758–9.
- Kofron, J.L., Kuzmic, P., Kishore, V., Colonbonilla, E. and Rich, D.H. (1991) Determination of kinetic constants for peptidyl prolyl cis trans isomerases by an improved spectrophotometric assay. Biochemistry, 30, 6127–34.
- Ylikauhaluoma, J.T., Ashley, J.A., Lo, C.H.L., Coakley, J., Wirsching, P. and Janda, K.D. (1996) Catalytic antibodies with peptidyl-prolyl cis-trans isomerase activity. Journal of the American Chemical Society, 118, 5496–7.
- Kupcho, K., Somberg, R., Bulleit, B. and Goueli, S.A. (2003) A homogeneous, nonradioactive high-throughput fluorogenic protein kinase assay. Analytical Biochemistry, 317, 210–17.
- Rodems, S.M., Hamman, B.D., Lin, C., Zhao, J., Shah, S., Heidary, D., Makings, L., Stack, J.H. and Pollok, B.A. (2002) A FRET-based assay platform for ultra-high density drug screening of protein kinases and phosphatases. Assay and Drug Development Technologies, 1, 9–19.
- Molin, O., Nilsson, L. and Ansehn, S. (1983) Rapid detection of bacterial-growth in blood cultures by bioluminescent assay of bacterial ATP. Journal of Clinical Microbiology, 18, 521–5.
- Shulman, H., Eberhard, A., Eberhard, C., Ulitzur, S. and Keinan, E. (2000) Highly sensitive and rapid detection of antibody catalysis by luminescent bacteria. Bioorganic and Medicinal Chemistry Letters, 10, 2353–6.
- Krebs, G., Hugonet, L. and Sutherland, J.D. (2006) Substrate ambiguity and catalytic promiscuity within a bacterial proteome probed by an easy phenotypic screen for aldehydes. Angewandte Chemie – International Edition, 45, 301–5.
- Galam, L., Hadden, M.K., Ma, Z.Q., Ye, Q.Z., Yun, B.G., Blagg, B.S.J. and Matts, R.L. (2007) High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase. Bioorganic and Medicinal Chemistry, 15, 1939–46.
- Oberthur, C., Graf, H. and Hamburger, M. (2004) The content of indigo precursors in Isatis tinctoria leaves – a comparative study of selected accessions and post-harvest treatments. Phytochemistry, 65, 3261–8.
- Nottbohm, A.C., Dothager, R.S., Putt, K.S., Hoyt, M.T. and Hergenrother, P.J. (2007) A colorimetric substrate for poly(ADP-ribose) polymerase-1, VPARP, and tankyrase-1. Angewandte Chemie – International Edition, 46, 2066–9.
- Chen, H.M. and Withers, S.G. (2007) Facile synthesis of 2,4-dinitrophenyl alpha-D-glycopyranosides as chromogenic substrates for alpha-glycosidases. ChemBioChem, 8, 719–22.
- Kim, E.J., Perreira, M., Thomas, C.J. and Hanover, J.A. (2006) An O-GlcNAcase-specific inhibitor and substrate engineered by the extension of the N-acetyl moiety. Journal of the American Chemical Society, 128, 4234–5.
- Mugherli, L., Burchak, O.N., Chatelain, F. and Balakirev, M.Y. (2006) Fluorogenic ester substrates to assess proteolytic activity. Bioorganic and Medicinal Chemistry Letters, 16, 4488–91.
- Kass, L. (1979) Cytochemistry of esterases. CRC Critical Reviews in Clinical Laboratory Sciences, 10, 205–23.
- Briseno-Roa, L., Hill, J., Notman, S., Sellers, D., Smith, A.P., Timperley, C.M., Wetherell, J., Williams, N.H., Williams, G.R., Fersht, A.R. and Griffiths, A.D. (2006) Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents. Journal of Medicinal Chemistry, 49, 246–55.
- Farinas, E.T., Schwaneberg, U., Glieder, A. and Arnold, F.H. (2001) Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Advanced Synthesis and Catalysis, 343, 601–6.
- Celik, A., Roberts, G.A., White, J.H., Chapman, S.K., Turner, N.J. and Flitsch, S.L. (2006) Probing the substrate specificity of the catalytically self-sufficient cytochrome P450RhF from a Rhodococcus sp. Chemical Communications, 4492–4.
- Celik, A., Speight, R.E. and Turner, N.J. (2005) Identification of broad specificity P450(CAM) variants by primary screening against indole as substrate. Chemical Communications, 3652–4.
- Jourdain, N., Carlon, R.P. and Reymond, J.L. (1998) A stereoselective fluorogenic assay for aldolases: detection of an anti-selective aldolase catalytic antibody. Tetrahedron Letters, 39, 9415–18.
- Perez Carlon, R., Jourdain, N. and Reymond, J.L. (2000) Fluorogenic polypropionate fragments for detecting stereoselective aldolases. Chemistry, 6, 4154–62.
- List, B., Barbas, C.F. and Lerner, R.A. (1998) Aldol sensors for the rapid generation of tunable fluorescence by antibody catalysis. Proceedings of the National Academy of Sciences of the United States of America, 95, 15351–5.
- Gonzalez-Garcia, E., Helaine, V., Klein, G., Schuermann, M., Sprenger, G.A., Fessner, W.D. and Reymond, J.L. (2003) Fluorogenic stereochemical probes for transaldolases. Chemistry – A European Journal, 9, 893–9.
- Sevestre, A., Helaine, V., Guyot, G., Martin, C. and Hecquet, L. (2003) A fluorogenic assay for transketolase from Saccharomyces cerevisiae. Tetrahedron Letters, 44, 827–30.
- Gao, W.Z., Xing, B.G., Tsien, R.Y. and Rao, J.H. (2003) Novel fluorogenic substrates for imaging 6-lactamase gene expression. Journal of the American Chemical Society, 125, 11146–7.
- Leroy, E., Bensel, N. and Reymond, J.L. (2003) Fluorogenic cyanohydrin esters as chiral probes for esterase and lipase activity. Advanced Synthesis and Catalysis, 345, 859–65.
- Zhou, W.H., Valley, M.P., Shultz, J., Hawkins, E.M., Bernad, L., Good, T., Good, D., Riss, T.L., Klaubert, D.H. and Wood, K.V. (2006) New bioluminogenic substrates for monoamine oxidase assays. Journal of the American Chemical Society, 128, 3122–3.
- Kofoed, J., Darbre, T. and Reymond, J.L. (2006) Dual mechanism of zinc-proline catalyzed aldol reactions in water. Chemical Communications (Cambridge, England), 1482–4.
- Kofoed, J., Darbre, T. and Reymond, J.L. (2006) Artificial aldolases from peptide dendrimer combinatorial libraries. Organic and Biomolecular Chemistry, 4, 3268–81.
-
Bensel, N.,
Reymond, M.T. and
Reymond, J.L.
(2001)
Pivalase catalytic antibodies: towards abzymatic activation of prodrugs.
Chemistry,
7,
4604–12.
10.1002/1521-3765(20011105)7:21<4604::AID-CHEM4604>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- Leroy, E., Bensel, N. and Reymond, J.L. (2003) A low background high-throughput screening (HTS) fluorescence assay for lipases and esterases using acyloxymethylethers of umbelliferone. Bioorganic and Medicinal Chemistry Letters, 13, 2105–8.
- Yang, Y.Z., Babiak, P. and Reymond, J.L. (2006) New monofunctionalized fluorescein derivatives for the efficient high-throughput screening of lipases and esterases in aqueous media. Helvetica Chimica Acta, 89, 404–15.
- Sicard, R., Chen, L.S., Marsaioli, A.J. and Reymond, J.L. (2005) A fluorescence-based assay for Baeyer-Villiger monooxygenases, hydroxylases and lactonases. Advanced Synthesis and Catalysis, 347, 1041–50.
-
Badalassi, F.,
Wahler, D.,
Klein, G.,
Crotti, P. and
Reymond, J.L.
(2000)
A versatile periodate-coupled fluorogenic assay for hydrolytic enzymes.
Angewandte Chemie – International Edition,
39,
4067–70.
10.1002/1521-3773(20001117)39:22<4067::AID-ANIE4067>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Nyfeler, E., Grognux, J., Wahler, D. and Reymond, J.L. (2003) A sensitive and selective high-throughput screening fluorescence assay for lipases and esterases. Helvetica Chimica Acta, 86, 2919–27.
- Gonzalez-Garcia, E.M., Grognux, J., Wahler, D. and Reymond, J.L. (2003) Synthesis and evaluation of chromogenic and fluorogenic analogs of glycerol for enzyme assays. Helvetica Chimica Acta, 86, 2458–70.
- Grognux, J. and Reymond, J.L. (2004) Classifying enzymes from selectivity fingerprints. Chembiochem, 5, 826–31.
- Lagarde, D., Nguyen, H.K., Ravot, G., Wahler, D., Reymond, J.L., Hills, G., Veit, T. and Lefevre, F. (2002) High-throughput screening of thermostable esterases for industrial bioconversions. Organic Process Research and Development, 6, 441–5.
- Bicalho, B., Chen, L.S., Grognux, J., Reymond, J.L. and Marsaioli, A.J. (2004) Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases. Journal of the Brazilian Chemical Society, 15, 911–16.
- Badalassi, F., Nguyen, H.K., Crotti, P. and Reymond, J.L. (2002) A selective HIV-protease assay based on a chromogenic amino acid. Helvetica Chimica Acta, 85, 3090–8.
- Bedia, C., Casas, J., Garcia, V., Levade, T. and Fabrias, G. (2007) Synthesis of a novel ceramide analogue and its use in a high-throughput fluorogenic assay for ceramidases. Chembiochem, 8, 642–8.
- Jones, P.D., Wolf, N.M., Morisseau, C., Whetstone, P., Hock, B. and Hammock, B.D. (2005) Fluorescent substrates for soluble epoxide hydrolase and application to inhibition studies. Analytical Biochemistry, 343, 66–75.
- Amir, R.J. and Shabat, D. (2004) Self-immolative dendrimer biodegradability by multi-enzymatic triggering. Chemical Communications, 1614–15.
- Shamis, M., Barbas, C.F. and Shabat, D. (2007) A new visual screening assay for catalytic antibodies with retro-aldol retro-Michael activity. Bioorganic and Medicinal Chemistry Letters, 17, 1172–5.
- James, A.L., Perry, J.D., Rigby, A. and Stanforth, S.P. (2007) Synthesis and evaluation of novel chromogenic aminopeptidase substrates for microorganism detection and identification. Bioorganic and Medicinal Chemistry Letters, 17, 1418–21.
- Wang, Z.Q., Liao, J.F. and Diwu, Z.J. (2005) N-DEVD-N′-morpholinecarbonyl-rhodamine 110: novel caspase-3 fluorogenic substrates for cell-based apoptosis assay. Bioorganic and Medicinal Chemistry Letters, 15, 2335–8.
- Jones, G.B., Crasto, C.F., Mathews, J.E., Xie, L.F., Mitchell, M.O., El-Shafey, A., D'Amico, A.V. and Bubley, G.J. (2006) An image contrast agent selectively activated by prostate specific antigen. Bioorganic & Medicinal Chemistry, 14, 418–25.
- Ho, N.H., Weissleder, R. and Tung, C.H. (2007) A self-immolative reporter for beta-galactosidase sensing. Chembiochem, 8, 560–6.
- Chandran, S.S., Dickson, K.A. and Raines, R.T. (2005) Latent fluorophore based on the trimethyl lock. Journal of the American Chemical Society, 127, 1652–3.
- Huang, S.T. and Lin, Y.L. (2006) New latent fluorophore for DT diaphorase. Organic Letters, 8, 265–8.
- Matayoshi, E.D., Wang, G.T., Krafft, G.A. and Erickson, J. (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy-transfer. Science, 247, 954–8.
- Kainmuller, E.K., Olle, E.P. and Bannwarth, W. (2005). Synthesis of a new pair of fluorescence resonance energy transfer donor and acceptor dyes and its use in a protease assay. Chemical Communications, 5459–61.
- Kainmuller, E.K. and Bannwarth, W. (2006) A new robust and highly sensitive FRET donor-acceptor pair: synthesis, characterization, and application in a thrombin assay. Helvetica Chimica Acta, 89, 3056–70.
- Warfield, R., Bardelang, P., Saunders, H., Chan, W.C., Penfold, C., James, R. and Thomas, N.R. (2006) Internally quenched peptides for the study of lysostaphin: an antimicrobial protease that kills Staphylococcus aureus. Organic and Biomolecular Chemistry, 4, 3626–38.
-
Boyer, V.,
Fort, S.,
Frandsen, T.P.,
Schulein, M.,
Cottaz, S. and
Driguez, H.
(2002)
Chemoenzymatic synthesis of a bifunctionalized cellohexaoside as a specific substrate for the sensitive assay of cellulase by fluorescence quenching.
Chemistry – A European Journal,
8,
1389–94.
10.1002/1521-3765(20020315)8:6<1389::AID-CHEM1389>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- Farber, S.A., Pack, M., Ho, S.Y., Johnson, L.D., Wagner, D.S., Dosch, R., Mullins, M.C., Hendrickson, H.S., Hendrickson, E.K. and Halpern, M.E. (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science, 292, 1385–8.
- Wichmann, O., Wittbrodt, J. and Schultz, C. (2006) A small-molecule FRET probe to monitor phospholipase A(2) activity in cells and organisms. Angewandte Chemie – International Edition, 45, 508–12.
- Ferguson, C.G., Bigman, C.S., Richardson, R.D., van Meeteren, L.A., Moolenaar, W.H. and Prestwich, G.D. (2006) Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity. Organic Letters, 8, 2023–6.
- Rose, T.M. and Prestwich, G.D. (2006) Synthesis and evaluation of fluorogenic substrates for phospholipase D and phospholipase C. Organic Letters, 8, 2575–8.
-
Zandonella, G.,
Haalck, L.,
Spener, F.,
Faber, K.,
Paltauf, F. and
Hermetter, A.
(1996)
Enantiomeric perylene-glycerolipids as fluorogenic substrates for a dual wavelength assay of lipase activity and stereoselectivity.
Chirality,
8,
481–9.
10.1002/(SICI)1520-636X(1996)8:7<481::AID-CHIR4>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- Duque, M., Graupner, M., Stutz, H., Wicher, I., Zechner, R., Paltauf, F. and Hermetter, A. (1996) New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities. Journal of Lipid Research, 37, 868–76.
- Yang, Y.Z., Babiak, P. and Reymond, J.L. (2006) Low background FRET-substrates for lipases and esterases suitable for high-throughput screening under basic (pH 11) conditions. Organic and Biomolecular Chemistry, 4, 1746–54.
- Tanaka, F., Thayumanavan, R. and Barbas, C.F. (2003) Fluorescent detection of carbon-carbon bond formation. Journal of the American Chemical Society, 125, 8523–8.
- Tanaka, F., Mase, N. and Barbas, C.F. (2004) Design and use of fluorogenic aldehydes for monitoring the progress of aldehyde transformations. Journal of the American Chemical Society, 126, 3692–3.
- Hennig, A., Roth, D., Enderle, T. and Nau, W.M. (2006) Nanosecond time-resolved fluorescence protease assays. Chembiochem, 7, 733–7.
- Sahoo, H. and Nau, W.M. (2007) Phosphorylation-induced conformational changes in short peptides probed by fluorescence resonance energy transfer in the 10 angstrom domain. Chembiochem, 8, 567–73.
- Lawrence, D.S. and Wang, Q.Z. (2007) Seeing is believing: peptide-based fluorescent sensors of protein tyrosine kinase activity. Chembiochem, 8, 373–8.
- Wang, Q.Z., Cahill, S.M., Blumenstein, M. and Lawrence, D.S. (2006) Self-reporting fluorescent substrates of protein tyrosine kinases. Journal of the American Chemical Society, 128, 1808–9.
- Sharma, V., Agnes, R.S. and Lawrence, D.S. (2007) Deep quench: an expanded dynamic range for protein kinase sensors. Journal of the American Chemical Society, 129, 2742–3.
- Murayama, T., Tanabe, T., Ikeda, H. and Ueno, A. (2006) Direct assay for alpha-amylase using fluorophore-modified cyclodextrins. Bioorganic and Medicinal Chemistry, 14, 3691–6.
- Xing, B., Khanamiryan, A. and Rao, J.H. (2005) Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. Journal of the American Chemical Society, 127, 4158–9.
- Kohl, T., Heinze, K.G., Kuhlemann, R., Koltermann, A. and Schwille, P. (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 99, 12161–6.
- Wosnick, J.H., Mello, C.M. and Swager, T.M. (2005) Synthesis and application of poly(phenylene ethynylene)s for bioconjugation: a conjugated polymer-based fluorogenic probe for proteases. Journal of the American Chemical Society, 127, 3400–5.
- Rosseneu, M., Taveirne, M.J., Caster, H. and Vanbiervliet, J.P. (1985) Hydrolysis of very-low-density lipoproteins labeled with a fluorescent triacylglycerol – 1,3-Dioleoyl-2-(4-Pyrenylbutanoyl)Glycerol. European Journal of Biochemistry, 152, 195–8.
- Twining, S.S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic-enzymes. Analytical Biochemistry, 143, 30–4.
- James, A.L., Perry, J.D., Jay, C., Monget, D., Rasburn, J.W. and Gould, F.K. (2001) Fluorogenic substrates for the detection of microbial nitroreductases. Letters in Applied Microbiology, 33, 403–8.
- Chen, G., Yee, D.J., Gubernator, N.G. and Sames, D. (2005) Design of optical switches as metabolic indicators: new fluorogenic probes for monoamine oxidases (MAO A and B). Journal of the American Chemical Society, 127, 4544–5.
- Froemming, M.K. and Sames, D. (2006) Fluoromorphic substrates for fatty acid metabolism: Highly sensitive probes for mammalian medium-chain acyl-CoA dehydrogenase. Angewandte Chemie – International Edition, 45, 637–42.
- Reymond, J.L., Koch, T., Schroer, J. and Tierney, E. (1996) A general assay for antibody catalysis using acridone as a fluorescent tag. Proceedings of the National Academy of Sciences of the United States of America, 93, 4251–6.
- Aharoni, A., Thieme, K., Chiu, C.P., Buchini, S., Lairson, L.L., Chen, H., Strynadka, N.C., Wakarchuk, W.W. and Withers, S.G. (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nature Methods, 3, 609–14.
- Landry, D.W., Zhao, K., Yang, G.X.Q., Glickman, M. and Georgiadis, T.M. (1993) Antibody-catalyzed degradation of cocaine. Science, 259, 1899–901.
- Yang, G., Chun, J., ArakawaUramoto, H., Wang, X., Gawinowicz, M.A., Zhao, K. and Landry, D.W. (1996) Anti-cocaine catalytic antibodies: a synthetic approach to improved antibody diversity. Journal of the American Chemical Society, 118, 5881–90.
- Liu, Y.S., Patricelli, M.P. and Cravatt, B.F. (1999) Activity-based protein profiling: The serine hydrolases. Proceedings of the National Academy of Sciences of the United States of America, 96, 14694–9.
- Li, W., Blankman, J.L. and Cravatt, B.F. (2007) A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. Journal of the American Chemical Society, 129, 9594–5.
- Greenbaum, D., Medzihradszky, K.F., Burlingame, A. and Bogyo, M. (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chemistry and Biology, 7, 569–81.
- Schmidinger, H., Birner-Gruenberger, R., Riesenhuber, G., Saf, R., Susani-Etzerodt, H. and Hermetter, A. (2005) Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases. Chembiochem, 6, 1776–81.
- Montenecourt, B.S. and Eveleigh, D.E. (1977) Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Applied and Environmental Microbiology, 33, 178–83.
- Yang, Z. and Xu, B. (2004) A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chemical Communications (Cambridge, England), 2424–5.
- Yang, Z., Ho, P.L., Liang, G., Chow, K.H., Wang, Q., Cao, Y., Guo, Z. and Xu, B. (2007) Using beta-lactamase to trigger supramolecular hydrogelation. Journal of the American Chemical Society, 129, 266–7.
- Adler-Abramovich, L., Perry, R., Sagi, A., Gazit, E. and Shabat, D. (2007) Controlled assembly of peptide nanotubes triggered by enzymatic activation of self-immolative dendrimers. Chembiochem, 8, 859–62.
- Janes, L.E. and Kazlauskas, R.J. (1997) Quick E. A fast spectrophotometric method to measure the enantioselectivity of hydrolases. Journal of Organic Chemistry, 62, 4560–1.
-
Janes, L.E.,
Lowendahl, A.C. and
Kazlauskas, R.J.
(1998)
Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases.
Chemistry – A European Journal,
4,
2324–31.
10.1002/(SICI)1521-3765(19981102)4:11<2324::AID-CHEM2324>3.0.CO;2-I CAS Web of Science® Google Scholar
- Park, C.B. and Clark, D.S. (2002) Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotechnology and Bioengineering, 78, 229–35.
- Taylor, S.J.C., Brown, R.C., Keene, P.A. and Taylor, I.N. (1999) Novel screening methods – the key to cloning commercially successful biocatalysts. Bioorganic and Medicinal Chemistry, 7, 2163–8.
- Henke, E. and Bornscheuer, U.T. (2003) Fluorophoric assay for the high-throughput determination of amidase activity. Analytical Chemistry, 75, 255–60.
- Banerjee, A., Sharma, R. and Banerjee, U.C. (2003) A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnology and Applied Biochemistry, 37, 289–93.
- Klein, G., Kaufmann, D., Schurch, S. and Reymond, J.L. (2001) A fluorescent metal sensor based on macrocyclic chelation. Chemical Communications, 561–2.
- Dean, K.E.S., Klein, G., Renaudet, O. and Reymond, J.L. (2003) A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases. Bioorganic and Medicinal Chemistry Letters, 13, 1653–6.
- Duchateau, A.L.L., Hillemans-Crombach, M.G., van Duijnhoven, A., Reiss, R. and Sonke, T. (2004) A colorimetric method for determination of amino amidase activity. Analytical Biochemistry, 330, 362–4.
- Humphrey, C.E., Easson, M.A.M. and Turner, N.J. (2004) Dimedone esters as novel hydrolase substrates and their application in the colorimetric detection of lipase and esterase activity. Chembiochem, 5, 1144–8.
- Konarzycka-Bessler, M. and Bornscheuer, U.T. (2003) A high-throughput-screening method for determining the synthetic activity of hydrolases. Angewandte Chemie – International Edition in English, 42, 1418–20.
- Salahuddin, S., Renaudet, O. and Reymond, J.L. (2004) Aldehyde detection by chromogenic/fluorogenic oxime bond fragmentation. Organic and Biomolecular Chemistry, 2, 1471–5.
- Wahler, D., Boujard, O., Lefevre, F. and Reymond, J.L. (2004) Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron, 60, 703–10.
-
Wahler, D. and
Reymond, J.L.
(2002)
The adrenaline test for enzymes.
Angewandte Chemie – International Edition in English,
41,
1229–32.
10.1002/1521-3773(20020402)41:7<1229::AID-ANIE1229>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- Mateo, C., Archelas, A. and Furstoss, R. (2003) A spectrophotometric assay for measuring and detecting an epoxide hydrolase activity. Analytical Biochemistry, 314, 135–41.
- Doderer, K., Lutz-Wahl, S., Hauer, B. and Schmid, R.D. (2003) Spectrophotometric assay for epoxide hydrolase activity toward any epoxide. Analytical Biochemistry, 321, 131–4.
- Zocher, F., Enzelberger, M.M., Bornscheuer, U.T., Hauer, B. and Schmid, R.D. (1999) A colorimetric assay suitable for screening epoxide hydrolase activity. Analytica Chimica Acta, 391, 345–51.
- Maeda, H., Matsuno, H., Ushida, M., Katayama, K., Saeki, K. and Itoh, N. (2005) 2,4-dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays. Angewandte Chemie – International Edition, 44, 2922–5.
- Khersonsky, O. and Tawfik, D.S. (2006) Chromogenic and fluorogenic assays for the lactonase activity of serum paraoxonases. Chembiochem, 7, 49–53.
- Ojida, A., Mito-oka, Y., Inoue, M. and Hamachi, I. (2002) First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution. Journal of the American Chemical Society, 124, 6256–8.
- Yamaguchi, S., Yoshimura, L., Kohira, T., Tamaru, S. and Hamachi, I. (2005) Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives. Journal of the American Chemical Society, 127, 11835–41.
- Martin, K., Steinberg, T.H., Cooley, L.A., Gee, K.R., Beechem, J.M. and Patton, W.F. (2003) Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics, 3, 1244–55.
- Wongkongkatep, J., Miyahara, Y., Ojida, A. and Hamachi, I. (2006) Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angewandte Chemie – International Edition, 45, 665–8.
- Tawfik, D.S., Green, B.S., Chap, R., Sela, M. and Eshhar, Z. (1993) catELISA: a facile general route to catalytic antibodies. Proceedings of the National Academy of Sciences of the United States of America, 90, 373–7.
-
Geymayer, P.,
Bahr, N. and
Reymond, J.L.
(1999)
A general fluorogenic assay for catalysis using antibody sensors.
Chemistry – a European Journal,
5,
1006–12.
10.1002/(SICI)1521-3765(19990301)5:3<1006::AID-CHEM1006>3.0.CO;2-O CAS Web of Science® Google Scholar
- Taran, F., Renard, P.Y., Creminon, C., Valleix, A., Frobert, Y., Pradelles, P., Grassi, J. and Mioskowski, C. (1999) Competitive immunoassay (Cat-EIA), a helpful technique for catalytic antibody detection. Part I. Tetrahedron Letters, 40, 1887–90.
- Taran, F., Renard, P.Y., Creminon, C., Valleix, A., Frobert, Y., Pradelles, P., Grassi, J. and Mioskowski, C. (1999) Competitive immunoassay (Cat-EIA), a helpful technique for catalytic antibody detection. Part II. Tetrahedron Letters, 40, 1891–4.
- Vicennati, P., Bensel, N., Wagner, A., Creminon, C. and Taran, F. (2005) Sandwich immunoassay as a high-throughput screening method for cross-coupling reactions. Angewandte Chemie – International Edition, 44, 6863–6.
- Nutiu, R., Yu, J.M.Y. and Li, Y.F. (2004) Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. Chembiochem, 5, 1139–44.
- Zatta, P.F., Nyame, K., Cormier, M.J., Mattox, S.A., Prieto, P.A., Smith, D.F. and Cummings, R.D. (1991) A solid-phase assay for Beta-1,4-Galactosyltransferase activity in human serum using recombinant aequorin. Analytical Biochemistry, 194, 185–91.
- Khraltsova, L.S., Sablina, M.A., Melikhova, T.D., Joziasse, D.H., Kaltner, H., Gabius, H.J. and Bovin, N.V. (2000) An enzyme-linked lectin assay for alpha 1,3-galactosyltransferase. Analytical Biochemistry, 280, 250–7.
- Bryan, M.C., Lee, L.V. and Wong, C.H. (2004) High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. Bioorganic and Medicinal Chemistry Letters, 14, 3185–8.
- Bryan, M.C., Plettenburg, O., Sears, P., Rabuka, D., Wacowich-Sgarbi, S. and Wong, C.H. (2002) Saccharide display on microtiter plates. Chemistry & Biology, 9, 713–20.
- Xiao, Y., Pavlov, V., Levine, S., Niazov, T., Markovitch, G. and Willner, I. (2004) Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations. Angewandte Chemie – International Edition, 43, 4519–22.
- Pavlov, V., Xiao, Y. and Willner, I. (2005) Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Letters, 5, 649–53.
- Baron, R., Zayats, M. and Willner, I. (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Analytical Chemistry, 77, 1566–71.
- Wang, Z., Lee, J., Cossins, A.R. and Brust, M. (2005) Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Analytical Chemistry, 77, 5770–4.
- Wang, Z., Levy, R., Fernig, D.G. and Brust, M. (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. Journal of the American Chemical Society, 128, 2214–15.
- Guarise, C., Pasquato, L., De Filippis, V. and Scrimin, P. (2006) Gold nanoparticles-based protease assay. Proceedings of the National Academy of Sciences of the United States of America, 103, 3978–82.
- Choi, Y., Ho, N.H. and Tung, C.H. (2006) Sensing phosphatase activity by using gold nanoparticles. Angewandte Chemie – International Edition in English, 46, 707–9.
- Xu, X., Han, M.S. and Mirkin, C.A. (2007) A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie – International Edition in English, 46, 3468–70.
-
Reymond, J.L. and
Wahler, D.
(2002)
Substrate arrays as enzyme fingerprinting tools.
Chembiochem,
3,
701–8.
10.1002/1439-7633(20020802)3:8<701::AID-CBIC701>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- Liu, A.M.F., Somers, N.A., Kazlauskas, R.J., Brush, T.S., Zocher, F., Enzelberger, M.M., Bornscheuer, U.T., Horsman, G.P., Mezzetti, A., Schmidt-Dannert, C. and Schmid, R.D. (2001) Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron-Asymmetry, 12, 545–56.
-
Wahler, D.,
Badalassi, F.,
Crotti, P. and
Reymond, J.L.
(2001)
Enzyme fingerprints by fluorogenic and chromogenic substrate arrays.
Angewandte Chemie – International Edition,
40,
4457–60.
10.1002/1521-3773(20011203)40:23<4457::AID-ANIE4457>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
-
Wahler, D.,
Badalassi, F.,
Crotti, P. and
Reymond, J.L.
(2002)
Enzyme fingerprints of activity, and stereo- and enantioselectivity from fluorogenic and chromogenic substrate arrays.
Chemistry,
8,
3211–28.
10.1002/1521-3765(20020715)8:14<3211::AID-CHEM3211>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- Buissier, J., Fourcard, A. and Colobert, L. (1967). Usage de substrats synthetiques pour l'étude de l'equipement enzymatique de microorganismes. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences Serie D, 264, 415.
- Nardon, P., Monget, D., Didierfichet, M.L. and Dethe, G. (1976) Comparison of zymogram of 3 lymphoblastoid cell lines with a new microtechnique. Biomedicine, 24, 183–90.
- Humble, M.W., King, A. and Phillips, I. (1977) Api Zym – simple rapid system for detection of bacterial enzymes. Journal of Clinical Pathology, 30, 275–7.
- Gruner, E., Vongraevenitz, A. and Altwegg, M. (1992) The Api Zym System – a tabulated review from 1977 to date. Journal of Microbiological Methods, 16, 101–18.
- Garcia-Martos, P., Marin, P., Hernandez-Molina, J.M., Garcia-Agudo, L., Aoufi, S. and Mira, J. (2001) Extracellular enzymatic activity in 11 Cryptococcus species. Mycopathologia, 150, 1–4.
- Manafi, M., Kneifel, W. and Bascomb, S. (1991) Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiological Reviews, 55, 335–48.
- Powers, J.C., Asgian, J.L., Ekici, O.D. and James, K.E. (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chemical Reviews, 102, 4639–750.
- Meldal, M. (2005) Smart combinatorial assays for the determination of protease activity and inhibition. QSAR and Combinatorial Science, 24, 1141–8.
- Puente, X.S., Sanchez, L.M., Overall, C.M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nature Reviews Genetics, 4, 544–58.
- Richardson, P.L. (2002) The determination and use of optimized protease substrates in drug discovery and development. Current Pharmaceutical Design, 8, 2559–81.
- Maly, D.J., Huang, L. and Ellman, J.A. (2002) Combinatorial strategies for targeting protein families: application to the proteases. Chembiochem, 3, 17–37.
- Matthews, D.J. and Wells, J.A. (1993) Substrate phage – selection of protease substrates by monovalent phage display. Science, 260, 1113–17.
- Chaparro-Riggers, J.F., Breves, R., Maurer, K.H. and Bornscheuer, U. (2006) Modulation of infectivity in phage display as a tool to determine the substrate specificity of proteases. Chembiochem, 7, 965–70.
- Breddam, K. and Meldal, M. (1992) Substrate preferences of glutamic-acid-specific endopeptidases assessed by synthetic peptide-substrates based on intramolecular fluorescence quenching. European Journal of Biochemistry, 206, 103–7.
- Meldal, M., Svendsen, I., Breddam, K. and Auzanneau, F.I. (1994) Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proceedings of the National Academy of Sciences of the United States of America, 91, 3314–18.
- St Hilaire, P.M., Willert, M., Juliano, M.A., Juliano, L. and Meldal, M. (1999) Fluorescence-quenched solid phase combinatorial libraries in the characterization of cysteine protease substrate specificity. Journal of Combinatorial Chemistry, 1, 509–23.
- Alves, F.M., Hirata, I.Y., Gouvea, I.E., Alves, M.F.M., Meldal, M., Bromme, D., Juliano, L. and Juliano, M.A. (2007) Controlled peptide solvation in portion-mixing libraries of FRET peptides: improved specificity determination for dengue 2 virus NS2B-NS3 protease and human cathepsin S. Journal of Combinatorial Chemistry, 9, 627–34.
- Ekici, O.D., Karla, A., Paetzel, M., Lively, M.O., Pei, D.H. and Dalbey, R.E. (2007) Altered-3 substrate specificity of Escherichia coli signal peptidase 1 mutants as revealed by screening a combinatorial peptide library. Journal of Biological Chemistry, 282, 417–25.
- Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T. and Nicholson, D.W. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. Journal of Biological Chemistry, 272, 17907–11.
- Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A. and Craik, C.S. (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proceedings of the National Academy of Sciences of the United States of America, 97, 7754–9.
- Harris, J.L., Alper, P.B., Li, J., Rechsteiner, M. and Backes, B.J. (2001) Substrate specificity of the human proteasome. Chemistry and Biology, 8, 1131–41.
- Rano, T.A., Timkey, T., Peterson, E.P., Rotonda, J., Nicholson, D.W., Becker, J.W., Chapman, K.T. and Thornberry, N.A. (1997) A combinatorial approach for determining protease specificities: application to interleukin-1 beta converting enzyme (ICE). Chemistry and Biology, 4, 149–55.
- Pinilla, C., Appel, J.R., Blanc, P. and Houghten, R.A. (1992) Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques, 13, 901–5.
- Kisselev, A.F., Garcia-Calvo, M., Overkleeft, H.S., Peterson, E., Pennington, M.W., Ploegh, H.L., Thornberry, N.A. and Goldberg, A.L. (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. Journal of Biological Chemistry, 278, 35869–77.
- Choe, Y., Leonetti, F., Greenbaum, D.C., Lecaille, F., Bogyo, M., Bromme, D., Ellman, J.A. and Craik, C.S. (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. Journal of Biological Chemistry, 281, 12824–32.
- Cotrin, S.S., Puzer, L., Judice, W.A.D., Juliano, L., Carmona, A.K. and Juliano, M.A. (2004) Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Analytical Biochemistry, 335, 244–52.
- Winssinger, N., Damoiseaux, R., Tully, D.C., Geierstanger, B.H., Burdick, K. and Harris, J.L. (2004) PNA-encoded protease substrate microarrays. Chemistry and Biology, 11, 1351–60.
- Harris, J.L. and Winssinger, N. (2005) PNA encoding (PNA = peptide nucleic acid): From solution-based libraries to organized microarrays. Chemistry – A European Journal, 11, 6792–801.
- Debaene, F., Mejias, L., Harris, J.L. and Winssinger, N. (2004) Synthesis of a PNA-encoded cysteine protease inhibitor library. Tetrahedron, 60, 8677–90.
- Diaz-Mochon, J.J., Bialy, L. and Bradley, M. (2006) Dual colour, microarray-based, analysis of 10 000 protease substrates. Chemical Communications, 3984–6.
- Salisbury, C.M., Maly, D.J. and Ellman, J.A. (2002) Peptide microarrays for the determination of protease substrate specificity. Journal of the American Chemical Society, 124, 14868–70.
- Zhu, Q., Uttamchandani, M., Li, D.B., Lesaicherre, M.L. and Yao, S.Q. (2003) Enzymatic profiling system in a small-molecule microarray. Organic Letters, 5, 1257–60.
- Gosalia, D.N., Salisbury, C.M., Maly, D.J., Ellman, J.A. and Diamond, S.L. (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics, 5, 1292–8.
- Gosalia, D.N., Salisbury, C.M., Ellman, J.A. and Diamond, S.L. (2005) High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Molecular and Cellular Proteomics, 4, 626–36.
- Borodovsky, A., Ovaa, H., Meester, W.J.N., Venanzi, E.S., Bogyo, M.S., Hekking, B.G., Ploegh, H.L., Kessler, B.M. and Overkleeft, H.S. (2005) Small-molecule inhibitors and probes for ubiquitin- and ubiquitin-like-specific proteases. Chembiochem, 6, 287–91.
- Greenbaum, D.C., Arnold, W.D., Lu, F., Hayrapetian, L., Baruch, A., Krumrine, J., Toba, S., Chehade, K., Bromme, D., Kuntz, I.D. and Bogyo, M. (2002) Small molecule affinity fingerprinting: a tool for enzyme family subclassification, target identification, and inhibitor design. Chemistry and Biology, 9, 1085–94.
- Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. and Greenbaum, D. (2000) Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chemistry and Biology, 7, 27–38.
- Srinivasan, R., Huang, X., Ng, S.L. and Yao, S.Q. (2006) Activity-based fingerprinting of proteases. Chembiochem, 7, 32–6.
- Goddard, J.P. and Reymond, J.L. (2004) Enzyme activity fingerprinting with substrate cocktails. Journal of the American Chemical Society, 126, 11116–17.
- Elend, C., Schmeisser, C., Leggewie, C., Babiak, P., Carballeira, J.D., Steele, H.L., Reymond, J.L., Jaeger, K.E. and Streit, W.R. (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Applied and Environmental Microbiology, 72, 3637–45.
- Yongzheng, Y. and Reymond, J.L. (2005) Protease profiling using a fluorescent domino peptide cocktail. Molecular BioSystems, 1, 57–63.
- Sicard, R., Goddard, J.P., Mazel, M., Audiffrin, C., Fourage, L., Ravot, G., Wahler, D., Lefevre, F. and Reymond, J.L. (2005) Multienzyme profiling of thermophilic microorganisms with a substrate cocktail assay. Advanced Synthesis and Catalysis, 347, 987–96.
- Park, S. and Shin, I. (2007) Profiling of glycosidase activities using coumarin-conjugated glycoside cocktails. Organic Letters, 9, 619–22.
- Horeau, A. and Nouaille, A. (1990) Micromethod for determining configuration of secondary alcohols by kinetic reduction – use of mass-spectrography. Tetrahedron Letters, 31, 2707–10.
- Schoofs, A. and Horeau, A. (1977) New general method for determining enantiomeric purity and absolute-configuration of chiral secondary alcohols. Tetrahedron Letters, 3259–62.
-
Guo, J.H.,
Wu, J.Y.,
Siuzdak, G. and
Finn, M.G.
(1999)
Measurement of enantiomeric excess by kinetic resolution and mass spectrometry.
Angewandte Chemie – International Edition,
38,
1755–8.
10.1002/(SICI)1521-3773(19990614)38:12<1755::AID-ANIE1755>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
-
Reetz, M.T.,
Becker, M.H.,
Klein, H.W. and
Stockigt, D.
(1999)
A method for high-throughput screening of enantioselective catalysts.
Angewandte Chemie – International Edition,
38,
1758–61.
10.1002/(SICI)1521-3773(19990614)38:12<1758::AID-ANIE1758>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- Zha, D.X., Eipper, A. and Reetz, M.T. (2003) Assembly of designed oligonucleotides as an efficient method for gene recombination: a new tool in directed evolution. Chembiochem, 4, 34–9.
- Reetz, M.T., Torre, C., Eipper, A., Lohmer, R., Hermes, M., Brunner, B., Maichele, A., Bocola, M., Arand, M., Cronin, A., Genzel, Y., Archelas, A. and Furstoss, R. (2004) Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Organic Letters, 6, 177–80.
- DeSantis, G., Wong, K., Farwell, B., Chatman, K., Zhu, Z.L., Tomlinson, G., Huang, H.J., Tan, X.Q., Bibbs, L., Chen, P., Kretz, K. and Burk, M.J. (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). Journal of the American Chemical Society, 125, 11476–7.
- Zea, C.J., MacDonell, S.W. and Pohl, N.L. (2003) Discovery of the archaeal chemical link between glycogen (starch) synthase families using a new mass spectrometry assay. Journal of the American Chemical Society, 125, 13666–7.
- Yu, Y., Ko, K.S., Zea, C.J. and Pohl, N.L. (2004) Discovery of the chemical function of glycosidases: design, synthesis, and evaluation of mass-differentiated carbohydrate libraries. Organic Letters, 6, 2031–3.
- Yang, M., Brazier, M., Edwards, R. and Davis, B.G. (2005) High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem, 6, 346–57.
- Nagahori, N. and Nishimura, S.I. (2006) Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry. Chemistry – A European Journal, 12, 6478–85.
- Basile, F., Ferrer, I., Furlong, E.T. and Voorhees, K.J. (2002) Simultaneous multiple substrate tag detection with ESI-ion trap MS for in vivo bacterial enzyme activity profiling. Analytical Chemistry, 74, 4290–3.
- Babiak, P. and Reymond, J.L. (2005) A high-throughput, low-volume enzyme assay on solid support. Analytical Chemistry, 77, 373–7.
- Gosalia, D.N. and Diamond, S.L. (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proceedings of the National Academy of Sciences of the United States of America, 100, 8721–6.
- Uttamchandani, M., Huang, X., Chen, G.Y.J. and Yao, S.Q. (2005) Nanodroplet profiling of enzymatic activities in a microarray. Bioorganic and Medicinal Chemistry Letters, 15, 2135–9.
- Kotz, K.T., Gu, Y. and Faris, G.W. (2005) Optically addressed droplet-based protein assay. Journal of the American Chemical Society, 127, 5736–7.
- Grognux, J. and Reymond, J.L. (2006) A red-fluorescent substrate microarray for lipase fingerprinting. Molecular BioSystems, 2, 492–8.
- Korbel, G.A., Lalic, G. and Shair, M.D. (2001) Reaction microarrays: a method for rapidly determining the enantiomeric excess of thousands of samples. Journal of the American Chemical Society, 123, 361–2.
- Horeau, A. (1961) Principe et applications d'une nouvelle methode de determination des configurations dite par dedoublement partiel. Tetrahedron Letters, 506–12.
- Horeau, A. (1962) Determination des configurations par dedoublement partiel. 2. Precisions et complements. Tetrahedron Letters, 965–9.
- Eelkema, R., van Delden, R.A. and Feringa, B.L. (2004) Direct visual detection of the stereoselectivity of a catalytic reaction. Angewandte Chemie – International Edition, 43, 5013–16.