Free Access
References
Prof. Dr. Joachim Ohser,
Dr. Katja Schladitz,
Prof. Dr. Joachim Ohser
University of Applied Sciences, FB Mathematik und Naturwissenschaft, Schöfferstr. 3, 64295 Darmstadt, Germany
Search for more papers by this authorDr. Katja Schladitz
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
Search for more papers by this authorBook Author(s):Prof. Dr. Joachim Ohser,
Dr. Katja Schladitz,
Prof. Dr. Joachim Ohser
University of Applied Sciences, FB Mathematik und Naturwissenschaft, Schöfferstr. 3, 64295 Darmstadt, Germany
Search for more papers by this authorDr. Katja Schladitz
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
Search for more papers by this authorFirst published: 09 September 2009

References
- Acharjee, S. and Zabaras, N. (2006) Uncertainty propargation in finite deformation – a Spectral stochastic Langrangian approach. Computer Methods in Applied Mechanics and Engineering, 195, 2289–2312.
- Adams, R. and Bischof, L. (1994) Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell., 16(6), 641–647.
- Agterberg, F.P. and Fabbri, A.G. (1979) Spatial correlation of stratigraphic units quantified from geological maps. Comput. Geosci., 4, 515–526.
- Aguilera, A., Rodríguez, J., and Ayala, D. (2002) Fast connected component labeling algorithm: A non voxel-based approach, Technical Report LSI-02-26-R, Universitat Politècnica, Catalunya, http://www.lsi.upc.edu/dept/techreps/.
- Akenine-Moeller, T. and Haines, E. (2002) Real-Time Rendering, 2nd edn, AK Peters, Wellesley, MA.
- Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal., 23, 1482–1581.
- Allaire, G., Damlamian, A., and Hornung, U. (1995) Two-scale Convergence on Periodic Surfaces and Applications, in Mathematical Modelling of Flow Through Porous Media (eds A. Bourgeat, C. Carasso, S. Luckhaus, and A. Mikelić), World Scientific, Singapore, pp. 15–25.
- Ansini, N., Braides, A., and Chiadó, Piat, V. (1999) Homogenization of periodic multidimensional structures. Boll. Un. Mat. Ital., 2-B, 735–758.
- Armstrong, M.A. (1997) Basic Topology, Springer, Berlin.
-
Arns, C.H.,
Knackstedt, M.A., and
Mecke, K.R.
(2002) Characterising the morphology of disordered materials,
in Morphology of Condensed Matter
(eds K. R. Mecke and
D. Stoyan), LNP,
Springer,
Heidelberg,
pp. 37–74.
10.1007/3-540-45782-8_2 Google Scholar
- Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., and Garboczi, E.J. (2002) Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics, 67(5), 1396–1404.
- Arns, C.H., Mecke, J., Mecke, K.R., and Stoyan, D. (2005) Second-order analysis by variograms for curvature measures of two-phase structures. Eur. Phys. J., B47, 397–409.
-
Attali, D. and
Montanvert, A.
(1996)
Modelling noise for a better simplification of skeletons.
Proc. Int. Conf. Image Process.,
3,
13–16.
10.1109/ICIP.1996.560357 Google Scholar
- Aurenhammer, F. (1987) Power diagrams: properties, algorithms and applications. SIAM J. Comput., 16, 78–96.
- Auriault, J.L. and Ene, H. (1994) Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. Int. J. Heat Mass Trans.r, 37, 2885–2892.
- Ayala, R., Domínguez, E., Francés, A.R., and Quintero, A. (1996) Determining the components of the complement of a digital (n−1)-manifold in Zn. In Proceedings of the 6th International Workshop on Discrete Geometry for Computer Imagery, DGCI, pp. 163–176.
- Ayala, R., Domínguez, E., Francés, A.R., and Quintero, A. (2000) A digital index theorem. In Proceedings of the 7th International Workshop on Combinatorial Image Analysis IWCIA00, July, pp. 1–13.
- Ayala, R., Domínguez, E., Francés, A.R., Quintero, A., and Rubio, J. (1995) On surfaces in digital topology. In Proceedings of the 5th Workshop on Discrete Geometry for Computer Imagery, pp. 271–276. DGCI.
- Babuška, I.M., Nobile, F., and Tampone, R. (2005) A stochastic collection method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 194, 1251–1294.
- Baddeley, A.J. (1999) Spatial sampling and censoring, in Stochastic Geometry: Likelihood and Computation (eds W.S. Kendall, M.N.M. van Lieshout, and O.E. Barndorff-Nielsen) Chapman and Hall, London.
- Bakhvalov, N. and Panasenko, G. (1984) Homogensation: Averaging Processes Periodic Media – Mathematical Problems in Mechanics of Composite Materials, Kluwer Academic Publishers, Dordrecht, Boston, London.
- Ballani, F., Daley, D.J., and Stoyan, D. (2004) Modelling the microstructure of samples of concrete, in Proc. of the International Conference on Spatial Point Process Modelling and its Applications (eds A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan), number 20 in Colleccio Treballs d'Informatica i Tecnologia, pp. 3–4. Universitat Jaume I.
- Ballard, D.H. and Brown, C.M. (1982) Computer Vision, Prentice-Hall.
-
J. Banhart (ed.)
(2008)
Advanced Tomographic Methods in Materials Research and Engineering,
Oxford University Press.
10.1093/acprof:oso/9780199213245.001.0001 Google Scholar
- Baron, G.J.F. and Barrera, J. (1991) Minimal representation for translation invariant set mappings by mathematical morphology. SIAM J. Appl. Math., 51, 1782–1789.
- Bartlett, M.S. (1963) The spectral analysis of point processes. J. R. Stat. Soc., B25, 264–296.
- Bartlett, M.S. (1964) The spectral analysis of two-dimensional point processes. Biometrika, 51, 299–311.
- Bathe, K.-J. (1996) Finite Element Procedures in Engineering Analysis, Prentice Hall, London.
- Beaulieu, N.C. (2002) Introduction to certain topics in telegraph transmission theory. Proc. IEEE, 90(2), 276–299.
- Becker, J., Schulz, V.P., Mukherjee, P.P., Wiegmann, A., and Wang, C.Y. (2007) Modeling of two-phase behavior in the gas diffusion medium of polymer electrolyte fuel cells via full morphology approach. J. Electrochem. Soc., 154, 419–426.
- Beneš, V. and Rataj, J. (2004) Stochastic Geometry: Selected Topics, Kluwer, Dordrecht.
- Benouali, A.-H., Froyen, L., Delerue, J.-F., and Wevers, M. (2002) Mechanical analysis and microstructural characterization of metal foams. Mater. Sci. Technol., 18, 489–494.
- Berke, A., Neite, G., Riehmann, W., and Nembach, E. (1987) Characterization of periodic composites by laser-beam diffraction. J. Appl. Phys., 61, 1263–1267.
- Bertero, M., Poggio, T.A., and Torre, V. (1988) Ill-posed problems in early vision. In Proc. IEEE, 76, 869–889.
- Bertrand, G. (1996) A Boolean characterization of three-dimensional simple points. Pattern Recognit. Lett., 17(2), 115–124.
- Bertrand, G. and Malgouyres, R. (1999) Some topological properties of discrete surfaces. J. Math. Imaging Vis., 11, 207–221.
- Bezrukov, A., Bargieł, M., and Stoyan, D. (2002) Statistical analysis of simulated random packings of spheres. Part. Part. Syst. Char., 19, 111–118.
-
Bezrukov, A.,
Stoyan, D., and
Bargieł, M.
(2001)
Spatial statistics for simulated packings of spheres.
Image Anal. Stereol.,
20,
203–206.
10.5566/ias.v20.p203-206 Google Scholar
- Blasquez, I. and Poiraudeau, J.-F. (1993) Efficient processing of Minkowski functionals on a 3d binary image using binary decision diagrams. J. WSCG, 11(1), Plzen, Czech Republic, February 2003. WSCG, UNION Agency-Science Press.
- Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B., and Menand, A. An atom probe for three-dimensional tomography. Nature, 363, 432–435.
- Bochner, S. (1932) Vorlesungen über Fouriersche Integrale, Akademische Verlagsanstalt, Leipzig.
- Böhm, S., Heinrich, L., and Schmidt, V. (2004) Kernel estimation of the spectral density of stationary random closed sets. Austral. & N. Z. J. Statist., 46, 41–51.
- van den Boombaard, R. and van der Weij, R. (2001) Gaussian convolutions: Numerial approximations based on interpolations, in Scale-Space (ed. M. Kerckhove), vol. 2106 of LNCS, pp. 205–214. Springer and IEEE, New York.
- Borgefors, G. (1986) Distance transformation in digital images. Comput. Vis. Graph. Image Process., 34(3), 344–371.
- Borgefors, G. and Nyström, I. (1997) Efficient shape representation by minimizing the set of maximal discs/spheres. Pattern Recognit. Lett., 18, 465–472.
- Bourgeat, A., Lions, J.L., and Papanicolaou, G. (1994) Stochastic two-scale convergence in the mean and applications. J. reine angew. Math., 456, 19–51.
- Braides, A. and Defranceschi, A. (1998) Homogenization of Multiple Integrals, vol. 12 of Oxford Lecture Series in Mathematics and Applications, Clarendon Press, Oxford.
- Brezny, R. and Green, D.J. (1990) The effect of cell size on the mechanical behavior of cellular materials. Acta Metall. Mater., 12, 2517–2526.
- Brigham, E.O. (1995) FFT: Schnelle Fourier-Transformation, 6th edn, Oldenbourg, München, Wien.
-
Brouwer, L.E.J.
(1910)
Beweis des Jordanschen Kurvensatzes.
Math. Ann.,
69,
377–383.
10.1007/BF01456867 Google Scholar
- Browaeys, J.T. and Chevrot, S. (2004) Decomposition of the elastic tensor and geophysical applications. Geophys. J. Int., 159, 667–678.
-
Canny, J.
(1986)
A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell.,
6(PAMI-8),
679–698.
10.1109/TPAMI.1986.4767851 Google Scholar
- Canon, É. and Pernin, J.-N. (1997) Homogénéisation d'un problème de diffusion en millieucomposite avec barrière à l'interface. C. R. Acad. Sci. Paris, série I, 325, 123–126.
- Caselles, V., Kimmel, R., and Sapiro, G. (1997) Geodesic active contours. Int. J. Comput. Vis., 22(1), 61–79.
- Cassels, J.W.S. (1971) An Introduction to the Geometry of Numbers, Springer, Berlin, Heidelberg, New York.
- Chambolle, A. (2001) Inverse problems in image processing and image segmentation, in ICTP Lecture Notes (ed. C.E. Chidume), vol. 2, pp. 1–94.
-
Cherkaev, A. and
Kohn, R.
(1997)
Topics in the Mathematical Modelling of Composite Materials,
Birkhäuser,
Berlin.
10.1007/978-1-4612-2032-9 Google Scholar
- Chiu, S.N., van de Weygaert, R., and Stoyan, D. (1996) The sectional Poisson Voronoi tessellation is not a Voronoi tessellation. Adv. Appl. Probab., 28, 356–376.
- Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay, J.P., and Schlenker, M. (1999) Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays. Appl. Phys. Lett., 75(19), 2912–2914.
- Cooley, J. and Tukey, J.W. (1965) An algorithm for a machine calculation of complex Fourier series. Math. Comput., 19, 297–301.
- Cormack, A.C. (1963) Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys., 34(9), 2722–2727.
- Couprie, M. and Bertrand, G. (1985) New characterizations of simple points, minimal non-simple sets and p-simple points in 2d, 3d and 4d discrete spaces, in 14th International Conference on Discrete Geometry for Computer Imagery, vol. 4992, LNCS, pp. 105–116, Springer, Berlin, Heidelberg, New York, 2008. DGCI, Lyon, France.
- Couprie, M. and Zrour, R. Discrete bisector function and Euclidean skeleton, in 12th International Conference on Discrete Geometry for Computer Imagery, vol. 3429, LNCS, pp. 216–227, Springer, Berlin, Heidelberg, New York, April 2005. DGCI, Poitiers, France.
- Cruz-Orive, L.-M., Hoppeler, H., Mathieu, O., and Weibel, E.R. (1985) Stereological analysis of anisotropic structures using directional statistics. Appl. Statist., 34, 14–32.
- Cuisenaire, O. (1999) Distance transformations: fast algorithms and applications to medical image processing. PhD thesis, Université catholique de Louvain, Louvain, http://www.tele.ucl.ac.be/PEOPLE/OC/these.pdf.
- Cuisenaire, O. (2006) Adaptable Mathematical Morphology in D Dimensions Using the Separable Euclidean DT in D+1 Dimensions, in 13th European Signal Processing Conference – EUSIPCO 2005, ISCAS.
- Cuisenaire, O. (2006) Locally adaptable mathematical morphology using distance transformations. Pattern Recogn., 39(3), 405–416.
-
Dal Maso, G.
(1993) Progress in nonlinear differential equations and their applications,
An introduction to Γ-convergence,
Birkhäuser,
Berlin.
10.1007/978-1-4612-0327-8 Google Scholar
- Daley, D.J. and Vere-Jones, D. (1988) An Introduction to the Theory of Point Processes, Springer, New York.
- Danielsson, P.E. (1980) Euclidean distance mapping. Comput. Vis. Graph. Image Process., 14, 227–248.
- Daragon, X., Couprie, M., and Bertrand, G. (2005) Derived neighborhoods and frontier orders. Discr. Appl. Math., 147, 227–243.
- Davy, P. (1978) Stereology – A Statistical Viewpoint. PhD thesis, Australian National University, Canberra.
- Deb, M.-K., Babuška, I.M., and Oden, J.T. (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Meth. Appl. Mechan. Eng., 190, 6359–6372.
- Debye, P., Anderson Jr., H.R. and Brumberger, H. (1957) Scattering by inhomogeneous solid. II. The correlation function and its application. J. Appl. Phys., 28, 679–683.
- Debye, P. and Bueche, A.M. (1949) Scattering by inhomogeneous solid. J. Appl. Phys., 20, 518–525.
- Delanny, F. and Missiaen, J.-M. (2008) Experimental validation of a new model for the initial stage of sintering of single phase systems. Acta Mater., 57(2), 420–431.
-
Delarue, A. and
Jeulin, D.
(2001)
Multi-scale simulation of spherical aggregates.
Image Anal. Stereol.,
20,
181–186.
10.5566/ias.v20.p181-186 Google Scholar
-
Delarue, A. and
Jeulin, D.
(2003)
3D morphological analysis of composite materials with aggregates of spherical inclusions.
Image Anal. Stereol.,
22,
153–161.
10.5566/ias.v22.p153-161 Google Scholar
- Dillencourt, M.B., Samet, H., and Tamminen, M. (1992) A general approach to connected-component labeling for arbitrary image representations. J. ACM, 39(2), 253–280.
- Distel, R. (2005) Graph Theory, 3rd edn, Springer, Berlin.
- Dreseler, B. and Schempp, W. (1980) Einführung in die harmonische Analyse, Teubner, Stuttgart.
- Duffy, G.P. and Hughes-Clarke, J.E. (2005) Application of spatial cross correlation to detection of migration of submarine sand dunes: Marine sandware and river dune dynamics. J. Geophys. Res., 110, 1–11.
-
Eberly, D.,
Gardner, R.B.,
Morse, B.S.,
Pitzer, S.M., and
Scharlach, C.
(1994)
Ridges for image analysis.
J. Math. Imaging Vis.,
4,
353–372.
10.1007/BF01262402 Google Scholar
- Exner, H.E. (1978) Grundlagen von Sintervorgängen, Gebrüder Borntraeger, Stuttgart.
- Fan, Z., Wu, Y., Zhao, X., and Lu, Y. (2004) Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput. Mater. Sci., 29, 301–308.
- Fatima Vaz, M. and Fortes, M.A. (1988) Grain size distribution: The lognormal and the gamma distribution functions. Scr. Metall., 22, 35–40.
- Federer, H. (1969) Geometric Measure Theory, Springer, Berlin.
- Hales, T., Ferguson, S., Fejes Toth, G., and Lagaria, J. (2006) Special issue on Kepler's conjecture. Discret. Comput. Geom., 36(1), 1–265.
-
Fiksel, T.
(1988)
Edge-corrected density estimators for point processes.
Statistics,
19,
67–76.
10.1080/02331888808802072 Google Scholar
-
Fisher, N.I.,
Lewis, T., and
Empbleton, B.J.J.
(1987)
Statistical Analysis of Spherical Data,
Cambridge University Press,
Cambridge.
10.1017/CBO9780511623059 Google Scholar
- Flannery, P.B., Deckmann, H.W., Roberge, W.G., and D'Amico, K.L. (1987) Three-dimensional X-ray microtomography. Science, 237, 1439–1444.
- Forster, O. (1996) Analysis 2, Vieweg, Braunschweig.
-
Frank, J.
(1980) The role of correlation techniques in computer image processing,
in Computer Processing of Electron Microscope Images
(ed. P.W. Hawkes),
Springer,
Berlin,
pp. 187–222.
10.1007/978-3-642-81381-8_5 Google Scholar
- Fraunhofer ITWM, Department of Image Processing (2005) MAVI – Modular Algorithms for Volume Images. http://www.itwm.fraunhofer.de/bv/projects/MAVI/.
- Freitag, J., Kipfstuhl, S., and Faria, S.H. (2008) The connectivity of crystallite agglomerates in low-density firn at Kohnen station, dronning Maud Land, Antarctica. Ann. Glaciol., 49, 114–120.
- Frigo, M. and Johnson, S.G. (1998) FFTW 2.1.3 (the fastest Fourier transform of the West). http://www.fftw.org/.
- Frigo, M. and Johnson, S.G. (1998) FFTW: An adaptive software architecture for the fft. Proc. Int. Conf. Acoust. Speech Signal Process., 3, 1381–1384.
-
Ghanem, R.G. and
Spanos, P.D.
(1991)
Stochastic Finite Elements: A Spectral Approach,
Springer,
New York.
10.1007/978-1-4612-3094-6 Google Scholar
- Giertzsch, M. (2007) Lokal-adaptive Morphologie für Analyse und Modellierung von Mikrostrukturen. Master's thesis, Fachhochschule Kaiserslautern, Germany.
- Godehardt, M. and Schladitz, K. (2006) Geometric characterisation of light weight composites using computer tomographic images, in Proceedings of the 9th European NDT Conference, Berlin.
- Godehardt, M., Schladitz, K., and Sych, T. (2005) Analysis of volume images – a tool for understanding the microstructure of foams, in Cellular Metals and Polymers (eds R.F. Singer, C. Körner, V. Altstädt, and H. Münstedt), Trans. Tech. Publications, Zürich, pp. 159–162.
- Gonzales, R.C. and Woods, R.E. (2002) Digital Image Processing, Prentice Hall.
- Goulard, M., Chadœuf, J., and Bertuzzi, P. (1994) Random Boolean functions: Non-parametric estimation of the intensity. Application to soil surface roughness. Statistics, 25, 123–136.
- Graham, L.L., Gurley, K., and Masters, F. (2003) Non-Gaussian simulation of local material properties based on a moving-window technique. Probab. Eng. Mechan., 18, 223–234.
-
Gruber, P.M.
(1993) Geometry of numbers,
in Handbook of Convex Geometry
(eds P.M. Gruber and
J.M. Wills),
North-Holland,
Amsterdam,
pp. 739–763.
10.1016/B978-0-444-89597-4.50005-6 Google Scholar
- Guderlei, R., Klenk, S., Mayer, J., Schmidt, V., and Spodarev, E. (2007) Algorithms for the computation of Minkowski functionals of deterministic and random polyconvex sets. Image Vis. Comput., 25, 464–474.
- Gueziec, A. and Hummel, R. (1994) The wrapper algorithm: surface extraction and simplification. IEEE Workshop on Biomedical Image Analysis, pp. 204–213, Seattle.
- Gutkowski, P., Jensen, E.B.V., and Kiderlen, M. (2004) Directional analysis of digitized three-dimensional images by configuration counts. J. Microsc., 216, 175–185.
- Haas, A., Matheron, G., and Serra, J. (1967) Morphologie mathématique et granulométries en place. Ann. Mines., 11, 736–753.
- Haas, A., Matheron, G., and Serra, J. (1967) Morphologie mathématique et granulométries en place. Ann. Mines., 12, 767–782.
-
Hadwiger, H.
(1957)
Vorlesungen über Inhalt, Oberfläche und Isoperimetrie,
Springer,
Berlin.
10.1007/978-3-642-94702-5 Google Scholar
- Hahn, U., Micheletti, A., Pohlink, R., Stoyan, D., and Wendrock, H. (1999) Stereological analysis and modelling of gradient structures. J. Microsc., 195, 113–124.
- Hall, P. and Molchanov, I.S. (1999) Corrections for systematic boundary effects in pixel-based area counts. Pattern Recogn., 32, 1519–1528.
- Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109.
- Hege, H.C., Hoellerer, T., and Stalling, D. (1993) Volume rendering mathematical models and algorithmic aspects, Technical Report TR 93-7, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin, http://www.cs.ucsb.edu/∼holl/pubs/hege-1993-vrm.pdf.
- Heijmans, H.J.A.M. (1994) Morphological Image Operators, Academic Press, Boston, MA.
- Heijmans, H.J.A.M. (1995) Mathematical morphology: A modern approach in image processing based on algebra and geometry. SIAM Rev., 37, 1–36.
- Heijmans, H.J.A.M. and Roerdink, J.B.T.M. (1998) Mathematical Morphology and its Applications to Image and Signal Processing, Kluwer Academic Publishers, Dordrecht, Boston, London.
- Heinrich, L. (2005) Large deviations of the empirical volume fraction for stationary Poisson grain models. Ann. Appl. Prob., 15(1A), 392–420.
- Heinrich, L. and Prokešová, M. (2009) On estimating the asymptotic variance of stationary point processes. Methodol. Comput. Appl. Prob., to appear.
- Helfen, L., Baumbach, T., Cloetens, P., Stanzick, H., Schladitz, K., and Banhart, J. (2005) Investigation of pore initiation in metal foams by synchrotron-radiation tomography. Appl. Phys. Lett., 86, 231907.
- Helfen, L., Stanzick, H., Ohser, J., Schladitz, K., Rejmánková-Pernot, P., Banhart, J., and Baumbach, T. (2003) Investigation of the foaming process of metals by synchrotron-radiation imaging. In Proc. SPIE Conference ‘Smart Structures & Nondestructive Evaluation (NDE)’: Testing, Reliability, and Application of Micro- and Nanomaterial Systems, March, San Diego, California USA, vol. 5045, pp. 254–265.
- Henry, N.F.M. and Lonsdale, K. (1969) International Tables for X-ray Crystallography, vol. 1, Kynoch Birmingham, Birmingham.
- Hermann, H., Elsner, A., and Gemming, T. (2005) Influence of the packing effect on stability and transformation of nanoparticles embedded in random matrices. Mater. Sci. Pol., 2, 541–549.
- Hermann, H., Elsner, A., Hecker, M., and Stoyan, D. (2005) Computer simulated dense-random packing models as approach to the structure of porous low-k dielectrics. Microelectron. Eng., ( 2–4), 535–543.
- Hermann, H., Elsner, A., Lochmann, K., and Stoyan, D. (2007) Optimisation of multi-component hard sphere liquids with respect to dense packing. Mater. Sci. Eng. A, 449–451, 666–670.
- Hicks, N.J. (1964) Notes on Differential Geometry, Van Nostrand.
- Higgins, J.R. (1985) Five short stories about the cardinal series. Bull. AMS, 12, 45–98.
- Hildebrand, T. and Rüegsegger, P. (1997) A new method for the model independent assessment of thickness in threedimensional images. J. Microsc., 185, 67–75.
- Hildebrand, T. and Ruegsegger, P. (1997) Quantification of bone microarchitecture with the structure model index. Comput. Meth. Biomech. Biomed. Eng., 1(1), 15–23.
-
Hilfer, R.
(2000) Local porosity theory and stochastic reconstruction,
in Statistical Physics and Spatial Statistics
(eds K.R. Mecke and
D. Stoyan), vol.
554, LNP,
Springer,
Heidelberg,
pp. 203–241.
10.1007/3-540-45043-2_8 Google Scholar
- Hoffmann, L.M. (2007) Intersection densities of nonstationary Poisson processes of hypersurfaces. Adv. Appl. Probab., 39, 307–317.
- Hoffmann, L.M. (2007) On weak stationarity and weak isotropy of processes of convex bodies and cylinders. Adv. Appl. Probab., 39, 864–882.
- Holzer, L., Indutnyi, F., Gasser, P.H., Münch, B., and Wegmann, M. (2004) Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J. Microsc., 216, 84.
- Hopcroft, J. and Tarjan, R.E. (1973) Efficient algorithms for graph manipulation. Commun. ACM, 16(6), 372–378.
- Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1993) Mesh optimization, in Computer Graphics (SIGGRAPH '93 Proceedings) (ed. T. Kajiya), vol. 27, pp. 19–26.
-
Hornung, U.
(1997)
Homogenization and Porous Media,
Springer,
New York.
10.1007/978-1-4612-1920-0 Google Scholar
- Hoshen, J. (1998) On the application of the enhanced Hoshen–Kopelman algorithm for image analysis. Pattern Recogn. Lett., 19, 575–584.
- Hounsfield, G.N. (1973) Computerized transverse axial scanning (tomography): I. description of system. Br. J. Radiol., 46, 1016–1022.
- Hsieh, J. (2003) Computed Tomography – Principles, Design, Artifacts and Recent Advances, SPIE Press.
- Huber, O., Klaus, H., Dallner, R., Bartl, F., Eigenfeld, K., Kovacs, B., and Godehardt, M. (2006) Herstellung und Eigenschaften syntaktischer Metallschäume mit unterschiedlichen Matrix- und Füllmaterialien II. Druckguss Praxis, 2, 69–75.
- Hughes, T.J.R. (2000) Finite Element Method: Linear Static and Dynamic Analysis, Dover Publications, New York.
- Hummel, H.-K. (2000) Homogenization of Periodic and Random Multidimensional Microstructures. PhD thesis, Technische Universität Bergakademie Freiberg.
-
Hurn, M.A.,
Husby, O.K., and
Rue, H.
(2003) A tutorial on image analysis,
in Spatial Statistics and Computational Methods
(ed. J. Møller), vol.
173, LNS, chapt. 3,
Springer,
New York,
pp. 87–141.
10.1007/978-0-387-21811-3_3 Google Scholar
-
Illian, J.,
Penttinen, A.,
Stoyan, H., and
Stoyan, D.
(2008)
Statistical Analysis and Modelling of Spatial Point Patterns, Statistics in Practice,
John Wiley & Sons Ltd,
Chichester.
10.1002/9780470725160 Google Scholar
- Jähne, B. (2005) Digital Image Processing, Springer, Berlin, Heidelberg.
- Jardak, M. and Ghanem, R.G. (2004) Spectral stochastic homogenization of divergence-type PDEs. Comput. Meth. Mechan. Eng., 193, 429–447.
- Jaunich, H., Aneziris, C.G., and Hubálková, J. (2004) Innovative Filter and Feeder Approaches for Advanced Metal Casting Technologies. Interceram Refractories Manual, pp. 18–21.
- Jensen, E.B.V. and Kiderlen, M. (2003) Directional analysis of digitized planar sets by configuration counts. J. Microsc., 212, 158–168.
- Jernot, J.P., Jouannot-Chesney, P., and Lantuejoul, C. (2004) Local contributions to the Euler–Poincaré characteristic of a set. J. Microsc., 215, 40–49.
- Jeulin, D. (1986) Study of spatial distributions in multicomponent structures by image analysis. Acta Stereol., 5(2), 233–239.
-
Jeulin, D.
(2001)
Mechanics of Random and Multiscale Microstructures,
Springer,
Wien, New York.
10.1007/978-3-7091-2780-3 Google Scholar
-
Jikov, V.V.,
Kozlov, S.M., and
Oleinik, O.A.
(1994)
Homogenization of Differential Operators and Integral Functionals,
Springer,
Berlin.
10.1007/978-3-642-84659-5 Google Scholar
- Jordan, C. (1887) Corrs d' Analyse de l'École Polytechnique, vol. 3, École Polytechnique, Paris, Gauthier Villers.
- Jorswieck, E.A. and Sezgin, A. (2004) Impact of spatial correlation on the performance of orthogonal space-time block codes. IEEE Commun. Lett., 8(1), 21–23.
- Kadeshevich, I. and Stoyan, D. (2008) A beam-network model for autoclaved aerated concrete and its use for the investigation of relationships between Young's modulus and microstructure. Comput. Mater. Sci., 43(2), 293–300.
- Kak, A.C. and Slaney, M. (1988) Principles of Computerized Tomographic Imaging, IEEE Press, New York.
-
Katznelson, Y.
(2004)
An Introduction to Harmonic Analysis, 3rd edn,
Cambridge Mathematical Library, Cambridge University Press,
Cambridge.
10.1017/CBO9781139165372 Google Scholar
- Kehrwald, D. (2004) Parallel lattice Boltzmann simulation of complex flows. in Proceedings of the NAFEMS Seminar “Simulation of Complex Flows (CFD) – Applications and Trends”, May 2004, Niedernhausen, Germany.
- Kendall, W.S. and Møller, J. (1999) Perfect Metropolis–Hastings simulation of locally stable point processes, Technical Report R-99-2001, Department of Mathematical Sciences, Aalborg University, Aalborg.
- Kendall, W.S. and Møller, J. (2000) Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. Appl. Probab., 32(3), 844–865.
- Khalimsky, E., Kopperman, R.D., and Meyer, P.R. (1990) Computer graphics and connected topologies on finite ordered sets. Topol. Appl., 36, 1–17.
- Kiderlen, M. (2006) Estimating the Euler characteristic of a planar set from a digital image. J. Vis. Commun. Image Represent., 17, 1237–1255.
- Kiderlen, M. and Jensen, E.B.V. (2003) Estimation of the directional measure of planar sets by digitization. Adv. Appl. Prob., 35, 583–602.
-
Kiderlen, M. and
Rataj, J.
(2006)
On infinitesimal increase of volumes of morphological transforms.
Mathematica,
53,
103–127.
10.1112/S002557930000005X Google Scholar
- Klenk, S., Schmidt, V., and Spodarev, E. (2006) A new algorithmic approach to the computation of Minkowski functionals of germ-grain models. Comp. Geom. Th. Appl., 34, 127–148.
- Klette, R. and Rosenfeld, A. (2004) Digital Geometry, Morgan & Kaufman Publ., Amsterdam.
- Koch, K. (2002) Spektralanalyse zufälliger abgeschlossener Mengen, Diplomarbeit, Universität Siegen.
- Koch, K., Ohser, J., and Schladitz, K. (2003) Spectral theory for random closed sets and estimating the covariance via frequency space. Adv. Appl. Prob., 35, 603–613.
- Kong, T.Y. (2002) Topological adjacency relations on Zn. Theor. Comput. Sci., 283(1), 3–68.
- Kong, T.Y. (2003) The Khalimsky topologies are precisely those simply connected topologies on Zn whose connected sets include all 2n-connected sets but no (3n−1) disconnected sets. Theor. Comput. Sci., 305, 221–235.
- Kong, T.Y. and Roscoe, A.W. (1985) Continuous analogs of axiomatized digital surfaces. Comput. Vis. Graph. Image Process., 29, 60–86.
- Kong, T.Y. and Rosenfeld, A. (1989) Digital topology: introduction and survey. Comput. Vis. Graph. Image Process., 48, 357–393.
- Koperman, R., Meyer, P.R., and Wilson, R.G. (1991) A Jordan surface theorem for three-dimensional digital spaces. Discret. Comput. Geom., 6, 155–161.
- Kotelnikov, V.A. (1933) On the carrying capacity of the ether and wire in telecommunications, in 1st All-Union Conference on Questions of Communications, vol. 90, Moscow, Izd. Red. Upr. Svyszi RKKA.
- Köthe, U. (1999) Reusable software in computer vision, in Systems and Applications (eds B. Jähne, H. Haussecker, and P. Geissler), vol. 3 of Handbook of Computer Vision and Applications, Academic Press, San Diego, pp. 103–132.
- Köthe, U. (2000) Generische Programmierung für die Bildverarbeitung. PhD thesis, Universität Hamburg, Fachbereich Informatik, February http://kogs-www.informatik.uni-hamburg.de/∼koethe/papers/abstracts/DissPrint.html.
- Kozlow, S.M. (1978) Averaging random structures. Sov. Math. Dokl., 19, 950–954.
- Kozlow, S.M. (1980) Averaging of random operators. Math. U.S.S.R. Sbornik, 37, 167–180.
- Kruszynski, C., van Liere, R., and Kaandorp, J. (2005) Quantifying differences in skeletonization algorithms: a case study, in IASTED International Conference on Visualization, Imaging, & Image Processing, Benidom, Spain
- Kübel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T., Carlsson, A., and Bradley, J. (2005) Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal., 11, 378–400.
- Kumar, S., Kurtz, S.K., Banavar, J.R., and Sharma, M.G. (1992) Properties of a three-dimensional Poisson–Voronoï tesselation: A Monte Carlo study. J. Stat. Phys., 67(3/4), 523–551.
- Lachaud, J.-O. and Montanvert, A. (2000) Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graph. Model., 62, 129–164.
- Lampert, C.H. and Wirjadi, O. (2006) An optimal non-orthogonal separation of the anisotropic Gaussian convolution filter. IEEE Trans. Image Process., 15(11), 3501–3513.
- Lang, C., Ohser, J., and Hilfer, R. (2001) On the analysis of spatial binary images. J. Microsc., 203, 303–313.
- Latecki, L.J. (1997) 3d well-composed pictures. Graph. Mod. Image Proc., 59, 164–172.
- Lautensack, C. (2007) Random Laguerre Tessellations. PhD thesis, Universität Karlsruhe, Verlag Lautensack, Weiler bei Bingen.
- Lautensack, C. (2008) Fitting three-dimensional Laguerre tessellations to foam structures. J. Appl. Stat., 35(9), 985–995.
- Lautensack, C., Giertzsch, M., Godehardt, M., and Schladitz, K. (2008) Modelling a ceramic foam using locally adaptable morphology. J. Microsc., 230(3), 396–404.
- Lautensack, C., Schladitz, K., and Särkkä, A. (2006) Modeling the microstructure of sintered copper, in Proceedings of the 6th International Conference on Stereology, Spatial Statistics and Stochastic Geometry, Prague.
-
Lautensack, C. and
Sych, T.
(2006)
3d image analysis of open foams using random tessellations.
Image Anal. Stereol.,
25,
87–93.
10.5566/ias.v25.p87-93 Google Scholar
- Lautensack, C. and Sych, T. (2008) A random Weaire–Phelan foam, in 8th International Conference on Stereology and Image Analysis in Materials Science STERMAT 2008, Zakopane, Poland.
- Lautensack, C. and Zuyev, S. (2008) Random Laguerre tessellations. Adv. Appl. Probab., 40(3), 630–650.
- Lee, C., Poston, T., and Rosenfeld, A. (1991) Winding and Euler numbers for 2d and 3d digital images. Graph. Model. Image Proc., 53, 522–537.
-
Legland, K.K.D. and
Devaux, M.-F.
(2007)
Computation of Minkowski measures on 2d and 3d binary images.
Image Anal. Stereol.,
26(2),
83–92.
10.5566/ias.v26.p83-92 Google Scholar
- Lehmann, P., Berchtold, M., Ahrenholz, B., Tölke, J., Kaestner, A., Krafczyk, M., Flühler, H., and Künsch, H.R. (2008) Impact of geometrical properties on permeability and fluid phase distribution in porous media. Adv. Water Resour., 31(9), 1188–1204.
- Lene, F. and Leguillon, D. (1981) Étude de l'influence d'un glissement entre les constituants d'un matériau composite sur ses coefficients de comportement effectifs. J. Mécan., 20, 509–536.
- Levoy, M. (1990) Efficient ray tracing of volume data. ACM Trans. Comp. Graph., 9(3), 254–261.
- Lhotský, J. (2006) Density of cross-correlation measure and stationarity: overview. In Proceedings of the International Conference on Stereology, Spatial Statistics and Stochastic Geometry (eds R. Lechnerová, I. Saxl, and V. Beneš), pp. 97–102, Prague.
-
Van Lieshout, M.N.M.
(2000)
Markov Point Processes and their Applications,
Imperial College Press/World Scientific Publishing,
Singapore.
10.1142/p060 Google Scholar
- Lin, Z., Jin, J., and Talbot, H. (2001) Unseeded region growing for 3D image segmentation, in Selected Papers from Pan-Sydney Workshop on Visual Information Processing (eds P. Eades and J. Jin), Sydney, Australia.
- Lindblad, J. (2005) Surface area estimation of digitized 3D objects using weighted local computations. Image Vis. Comput., 23, 111–122.
-
Lindblad, J. and
Nyström, I.
(2002) Surface area estimation of digitized 3D objects using local computations, in 10th International Conference on Discrete Geometry for Computer Imagery, vol. 2301, LNCS, Springer, Berlin, Heidelberg, New York, DGCI, Bordeaux, France,
pp. 267–278.
10.1007/3-540-45986-3_24 Google Scholar
- Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., and Wong, T.-F. (2000) Pore and throat size distributions measured from sychrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res., 105B, 21508–21528.
- Lipton, R. (1998) Heat conduction in fine scale mixtures with interfacial contact resistances. SIAM J. Appl. Math., 58(1), 55–72.
- Lochmann, K. (2006) Statistical characterization of dense hard sphere packings, in Proceedings of the 6th International Conference on Stereology, Spatial Statistics and Stochastic Geometry, Prague.
- Lohmann, G. (1998) Volumetric Image Analysis, Wiley-Teubner, Chichester, New York.
-
Lorensen, W.E. and
Cline, H.E.
(1987)
Marching cubes: a high resolution 3D surface construction algorithm.
Comput. Graph.,
21,
163–169.
10.1145/37402.37422 Google Scholar
- Lorz, U. and Hahn, U. (1993) Geometric characteristics of spatial Voronoï tessellations and planar sections, Technical Report 93-05, Fachbereich Mathematik, TU Bergakademie Freiberg.
- Ludwig, W., Cloetens, P., Härtwig, J., Baruchel, J., Hamelin, B., and Bastie, P. (2001) Three-dimensional imaging of crystal defects by topo-tomography. J. Appl. Crystallogr., 34(5), 602–607.
- Ma, J., Zeng, D., and Chen, H. (2006) Spatial-temporal cross-correlation analysis: A new measure and a case study in infectious disease informatics, in Intelligence and Security Informatics, IEEE International Conference on Intelligence and Security Informatics, ISI 2006, San Diego, CA, USA, May 23–24 (eds S. Mehrotra, D.D. Zeng, H. Chen, B.M. Thuraisingham, and F.-Y. Wang), vol. 3975, LNCS, Springer, Berlin, Heidelberg, pp. 542–547.
- Maehara, R. (1984) The Jordan curve theorem via the Brower fixed point theorem. Am. Math. Monthly, 91, 641–643.
- Le Maitre, O.P., Kino, O.M., Najm, H.N., and Ghanem, R.G. (2004) Uncertainty propagation using Wiener–Haar expansions. J. Comput. Phys., 19, 28–57.
- Manolakis, D.G. and Proakis, J.G. (1996) Digital Signal Processing, 3rd edn, Prentice-Hall.
- Maragos, P. and Schafer, R.W. (1987) Morphological filters – part I: Their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Trans. Acoust. Speech Signal Process., 35, 1153–1169.
- Marcotte, D. (1996) Fast variogram computation with FFT. Comput. Geosci., 22(10), 1175–1186.
- Mardia, K.V. and Hainsworth, T.J. (1988) A spatial thresholding method for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 6(10), 919–927.
- Martín-Herrero, M. (2004) Hybrid cluster identification. J. Phys. A: Math. Gen., 37, 9377–9386.
- Martín-Herrero, M. (2007) Hybrid object labelling in digital images. Mach. Vis. Appl., 18, 1–15.
- Mase, S., Møller, J., Stoyan, D., Waagepetersen, R.P., and Döge, G. (2001) Packing densities and simulated tempering for hard core Gibbs point processes. Ann. Inst. Statist. Math., 53, 661–680.
- Matheron, G. (1975) Random Sets and Integral Geometry, John Wiley & Sons, New York, London.
- Matthies, H.G. and Keese, A. (2005) Galerkin methods for linear and nonlinear elliptic partial differential equations. Comput. Meth. Appl. Mechan. Eng., 194, 1295–1331.
- Maurer, C.R. and Raghavan, V. (2003) A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 25(2), 265–270.
- Mecke, J. (1980) Palm methods for stationary random mosaics, in Combinatorial Principles in Stochastic Geometry, Work Collect., Erevan, pp. 124–132.
- Mecke, J. and Nagel, W. (1980) Stationäre räumliche Faserprozesse und ihre Schnittzahlrosen. Elektron. Informationsverarb. Kyb., 16, 475–483.
- Mecke, J. and Stoyan, D. (2001) The specific connectivity number of random networks. Adv. Appl. Prob., 33, 576–583.
-
Meijster, A.,
Roerdink, J.B.T.M., and
Hesselink, W.H.
(2005)
Euclidean skeletons of 3d data sets in linear time by the integer medial axis transform.
Comput. Imaging Vis.,
30,
259–268.
10.1007/1-4020-3443-1_23 Google Scholar
- Meyer, F. and Maragos, P. (1999) Morphological scale-space representation with levelings, in Scale-Space Theories in Computer Vision, Second International Conference, Corfu, Greece, September, 1999, Proceedings (eds M. Nielsen, P. Johansen, O.F. Olsen, and J. Weickert), vol. 1682, LNCS, Springer, pp. 187–198.
- Miles, R.E. (1976) Estimating aggregate and overall characteristics from thick selections by transmission microscopy. J. Microsc., 107, 227–233.
- Modayur, B., Prothero, J., Ojemann, G., Maravilla, K., and Brinkley, J. (1997) Visualization-based mapping of language function in the brain. Neuroimage, 6, 245–258.
- Molchanov, I.S. (1997) Statistics of the Boolean Model for Practitioners and Mathematicans, John Wiley & Sons, New York.
- Møller, J. and Waagepetersen, R.P. (2004) Statistical Inference and Simulation for Spatial Point Processes, Chapman & Hall/CRC, Boca Raton, FL.
- Mrkvička, T. and Rataj, J. (2008) On the estimation of intrinsic volume densities of stationary random closed sets. Stoch. Proc. Appl., 118, 213–231.
- Mugglestone, M.A. and Renshaw, E. (1996) A practical guide to the spectral analysis of spatial point processes. Comput. Stat. Data Anal., 21, 43–65.
- Müller, B.R., Lange, A., Harwardt, M., Hentschel, M.P., Illerhaus, B., Goebbels, J., Bamberg, J., and Heutling, F. (2004) First refraction enhanced 3d computed tomography – application to metal matrix composites. NDT.net, 9(5).
-
Mullikin, J.C. and
Verbeek, P.W.
(1993)
Surface estimation of digitized planes.
Bioimaging,
1,
6–16.
10.1002/1361-6374(199303)1:1<6::AID-BIO3>3.0.CO;2-3 Google Scholar
- Mumford, D. and Shah, J. (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math., 42, 577–685.
- Nagel, W. (1983) Dünne Schnitte von stationären räumlichen Faserprozessen. Math. Operationsforsch. Stat., Ser. Stat., 14, 569–576.
- Nagel, W., Ohser, J., and Pischang, K. (2000) An integral-geometric approach for the Euler–Poincaré characteristic of spatial images. J. Microsc., 198, 54–62.
- Nagel, W. and Weiss, V. (2005) The crack tessellations – characterization of the stationary random tessellations which are stable with respect to iteration. Adv. Appl. Prob., 37, 859–883.
-
Nagel, W. and
Weiss, V.
(2008)
Mean values for homogeneous STIT tessellations in 3D.
Image Anal. Stereol.,
27,
29–37.
10.5566/ias.v27.p29-37 Google Scholar
- Neues, F., Arnold, W.H., Fischer, J., Beckmann, F., Gängler, P., and Epple, M. (2006) The skeleton and pharyngeal teeth of zebrafish (Danio rerio) as a model of biomineralization in vertebrates. Materialwiss. und Werkstofftech., 37, 426–431.
- Neues, F., Beckmann, F., Ziegler, A., and Epple, M. (2007) The application of synchrotron radiation-based micro computer tomography in biomineralization, in Handbook of Biomineralization: Biological Aspects and Structure Formation (ed. E. Baeuerlein), Wiley-VCH Verlag GmbH, Berlin.
- Neuss-Radu, M. (1996) Some extension of two-scale convergence. C. R. Acad. Sci. Paris, sèrie I, 322, 899–904.
- Niblack, W. (1986) An Introduction to Digital Image Processing, Prentice-Hall.
- Nöthe, M., Pischang, K., Ponižil, P., and Kieback, B. (2002) 3D analysis of sinter processes by X-ray computer tomography, in Proc. of PM World Congress, June (eds V. Arnhold, C.-L. Chu, W.F. Jandeska, and H.I. Sanderow), vol. 13, Orlando, pp. 176–184.
- Nöthe, M., Pischang, K., Ponižil, P., Kieback, B., and Ohser, J. (2002) Investigation of sintering processes by microfocus computer tomography (μCT), in Proc. of the International Symposium on Computed Tomography and Image Processing for Industrial Radiology (eds J. Goebbels and U. Zscherpel), pp. 273–280.
- Nöthe, M., Pischang, K., Ponižil, P., Kieback, B., and Ohser, J. (2003) Investigation of sintering processes by microfocus computer tomography (μ-CT), in Proc. of the International Symposium on Computed Tomography and Image Processing for Industrial Radiology (eds J. Goebbels and U. Zscherpel), pp. 273–280.
- Nöthe, M., Pischang, K., Ponižil, P., Kieback, B., and Ohser, J. (2004) Study of particle rearrangements during sintering processes by microfocus computer tomography (μCT), in Proc. World Congress PM2004 Powder Metallurgy, October, Wien, pp. 229–234.
- Nyquist, H. (1928) Certain topics in telegraph transmission theory. Trans. AIEE, 47, 617–644.
- Oh, W. and Lindquist, W.B. (1999) Image thresholding by indicator kriging. IEEE Trans. Pattern Anal. Mach. Intell., 21(6), 590–602.
- Ohser, J. and Mücklich, F. (2000) Statistical Analysis of Microstructures in Materials Science, John Wiley & Sons, Chichester, New York.
- Ohser, J. and Nagel, W. (1996) The estimation of the Euler–Poincaré characteristic from observations on parallel sections. J. Microsc., 184, 117–126.
-
Ohser, J.,
Nagel, W., and
Schladitz, K.
(2002) The Euler number of discretized sets – on the choice of adjacency in homogeneous lattices,
in Morphology of Condensed Matter
(eds K.R. Mecke and
D. Stoyan), LNP, vol.
600,
Springer,
Berlin,
pp. 275–298.
10.1007/3-540-45782-8_12 Google Scholar
-
Ohser, J.,
Nagel, W., and
Schladitz, K.
(2003)
The Euler number of discretised sets – surprising results in three dimensions.
Image Anal. Stereol.,
22,
11–19.
10.5566/ias.v22.p11-19 Google Scholar
-
Ohser, J.,
Nagel, W., and
Schladitz, K.
(2009)
Miles formulae for Boolean models observed on lattices.
Image Anal. Stereol.,
28,
77–92.
10.5566/ias.v28.p77-92 Google Scholar
-
Ohser, J.,
Redenbach, C., and
Schladitz, K.
(2009) Mesh free estimation of the structure model index. Image Anal. Stereol., accepted.
10.5566/ias.v28.p179-185 Google Scholar
- Ohser, J. and Schladitz, K. (2008) Visualisation, processing and analysis of tomography data, in Advanced Tomographic Methods in Materials Science and Engineering (ed. J. Banhart), Oxford University Press, London, pp. 53–123.
- Ohser, J., Schladitz, K., Koch, K., and Nöthe, M. (2005) Diffraction by image processing and its application in materials science. Z. Metallkd., 96, 731–737.
-
Okabe, A.,
Boots, B.,
Sugihara, K., and
Chiu, S.N.
(2000)
Spatial Tessellations – Concepts and Applications of Voronoi Diagrams, 2nd edn,
John Wiley & Sons Ltd,
Chichester.
10.1002/9780470317013 Google Scholar
- O'Neill, B. (1966) Elementary Differential Geometry, Academic Press, New York.
-
Ostoja-Starzewski, M.
(2007)
Microstructural randomness and scaling in mechanics of materials,
Chapman & Hall/CRC,
Boca Raton.
10.1201/9781420010275 Google Scholar
- Otsu, N. (1979) A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern., 9, 62–66.
-
Papanicolaou, G.
(1995) Diffusion in random media,
in Surveys in Applied Mathematics
(eds J.B. Keller,
D.W. McLaughlin, and
G. Papanicolaou), vol.
1,
Plenum Press,
New York,
pp. 205–253.
10.1007/978-1-4899-0436-2_3 Google Scholar
- Papanicolaou, G. and Varadhan, S.R.S. (1981) Boundary value problems with rapidly oscillating random coefficients, in Proceedings of a Colloquium on Random Fields, Rigorous Results in Statistical Mechanics and Quantum Field Theory, Esztergom 1979, vol. 27, Esztergom, Colloq. Math. Soc. Janos Bolyai, pp. 835–871.
- Papanicolaou, G. and Varadhan, S.R.S. (1982) Diffusion with random coefficients. in Statistics and Probability, Essays in Honour of C.R. Rao, North-Holland, Amsterdam, pp. 547–552.
- Peiró, J. (1999) Surface grid generation, in Handbook of Grid Generation, CRC Press Inc, Boca Raton, FL, pp. 19.1–19.20.
- Pernin, J.-L. (1995) Homogénéisation d'un problème de diffusion en millieu composite à deux composantes. C. R. Acad. Sci. Paris, sèrie I, 321, 949–952.
- Perona, P. and Malik, J. (1987) Scale space and edge detection using anisitropic diffusion, in Proc. IEEE Comp. Soc. Workshop on Computer Vision, Miami Beach, Nov. 30–Dec. 2, 1987, IEEE Computer Society, Washington, pp. 16–20.
- Pfrang, A., Schladitz, K., Wiegmann, A., and Schimmel, T. (2005) Evolution of surface area and free volume during the infiltration of fiber felts, in Carbon, Gyeongju, Korea.
- Phong, B.T. (1975) Illumination for computer generated pictures. Commun. ACM, 18(6), 311–317.
- Propp, J.G. and Wilson, D.B. (1996) Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithm., 9(1/2), 223–252.
- Rack, A., Helfen, L., Baumbach, T., Kiste, S., Banhart, J., Schladitz, K., and Ohser, J. (2008) Analysis of spatial cross-correlations in multi-constituent volume data. J. Microsc., 232, 282–292.
- Radeke, C., Gläser, H., and Stoyan, D. (2002) Force distribution analysis in loaded planar disc systems by means of FEM. Granul. Matter, 4, 71–76.
- Radeke, C., Kuna, M., and Stoyan, D. (2003) Mechanical and statistical analysis of loaded sphere packings by means of FEM, in Numerical Modeling in Micromechanics via Particle Methods (ed. H. Konietzky), Swets & Zeitlinger, Lisse, pp. 13–18.
- Rataj, J. and Zähle, M. (2003) Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differen. Geom. Appl., 19, 113–126.
- Raymond, F. (1970) Separation and union theorems for generalized manifolds with boundary. Michigan Math. J., 7, 1–21.
- Redenbach, C. (2009) Microstructure models for cellular materials. Comput. Mater. Sci., 44(4), 1397–1407.
- Redenbach, C., Wirjadi, O., and Rief, S. (2009) Modelling of ceramic foams for filtration simulation. Adv. Eng. Mater., accepted.
- Reich, R.M., Czapalewski, R.L., and Bechtold, W.A. (1994) Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia. Environ. Ecol. Stat., 1, 201–217.
- Reimers, P., Gilboy, W.B., and Goebbels, J. (1984) Recent developments in the industrial application of computerized tomography with ionizing radiation. NDT Int., 17, 197–207.
- Remy, E. and Thiel, E. (2005) Exact medial axis with euclidean distance. Image Vis. Comput., 23(2), 167–175.
- Renshaw, E. and Ford, E.D. (1983) The interpretation of process from pattern using two-dimensional spectral analysis: Methods and problems of interpretation. Appl. Stat., 32(1), 51–63.
- Revol, C. and Jourlin, M. (1997) A new minimum variance region growing algorithm for image segmentation. Pattern Recognit. Lett., 18, 249–258.
- Revol-Muller, C., Peyrin, F., Carrillon, Y., and Odet, C. (2002) Automated 3d region growing algorithm based on an assessment function. Pattern Recognit. Lett., 23(1–3), 137–150.
- Rezk-Salama, C. (2001) Volume Rendering Techniques for General Purpose Graphics Hardware. PhD thesis, Universität Erlangen-Nürnberg, http://www.cg.informatik.uni-siegen.de/People/Rezk/Publications.
- Rief, S., Latz, A., and Wiegmann, A. (2006) Computer simulation of air filtration including electric surface charges in 3-dimensional fibrous microstructures. Filtration, 6(2), 169–172.
-
Ripley, B.D.
(1981)
Spatial Statistics,
John Wiley & Sons Ltd,
Chichester.
10.1002/0471725218 Google Scholar
- Ritter, G.X. and Wilson, J.N. (2001) Connected component algorithms, in Handbook of Computer Vision Algorithms in Image Algebra, Chapt. 6, CRC Press Inc., Boca Raton, pp. 173–186.
- Robb, K., Wirjadi, O., and Schladitz, K. (2007) Fiber orientation estimation from 3D image data: Practical algorithms, visualization, and interpretation, in Proc. 7th Int. Conf. Hybrid Intelligent Systems, pp. 320–325.
- Roberts, A.P. and Garboczi, E.J. (2001) Elastic moduli of model random three-dimensiona closed-cell cellular solids. Acta Mater., 49, 189–197.
- Roberts, A.P. and Garboczi, E.J. (2002) Elastic properties of model random three-dimensional open-cell solids. J. Mechan. Phys. Solids, 50, 33–55.
- Ronse, C. and Devijer, P.A. (1984) Connected Components in Binary Images, John Wiley & Sons Ltd, New York.
- Rosenfeld, A. (1970) Digital topology. Am. Math. Mon., 86, 621–630.
- Rosenfeld, A. (1979) Picture Languages – Formal Methods for Picture Recognition, 1st edn, Academic Press, New York.
- Rosenfeld, A. and Kak, A. (1979) Digital Picture Processing, Academic Press, New York.
- Rosenfeld, A. and Pfaltz, J.L. (1966) Sequential operations in digital picture processing. J. ACM, 13(4), 471–494.
- Rotman, J.J. (1993) An Introduction to Algebraic Topology, Springer, Berlin.
- Rutka, V., Wiegmann, A., and Andrä, H. (2006) EJIIM for calculation of effective elastic moduli in 3d linear elasticity. Technical report, Fraunhofer ITWM, Kaiserslautern.
-
Sabella, P.
(1988) A rendering algorithm for visualizing 3d scalar fields,
in SIGGRAPH '88: Proceedings of the 15th annual conference on Computer graphics and interactive techniques,
ACM Press,
New York,
pp. 51–58.
10.1145/54852.378476 Google Scholar
- Saito, T. and Toriwaki, J. (1994) New algorithms for euclidean distance transformations of an n-dimensional digitised picture with applications. Pattern Recognit., 27(11), 1551–1565.
- Sandau, K. and Ohser, J. (2007) Chord length transform and segmentation of crossing fibers. J. Microsc., 226, 43–53.
-
Sandfort, K. and
Ohser, J.
(2009)
Labeling of n-dimensional images with choosable adjacency of the pixels.
Image Anal. Stereol.,
28,
45–61.
10.5566/ias.v28.p45-61 Google Scholar
- Santaló, L.A. (1976) Integral Geometry and Geometric Probability, Addison-Wesley, Reading.
- Sasvári, Z. (1994) Positive Definite and Definitizable Functions, Akademie-Verlag, Berlin.
- Sauvola, J. and Pietikäinen, M. (2000) Adaptive document image binarization. Pattern Recognit., 33, 225–236.
- Schäfer, L.H., Schuster, D., and Herz, H. (2001) Generalized approach for accelerated maximum likelihood based image restoration. J. Microsc., 204, 99–107.
- Schatt, W. (1992) Sintervorgänge, VDI-Verlag, Düsseldorf.
-
Schempp, W. and
Dreseler, B.
(1980)
Einführung in die harmonische Analyse,
Teubner,
Stuttgart.
10.1007/978-3-322-99591-9 Google Scholar
- Schladitz, K., Ohser, J., and Nagel, W. (2006) Measurement of intrinsic volumes of sets observed on lattices. in 13th International Conference on Discrete Geometry for Computer Imagery (eds A. Kuba, L.G. Nyul, and K. Palagyi), vol. 4245, LNCS, Springer, Berlin, Heidelberg, New York, DGCI, Szeged, Hungary, pp. 247–258.
- Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., and Ohser, J. (2006) Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Computational Materials Science, 38(1), 56–66.
- Schladitz, K., Redenbach, C., Sych, T., and Godehardt, M. (2008) Microstructural characterisation of open foams using 3d images, Technical Report 148, Fraunhofer ITWM, Kaiserslautern.
- Schmidt, V. and Spodarev, E. (2005) Joint estimators for the specific intrinsic volumes of stationary random sets. Stoch. Process. Appl., 115, 959–981.
- Schmähling, J. and Hamprecht, F.A. (2007) Generalizing the Abbott–Firestone curve by two new surface descriptors. Wear, 262(11–12), 1360–1371.
- Schneider, R. (1993) Convex bodies: the Brunn–Minkowski theory, in Encyclopedia of Mathematics and Its Application, Number 44, Cambridge University Press, Cambridge.
- Schneider, R. and Weil, W. (2000) Stochastische Geometrie, in Teubner Skripten zur Mathematischen Stochastik, Teubner, Stuttgart, Leipzig.
- Schneider, R. and Weil, W. (2008) Stochastic and Integral Geometry, Probability and Its Applications, Springer, Heidelberg.
- Schnell, J., Ackermann, F.P., Rösch, R., and Sych, T. (2008) Statistical analysis of fibre distribution in ultra high performance concrete using computer tomography, in Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, pp. 145–152.
-
Schroeder, W.J.,
Zarge, J.A., and
Lorensen, W.E.
(1992)
Decimation of triangle meshes.
Comput. Graph.,
26(2),
65–70.
10.1145/142920.134010 Google Scholar
- Schwarzenberger, R.L.E. (1992) N-dimensional Crystallography, Pittman.
- Serra, J. (1969) Introduction à la morphologie mathématique. Cahiers du Centre de Morphologie Mathématique 3.
- Serra, J. (1982) Image Analysis and Mathematical Morphology, vol. 1, Academic Press, London.
- Serra, J. (1988) Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances, Academic Press, London.
- Sethian, J.A. (1999) Level Set Methods and Fast Marching Methods, Cambridge University Press.
- Sezgin, M. and Sankur, B. (2004) Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging, 13(1), 146–165.
- Shannon, C.E. (1949) Communication in the presence of noise. Proc. Inst. Radio Eng., 37, 10–21.
- Shannon, C.E. (1998) Communication in the presence of noise. Proc. IEEE, 86(2), 447–457.
-
Shapiro, L.G.
(1996) Connected component labeling and adjacency graph construction,
in Topological Algorithms for Digital Image Processing
(eds T.Y. Kong and
A. Rosenfeld),
Elsevier,
Amsterdam,
pp. 1–30.
10.1016/S0923-0459(96)80011-5 Google Scholar
- Simionovici, A., Chukalina, M., Günzler, F., Schroer, C., Snigirev, A., Snigireva, I., Tümmler, J., and Weitkamp, T. (2001) X-ray microtome by fluorescence tomography. Nucl. Instrum. Meth. A, 467/468, 889–892.
- Šlapal, J. (2004) A digital analogue of the Jordan curve theorem. Discr. Appl. Math., 139, 231–251.
-
Soille, P.
(1999)
Morphological Image Analysis,
Springer,
Berlin, Heidelberg.
10.1007/978-3-662-03939-7 Google Scholar
- Sonntag, U., Stoyan, D., and Hermann, H. (1981) Random set model in the interpretation of small-angle scattering data. Phys. Status Sol., 68, 281–288.
- Spiess, M. and Spodarev, E. (2009) Anisotropic of poisson cylinders processes. submitted.
- Stelldinger, P. and Köthe, U. (2006) Connectivity preserving digitization of blurred binary images in 2d and 3d. Comput. Graph., 30, 70–76.
- Stelldinger, P., Latecki, L.J., and Siqueira, M. (2007) Topological equivalence between a 3d object and the reconsruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell., 29, 126–140.
- Sternberg, S.R. (1986) Grayscale morphology. Comput. Vis. Graph. Image Proc., 35, 333–355.
- Stocker, J.J. (1969) Differential Geometry, John Wiley & Sons Ltd, Chichester.
- Stoyan, D. (1984) Correlations of the marks of marked point processes – statistical inference and simple models. J. Inf. Process. Cybern., 20, 285–294.
- Stoyan, D. (1984) On correlations of marked point processes. Math. Nachr., 116, 197–207.
- Stoyan, D. (2002) Random systems of hard particles: models and statistics. Chin. J. Stereol. Image Anal., 7, 1–14.
-
Stoyan, D.
(2002)
Simulation and characterization of random systems of hard particles.
Image Anal. Stereol.,
21,
41–48.
10.5566/ias.v21.pS41-S48 Google Scholar
- Stoyan, D., Kendall, W.S., and Mecke, J. (1985) Stochastic Geometry and Its Applications, 1st edn, John Wiley & Sons Ltd, Chichester.
- Stoyan, D., Kendall, W.S., and Mecke, J. (1995) Stochastic Geometry and Its Applications, 2nd edn, John Wiley & Sons Ltd, Chichester.
- Stoyan, D., Mecke, J., and Pohlmann, S. (1980) Formulas for stationary planar fibre processes II – partially oriented fibre systems. Math. Operationsforsch. Statist. Ser. Stat., 11, 281–286.
-
Stoyan, D. and
Mecke, K.
(2005) The Boolean model: from Matheron till today,
in Space, Structure, and Randomness
(eds M. Bilodeau,
F. Meyer, and
M. Schmitt), vol.
183 of LNS,
Springer,
New York,
pp. 151–181.
10.1007/0-387-29115-6_8 Google Scholar
-
Stoyan, D. and
Ohser, J.
(1982)
Correlations between planar random structures, with an ecological application.
Biom. J.,
24(7),
631–647.
10.1002/bimj.4710240702 Google Scholar
- Stoyan, D. and Ohser, J. (1984) Cross-correlation measure of weighted random measures and their estimation. Teor. Verojatn. Primen., 29, 338–347.
- Stoyan, D. and Stoyan, H. (1992) Fractals, Random Shapes and Point Fields: Methods of Geometric Statistics, Akademie-Verlag, Berlin.
- Stoyan, D. and Stoyan, H. (2000) Improved ratio-unbiased estimators of second-order point process characteristics. Scand. J. Statist., 27, 641–656.
-
Succi, S.
(2001)
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,
Clarendon Press,
Oxford.
10.1093/oso/9780198503989.001.0001 Google Scholar
- Sudret, B. and der Kiureghian, A. (2000) Stochastic finite element methods and reliability – state of the art, Technical Report UCB/SEMM-2000/08, Universitat Politècnica, Dept. Civil & Enviremental Engineering, University of California, Berkeley.
- Svensson, S., Borgefors, G., and Nyström, I. (1999) On reversible skeletonization using anchor-points from distance transforms. J. Vis. Commun. Image Represent., 10(4), 379–397.
- Sych, T. (2004) Estimation of geometric characteristics of foam structures. Master's thesis, Universität Kaiserslautern/Fraunhofer ITWM, Kaiserslautern.
- Szabo, B. and Babuška, I. (1991) Finite Element Analysis, John Wiley & Sons Ltd, New York.
- Tartar, L. (1979) Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Heriot--Watt Symposiom, vol. IV, Res. Notes in Math, vol. 39, Pitman, London, pp. 136–211.
-
Tek, F.B.,
Dempster, A.G., and
Kale, I.
(2005) Blood cell segmentation using minimum area watershed and circle Radon transformations, in Proc. Int. Symp. on Mathematical Morphology (eds C. Ronse, L. Najman, and E. Decencière), vol. 30 of Computational Imaging and Vision, Springer, Dordrecht,
pp. 441–454.
10.1007/1-4020-3443-1_40 Google Scholar
- Thomassen, C. (1992) The Jordan–Schönflies theorem and the classification of surface. Am. Math. Mon., 99, 116–131.
- Thurfjell, L., Bengtsson, E., and Nordin, B. (1992) A new three-dimensional connected components labeling algorithm with simultaneous object feature extraction capability. Graph. Models Image Process., 54(4), 357–364.
- Thurston, W. (1982) The Geometry and Topology of Three-Manifolds, Princetown Univ. Press, Princetown.
-
Toriwaki, J. and
Yoshida, H.
(2009)
Fundamentals of Three-dimensional Digital Image Processing,
Springer.
10.1007/978-1-84800-172-5 Google Scholar
-
Torquato, S.
(2002)
Random Heterogeneous Materials: Microstructure and Macroscopic Properties,
Springer,
New York.
10.1007/978-1-4757-6355-3 Google Scholar
- Trier, O.D. and Jain, A.K. (1995) Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intell., 17(12), 1191–1201.
- Tsao, Y.F. and Fu, K.S. (1981) A parallel thinning algorithm for 3-d pictures. Graph. Models Image Process., 17, 315–331.
- Unser, M. (2000) Sampling – 50 Years after Shannon. Proceedings of the IEEE, 88(4), 569–587.
- Unverzagt, K. (2005) Spectral Analysis of Random Closed Sets: The Surface Measure Associated with a Random Closed Set. Diplomarbeit, Universität Siegen.
-
Veblen, O.
(1905)
Theory of plane curves in non-metrical analysis situs.
Trans. Am. Math. Soc.,
6,
65–72.
10.1090/S0002-9947-1905-1500697-4 Google Scholar
- Velichko, A., Holzapfel, C., and Mücklich, F. (2007) 3d characterization of graphite morphologies in cast iron. Adv. Eng. Mater., 9, 39–45.
- Vincent, L. and Soille, P. (1991) Watersheds in digital spaces: An efficient algorithm based on immersion simulation. IEEE Trans. Pattern Anal. Mach. Intell., 13(6), 583–598.
- Vogel, H.-J. (1997) Digital unbiased estimation of the Euler–Poincaré characteristic in different dimensions. Acta Stereol., 16, 97–104.
- Wang, A.-J. and McDoll, D.L. (2005) Yield surfaces of various periodic metal honeycombs at intermadiate relative density. Int. J. Plasticity, 21, 285–320.
- Watson, D.F. (1981) Computing the n-dimensional Delaunay tessellation with application to Voronoï polytopes. Comp. J., 24, 167–172.
- D. Weaire, editor. (1996) The Kelvin Problem: Foam Structures of Minimal Surface Area, Taylor & Francis, London.
- Weatherill, N.P. and Hassan, O. (1994) Efficient 3-dimensional Delaunay triangulation with automatic point generation and imposed boundary constraints. Int. J. Numer. Meth. Eng., 37, 2005–2039.
- Weickert, J. (1998) Anisotropic Diffusion in Image Processing, Teubner, Stuttgart.
- Weil, W. (1987) Point processes of cylinders, particles and flats. Acta Appl. Math., 9, 103–136.
-
Whittaker, E.T.
(1915)
On the functions which are represented by the expansions of interpolation theory.
Proc. R. Soc. Edinbourg,
35A,
181–194.
10.1017/S0370164600017806 Google Scholar
- Whittaker, J.M. (1935) Interpolatory Function Theory, Cambridge Univ. Press, Cambridge.
- Windreich, G., Kiryati, N., and Lohmann, G. (2003) Surface area estimation in practice, in 11th International Conference on Discrete Geometry for Computer Imagery (eds I. Nyström, G. Sannitidi, B. Svensson, and S. Svensson), vol. 2886, LNCS, Springer, Berlin, Heidelberg, New York, DGCI, Naples, Italy, pp. 358–367.
- Winkler, G. (1995) Image analysis, random fields and dynamic Monte Carlo methods: A mathematical introduction, in Applications of Mathematics, vol. 27, Springer, Berlin.
- Wirjadi, O. (2007) Survey of 3d image segmentation methods, Technical Report 123, Fraunhofer ITWM, Kaiserslautern.
- Xu, X.F. (2007) A multiscale stochastic finite element method on ellptic problems involving uncertainties. Comput. Meth. Appl. Mechan. Eng., 196, 2723–2736.
-
Yoo, T.S.
(2004)
Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis,
AK Peters,
Wellesley, MA.
10.1201/b10657 Google Scholar
- Zhu, H.X., Hobdell, J.R., and Windle, A.H. (2000) Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater., 48, 4893–4900.
- Ziegel, J. and Kiderlen, M. (2009) Estimation of the surface area and surface area measure of three-dimensional sets from digitizations. Image Vis. Comput., to appear.
- Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z. (2005) Finite Element Method: Its Basis and Fundamentals, 6th edn, Elsevier, Amsterdam.
- Zou, Y. and Ghaham, R. (2005) Error estimation in the spatial discretization of multiscale bridging models. Multiscale Modell. Simul., 3, 940–956.