Structures and Functions of Nuclear and Cytoplasmic Glycoproteins
Robert S. Haltiwanger
Search for more papers by this authorRobert S. Haltiwanger
Search for more papers by this authorProf. Dr. Beat Ernst
Institut für Molekulare Pharmazie, Universität Basel, Klingenbergstrasse 50, 4051 Basel, Switzerland
Search for more papers by this authorProf. Dr. Gerald W. Hart
Dept. of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolf St. Rm., 401 Hunterian Baltimore, MD 21205-2185, USA
Search for more papers by this authorProf. Dr. Pierre Sinaý
Dept. de Chimie, URA 1686, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Search for more papers by this authorProf. Dr. Beat Ernst
Institut für Molekulare Pharmazie, Universität Basel, Klingenbergstrasse 50, 4051 Basel, Switzerland
Search for more papers by this authorProf. Dr. Gerald W. Hart
Dept. of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolf St. Rm., 401 Hunterian Baltimore, MD 21205-2185, USA
Search for more papers by this authorProf. Dr. Pierre Sinaý
Dept. de Chimie, URA 1686, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Search for more papers by this authorSummary
The prelims comprise:
-
Introduction
-
O-Linked N-Acetylglucosamine (O-GlcNAc)
-
Other Forms of Nuclear and Cytoplasmic Glycosylation
-
Conclusions
References
- G.M.W. Cook, Glycobiol., 1995, 5, 449–458, Glycobiology of the cell surface: The emergence of sugars as an important feature of the cell periphery.
- C.B. Hirschberg and M.D. Snider, Annu. Rev. Biochem., 1987, 56, 63–87, Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus.
- G.W. Hart, R.S. Haltiwanger, G.D. Holt and W.G. Kelly, Annu. Rev. Biochem., 1989, 58, 841–874, Glycosylation in the nucleus and cytoplasm.
- J. Hubert, A.P. Seve, P. Facy and M. Monsigny, Cell Differ., 1989, 27, 69–81, Are nuclear lectins and nuclear glycoproteins involved in the modulation of nuclear functions?.
- L. Medina and R.S. Haltiwanger, Glycobiology, 1998, 8, 191–198, Calf thymus high moblility group proteins are non-enzymatically glycated but not significantly glycosylated.
- L. Medina, K. Grove and R.S. Haltiwanger, Glycobiology, 1998, 8, 383–391, SV40 Large T antigen is modified with O-linked N-acetylglucosamine but not with other forms of glycosylation.
- P. Ferranti, A. Malorni, G. Marino, P. Pucci, G.H. Goodwin, G. Manfioletti and V. Giancotti, J. Biol. Chem., 1992, 267, 22486–22489, Mass spectrometric analysis of the HMGY protein from Lewis lung carcinoma. Identification of phosphorylation sites.
- Y.B. Chao, W.M. Scovell and S.B. Yan, Protein Sci., 1994, 3, 2452–2454, High mobility group protein, HMG-1, contains insignificant glycosyl modification.
- V.A. Boumba, O. Tsolas, D. Choli-Papadopoulou and K. Seferiadis, Arch. Biochem. Biophys., 1993, 303, 436–442, Isolation by a new method and sequence analysis of chromosomal HMG-17 protein from porcine thymus.
- R. Reeves and D. Chang, J. Biol. Chem., 1983, 258, 679–687, Investigations of the possible functions for glycosylation in the high mobility group proteins. Evidence for a role in nuclear matrix association.
- R. Reeves, D. Chang and S.C. Chung, Proc. Natl Acad. Sci. U.S.A., 1981, 78, 6704–6708, Carbohydrate modifications of the high mobility group proteins.
- R.S. Haltiwanger, S. Busby, K. Grove, S. Li, D. Mason, L. Medina, D.J. Moloney, G.A. Philipsberg and R. Scartozzi, Biochem. Biophys. Res. Commun., 1997, 231, 237–242, O-Glycosylation of Nuclear and Cytoplasmic Proteins: Regulation Analogous to Phosphorylation?.
- G.W. Hart, Annu. Rev. Biochem., 1997, 66, 315–335, Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins.
- G.W. Hart, L.K. Kreppel, F.I. Comer, C.S. Arnold, D.M. Snow, Z. Ye, X. Cheng, D. DellaManna, D.S. Caine, B.J. Earles, Y. Akimoto, R.N. Cole and B.K. Hayes, Glycobiology, 1996, 6, 711–716, O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization.
- D.M. Snow and G.W. Hart, Int. Rev. Cytol., 1998, 181, 43–74, Nuclear and cytoplasmic glycosylation.
- C.R. Torres and G.W. Hart, J. Biol. Chem., 1984, 259, 3308–3317, Topography and polypeptide distrubution of terminal N-Acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-GlcNAc.
- G.D. Holt and G.W. Hart, J. Biol. Chem., 1986, 261, 8049–8057, The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc.
- G.D. Holt, C.M. Snow, A. Senior, R.S. Haltiwanger, L. Gerace and G.W. Hart, J. Cell Biol., 1987, 104, 1157–1164, Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine.
- C.M. Snow, A. Senior and L. Gerace, J. Cell Biol., 1987, 104, 1143–1156, Monoclonal antibodies identify a group of nuclear pore complex glycoproteins.
- C. Abeijon and C.B. Hirschberg, Proc. Natl Acad. Sci. USA., 1988, 85, 1010–1014, Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum.
- J.M. Capasso, C. Abeijon and C.B. Hirschberg, J. Biol. Chem., 1988, 263, 19778–19782, An intrinsic membrane glycoprotein of the Golgi apparatus with O-linked N-acetylglucosamine facing the cytosol.
- K.P. Kearse and G.W. Hart, Arch. Biochem. Biophys., 1991, 290, 543–548, Topology of O-linked N-acetylglucosamine in murine lymphocytes.
- J.A. Hanover, C.K. Cohen, M.C. Willingham and M.K. Park, J. Biol. Chem., 1987, 262, 9887–9894, O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins.
- G.D. Holt, R.S. Haltiwanger, C.R. Torres and G.W. Hart, J. Biol. Chem., 1987, 262, 14847–14850, Erythrocytes contain cytoplasmic glycoproteins. O-linked GlcNAc on Band 4.1.
- S.P. Jackson and R. Tjian, Cell, 1988, 55, 125–133, O-Glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation.
- K. Nyame, R.D. Cummings and R.T. Damian, J. Parasitol., 1988, 74, 562–572, Characterization of the N- and O-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni schistosomula.
- E. Handman, L.D. Barnett, A.H. Osborn, J.W. Goding and P.J. Murray, Mol. Biochem. Parasitol., 1993, 62, 61–72, Identification, characterisation and genomic cloning of a O-linked N-acetylglucosamine-containing cytoplasmic Leishmania glycoprotein.
- J.E. Hansen, O. Lund, K. Rapacki and S. Brunak, Nucleic Acids Res., 1997, 25, 278–282, O-GLYCBASE version 2.0: A revised database of O-glycosylated proteins.
- H.H. Wandall, H. Hassan, E. Mirgorodskaya, A.K. Kristensen, P. Roepstorff, E.P. Bennett, P.A. Nielsen, M.A. Hollingsworth, J. Burchell, J. Taylor-Papadimitriou and H. Clausen, J. Biol. Chem., 1997, 272, 23503–23514, Substrate specificities of three members of the human UDP-N-acetyl-α-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1,-T2, and-T3.
- F.K. Hagen and K. Nehrke, J. Biol. Chem., 1998, 273, 8268–8277, cDNA cloning and expression of a family of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferase sequence homologs from Caenorhabditis elegans.
- H. Clausen and E.P. Bennett, Glycobiology, 1996, 6, 635–646, A family of UDP-GalNAc: Polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation.
- R.S. Haltiwanger, G.D. Holt and G.W. Hart, J. Biol. Chem., 1990, 265, 2563–2568, Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine: peptide β-N-acetylglucosaminyltransferase.
- R.S. Haltiwanger, M.A. Blomberg and G.W. Hart, J. Biol. Chem., 1992, 267, 9005–9013, Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide β-N-acetylglucosaminyltransferase.
- L.-Y.D. Dong and G.W. Hart, J. Biol. Chem., 1994, 269, 19321–19330, Purification and Characterization of an O-GlcNAc Selective N-Acetyl-β-D-glucosaminidase from Rat Spleen Cytosol.
- L.K. Kreppel, M.A. Blomberg and G.W. Hart, J. Biol. Chem., 1997, 272, 9308–9315, Dynamic glycosylation of nuclear and cytosolic proteins—Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats.
- W.A. Lubas, D.W. Frank, M. Krause and J.A. Hanover, J. Biol. Chem., 1997, 272, 9316–9324, O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats.
- J.R. Lamb, S. Tugendreich and P. Hieter, TIBS, 1995, 20, 257–259, Tetratrico peptide repeat interactions: to TPR or not to TPR?.
- C.F. Chou, A.J. Smith and M.B. Omary, J. Biol. Chem., 1992, 267, 3901–3906, Characterization and Dynamics of O-linked Glycosylation of Human Cytokeratin 8 and 18.
- E.P. Roquemore, M.R. Chevrier, R.J. Cotter and G.W. Hart, Biochemistry, 1996, 35, 3578–3586, Dynamic O-GlcN Acylation of the small heat shock protein αB-crystallin.
- R.S. Haltiwanger, K. Grove and G.A. Philipsberg, J. Biol. Chem., 1998, 273, 3611–3617, Modulation of O-Linked N-acetylglucosamine Levels on Nuclear and Cytoplasmic Proteins In Vivo Using the Peptide O-GlcNAc-β-N-acetylglucosaminidase Inhibitor 0-(2-Acetamido-2-deoxy-D-glucopyranosylidene) amino-N-Phenylcarbamate.
- K.P. Kearse and G.W. Hart, Proc. Natl Acad. Sci. USA, 1991, 88, 1701–1705, Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins.
- M.D. Roos, I.O. Han, A.J. Paterson and J.E. Kudlow, Am. J. Physiol. Cell Physiol., 1996, 270, C803–C811, Role of glucosamine synthesis in the stimulation of TGF-α gene transcription by glucose and EGF.
- I. Han and J.E. Kudlow, Mol. Cell. Biol., 1997, 17, 2550–2558, Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility.
- S. Marshall, W.T. Garvey and R.R. Traxinger, FASEB J., 1991, 5, 3031–3036, New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids.
- D.A. McClain and E.D. Crook, Diabetes, 1996, 45, 1003–1009, Hexosamines and insulin resistance.
- W.G. Kelly, M.E. Dahmus and G.W. Hart, J. Biol. Chem., 1993, 268, 10416–10424, RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc.
- T.-Y. Chou, G.W. Hart and C.V. Dang, J. Biol. Chem., 1995, 270, 18961–18965, c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas.
- C.S. Arnold, G.V.W. Johnson, R.N. Cole, D.L.-Y. Dong, M. Lee and G.W. Hart, J. Biol. Chem., 1996, 271, 28741–28744, The Microtubule-associated Protein Tau is Extensively Modified with O-linked N-acetylglucosamine.
- N.-O. Ku and M.B. Omary, J. Biol. Chem., 1995, 270, 11820–11827, Identification and mutational analysis of the glycosylation sites of human keratin 18.
- B.E. Kemp and R.B. Pearson, Trends Biochem. Sci., 1990, 15, 342–346, Protein kinase recognition sequence motifs.
- M.D. Roos, K.H. Su, J.R. Baker and J.E. Kudlow, Mol. Cell. Biol., 1997, 17, 6472–6480, O-glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions.
- B. Datta, M.K. Ray, D. Chakrabarti, D.E. Wylie and N.K. Gupta, J. Biol. Chem., 1989, 264, 20620–20624, Glycosylation of eukaryotic peptide chain initiation factor 2 (eIF-2)-associated 67-kDa polypeptide (p67) and its possible role in the inhibition of eIF-2 kinase-catalyzed phosphorylation of the eIF-2 α-subunit.
- M.K. Ray, B. Datta, A. Chakraborty, A. Chattopadhyay, S. Meza-Keuthen and N.K. Gupta, Proc. Natl Acad. Sci. USA, 1992, 89, 539–543, The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells.
- B. Datta, D. Chakrabarti, A.L. Roy and N.K. Gupta, Proc. Natl Acad. Sci. U.S.A., 1988, 85, 3324–3328, Roles of a 67-kDa polypeptide in reversal of protein synthesis inhibition in hemedeficient reticulocyte lysate.
- S. Wu, S. Gupta, N. Chatterjee, R.E. Hileman, T.G. Kinzy, N.D. Denslow, W.C. Merrick, D. Chakrabarti, J.C. Osterman and N.K. Gupta, J. Biol. Chem., 1993, 268, 10796–10801, Cloning and characterization of complementary DNA encoding the eukaryotic initiation factor 2-associated 67-kDa protein (p67).
- A. Chakraborty, D. Saha, A. Bose, M. Chatterjee and N.K. Gupta, Biochemistry, 1994, 33, 6700–6706, Regulation of eIF-2 α-Subunit Phosphorylation in Reticulocyte Lysate.
- A. Bose, D. Saha and N.K. Gupta, Arch. Biochem. Biophys., 1997, 342, 362–372, Viral infection. 1. Regulation of protein synthesis during vaccinia viral infection of animal cells.
- D. Saha, S.Y. Wu, A. Bose, N. Chatterjee, A. Chakraborty, M. Chatterjee and N.K. Gupta, Arch. Biochem. Biophys., 1997, 342, 373–382, Viral infection. 2. Hemin induces over-expression of p67 as it partially prevents appearance of an active p67-deglycosylase in baculovirus-infected insect cells.
- J. Selzer, F. Hofmann, G. Rex, M. Wilm, M. Mann, I. Just and K. Aktories, J. Biol. Chem., 1996, 271, 25173–25177, Clostridium novyi α-Toxin-catalyzed Incorporation of GlcNAc into Rho Subfamily Proteins.
- A.J. Koleske and R.A. Young, Trends Biochem. Sci., 1995, 20, 113–116, The RNA polymerase II holoenzyme and its implications for gene regulation.
- F.I. Comer and G.W. Hart, Mol. Biol. Cell, 1995, 6, 415a, Dynamic Glycosylation of RNA Polymerase II. (Abstract).
- D.A. McClain, A.J. Paterson, M.D. Roos, X. Wei and J.E. Kudlow, Proc. Natl Acad. Sci. U.S.A., 1992, 89, 8150–8154, Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells.
- M.C. Daniels, P. Kansal, T.M. Smith, A.J. Paterson, J.E. Kudlow and D.A. McClain, Mol. Endocrinol., 1993, 7, 1041–1048, Glucose Regulation of Transforming Growth Factor-α Expression is Mediated by Products of the Hexosamine Biosyntheis Pathway.
- V. Kolm-Litty, U. Sauer, A. Nerlich, R. Lehmann and E.D. Schleicher, J. Clin. Invest., 1998, 101, 160–169, High glucose-induced transforming growth factor β1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells.
- J. Wang, R. Liu, M. Hawkins, N. Barzilai and L. Rossetti, Nature, 1998, 393, 684–688, A nutrient-sensing pathway regulates leptin gen expression in muscle and fat.
- R.R. Traxinger and S. Marshall, J. Biol. Chem., 1992, 267, 9718–9723, Insulin Regulation of Pyruvate Kinase Activity in Isolated Adipocytes: Crucial Role of Glucose and the Hexosamine Biosynthesis Pathway in the Expression of Insulin Action.
- E.D. Crook, J. Zhou, M. Daniels, J.L. Neidigh and D.A. McClain, Diabetes, 1995, 44, 314–320, Regulation of glycogen synthase by glucose, glucosamine, and glutamine: fructose-6-phosphate amidotransferase.
- R.R. Traxinger and S. Marshall, J. Biol. Chem., 1991, 266, 10148–10154, Coordinated Regulation of Glutamine: Fructose-6-Phosphate Amidotransferase Activity by Insulin, Glucose, and Glutamine: Role of Hexosamine Biosynthesis in Enzyme Regulation.
- H. Yki-Järvinen, A. Virkamäki, M.C. Daniels, D. McClain and W.K. Gottschalk, Metabolism, 1998, 47, 449–455, Insulin and glucosamine infusions increase O-linked N-acetylglucosamine in skeletal muscle proteins in vivo.
- B. Gonzalez-Yanes, J.M. Cicero, R.D. Brown, Jr. and C.M. West, J. Biol. Chem., 1992, 267, 9595–9605, Characterization of a cytosolic fucosylation pathway in Dictyostelium.
- E. Kozarov, H. Van der Wel, M. Field, M. Gritzali, R.D. Brown, Jr. and C.M. West, J. Biol. Chem., 1995, 270, 3022–3030, Characterization of FP21, a cytosolic glycoprotein from Dictyostelium.
- C.M. West, E. Kozarov and P. Teng-umnuay, Gene, 1997, 200, 1–10, The cytosolic glycoprotein FP21 of Dictyostelium discoideum is encoded by two genes resulting in a polymorphism at a single amino acid position.
- P. Teng-umnuay, H.R. Morris, A. Dell, M. Panico, T. Paxton and C.M. West, J. Biol. Chem., 1998, 273, 18242–18249, The cytoplasmic F-box binding protein SKP1 contains a novel pentasaccharide linked to hydroxyproline in Dictyostelium.
- P. Teng-umnuay and C.M. West, Glycobiology, 1998, 8, 1105, Evidence that a protein involved in ubiquitination is modified by a novel cytoplasmic glycosylation pathway. (Abstract).
- C.M. West, T. Scott-Ward, P. Teng-umnuay, H. Van der Wel, E. Kozarov and A. Huynh, J. Biol. Chem., 1996, 271, 12024–12035, Purification and characterization of an α1,2-L-fucosyltransferase, which modifies the cytosolic protein FP21, from the cytosol of Dictyostelium.
- C. Srisomsap, K.L. Richardson, J.C. Jay and R.B. Marchase, J. Biol. Chem., 1988, 263, 17792–17797, Localization of the Glucose Phosphotransferase to a cytoplasmically Accessible Site on Intracellular Membranes.
- R.B. Marchase, P. Bounelis, L.M. Brumley, N. Dey, B. Browne, D. Auger, T.A. Fritz, P. Kulesza and D.M. Bedwell, J. Biol. Chem., 1993, 268, 8341–8349, Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase.
- B.H. Satir, C. Srisomsap, M. Reichman and R.B. Marchase, J. Cell Biol., 1990, 111, 901–907, Parafusin, an Exocytic-sensitive Phosphoprotein, Is the Primary Aceeptor for the Glucosyl-phosphotransferase in Paramecium tetraurelia and Rat Liver.
- N.A. Veyna, J.C. Jay, C. Srisomsap, P. Bounelis and R.B. Marchase, J. Neurochem., 1994, 62, 456–464, The addition of glucose-1-phosphate to the cytoplasmic glycoprotein phosphoglucomutase is modulated by intracellular calcium in PC12 cells and rat cortical synaptosomes.
- S.V. Subramanian and B.H. Satir, Proc. Natl Acad. Sci. USA, 1992, 89, 11297–11301, Carbohydrate cycling in signal transduction: Parafusin, a phosphoglycoprotein and possible Ca2+-dependent transducer molecule in exocytosis in Paramecium.
- S.V. Subramanian, E. Wyroba, A.P. Andersen and B.H. Satir, Proc. Natl Acad. Sci. USA, 1994, 91, 9832–9836, Cloning and sequencing of parafusin, a calcium-dependent exocytosisrelated phosphoglycoprotein.
- E. Wyroba, A.W. Hoyer, P. Storgaard and B.H. Satir, Eur. J. Cell Biol., 1995, 68, 419–426, Mammalian homologue of the calcium-sensitive phosphoglycoprotein, parafusin.
- R.B. Marchase, K.L. Richardson, C. Srisomsap, R.R. Drake, Jr. and B.E. Haley, Arch. Biochem. Biophys., 1990, 280, 122–129, Resolution of phosphoglucomutase and the 62-kDA acceptor for the glucosylphosphotransferase.
- C. Srisomsap, S.A. Mattox, R.D. Cummings and R.B. Marchase, J. Cell Biol., 1988, 107, 406, The Glucosylphophotransferase Recognizes O-linked Mannose Residues on its 62 kDa Acceptor. (Abstract).
- C. Srisomsap, K.L. Richardson, J.C. Jay and R.B. Marchase, J. Biol. Chem., 1989, 264, 20540–20546, An α-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol.
- N.B. Dey, P. Bounelis, T.A. Fritz, D.M. Bedwell and R.B. Marchase, J. Biol. Chem., 1994, 269, 27143–27148, The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae.
- J. Pitcher, C. Smythe, D.G. Campbell and P. Cohen, Eur. J. Biochem., 1987, 169, 497–502, Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin.
- J. Pitcher, C. Smythe and P. Cohen, Eur. J. Biochem., 1988, 176, 391–395, Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle.
- C. Smythe, F.B. Caudwell, M. Ferguson and P. Cohen, EMBO J., 1988, 7, 2681–2686, Isolation and structural analysis of a peptide containing the novel tyrosyl-glucose linkage in glycogenin.
- J. Mu, A.V. Skurat and P.J. Roach, J. Biol. Chem., 1997, 272, 27589–27597, Glycogenin-2, a novel self-glucosylating protein involved in liver glycogen biosynthesis.
- V.P. Bhavanandan and E.A. Davidson, Proc. Natl Acad. Sci. USA., 1975, 72, 2032–2036, Mucopolysaccharides associated with nuclei of cultured mammalian cells.
- G.S. Stein, R.M. Roberts, J.L. Davis, W.J. Head, J.L. Stein, C.L. Thrall, J. Van Veen and D.W. Welch, Nature, 1975, 258, 639–641, Are glycoproteins and glycosaminoglycans components of the eukaryotic genome?.
- D.R.R. Hiscock, M. Yanagishita and V.C. Hascall, J. Biol. Chem., 1994, 269, 4539–4546, Nuclear localization of glycosaminoglycans in rat ovarian granulosa cells.
- M. Ishihara, N.S. Fedarko and H.E. Conrad, J. Biol. Chem., 1986, 261, 13575–13580, Transport of heparan sulfate into the nuclei of hepatocytes.
- N.S. Fedarko and H.E. Conrad, J. Cell Biol., 1986, 102, 587–599, A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells.
- N.S. Fedarko, M. Ishihara and H.E. Conrad, J. Cell Physiol., 1989, 139, 287–294, Control of cell division in hepatoma cells by exogenous heparan sulfate proteoglycan.
- Y. Liang, M. Häring, P.J. Roughley, R.K. Margolis and R.U. Margolis, J. Cell Biol., 1997, 139, 851–864, Glypican and biglycan in the nuclei of neurons and glioma cells: Presence of functional nuclear localization signals and dynamic changes in glypican during the cell cycle.
- P. Codogno, C. Bauvy, A.-P. Seve, M. Hubert, E. Ogier-Denis, M. Aubery and J. Hubert, J. Cell. Biochem., 1992, 50, 93–102, Evidence for the Presence of Complex High-Molecular Mass N-Linked Oligosaccharides in Intranuclear Glycoproteins From HeLa Cells.
- N.C. Chandra, M.J. Spiro and R.G. Spiro, J. Biol. Chem., 1998, 273, 19715–19721, Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum.
- S.H. Barondes, D.N.W. Cooper, M.A. Gitt and H. Leffler, J. Biol. Chem., 1994, 269, 20807–20810, Galectins: Structure and Function of a Large Family of Animal Lectins.
-
Y.H. Sahraoui,
A.P. Sève,
M.A. Doyennette-Moyne,
L. Saffar,
M. Felin,
M. Aubery,
L. Gattegno and
J. Hubert,
J. Cell. Biochem.,
1996,
62,
529–542,
Nuclear and cytoplasmic expressions of the carbohydrate-binding protein CBP70 in tumoral or healthy cells of the macrophagic lineage.
10.1002/(SICI)1097-4644(19960915)62:4<529::AID-JCB10>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- J.L. Wang, J.G. Laing and R.L. Anderson, Glycobiology, 1991, 1, 243–252, Lectins in the Cell Nucleus.
- S. Goletz, F.G. Hanisch and U. Karsten, J. Cell Sci., 1997, 110, 1585–1596, Novel alpha GalNAc containing glycans on cytokeratins are recognized in vitro by galactins with type II carbohydrate recognition domains.
- M. Felin, M.-A. Doyennette-Moyne, Y. Hadj-Sahraoui, M. Aubery, J. Hubert and A.-P. Sève, J. Cell. Biochem., 1994, 56, 527–535, Identification of two nuclear N-acetylglucosamine-binding proteins.
- M. Felin, M.A. Doyennette-Moyen, C. Rousseau, H.C. Schröder and A.P. Sève, Glycobiology, 1997, 7, 23–29, Characterization of a putative 82 kDa nuclear ligand for the N-acetylglucosamine-binding protein CBP70.
- S.F. Dagher, J.L. Wang and R.J. Patterson, Proc. Natl Acad. Sci. USA, 1995, 92, 1213–1217, Identification of galectin-3 as a factor in pre-mRNA splicing.
- A. Vyakarnam, S.F. Dagher, J.L. Wang and R.J. Patterson, Mol. Cell Biol., 1997, 17, 4730–4737, Evidence for a role for galectin-1 in pre-mRNA splicing.