Metabolism of Sugars and Sugar Nucleotides
Hudson H. Freeze
Search for more papers by this authorHudson H. Freeze
Search for more papers by this authorProf. Dr. Beat Ernst
Institut für Molekulare Pharmazie, Universität Basel, Klingenbergstrasse 50, 4051 Basel, Switzerland
Search for more papers by this authorProf. Dr. Gerald W. Hart
Dept. of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolf St. Rm., 401 Hunterian Baltimore, MD 21205-2185, USA
Search for more papers by this authorProf. Dr. Pierre Sinaý
Dept. de Chimie, URA 1686, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Search for more papers by this authorProf. Dr. Beat Ernst
Institut für Molekulare Pharmazie, Universität Basel, Klingenbergstrasse 50, 4051 Basel, Switzerland
Search for more papers by this authorProf. Dr. Gerald W. Hart
Dept. of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolf St. Rm., 401 Hunterian Baltimore, MD 21205-2185, USA
Search for more papers by this authorProf. Dr. Pierre Sinaý
Dept. de Chimie, URA 1686, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Search for more papers by this authorSummary
The prelims comprise:
-
Introduction
-
Basic Principles
-
Transporters Deliver Monosaccharides to Cells
-
Intracellular Sources of Sugars
-
Sugar Nucleotide Transporters
-
Control of Sugar Nucleotide Levels
-
Possible Future Directions
References
- Leloir, L.F., In: Phophorus Metabolism, 1st ed.; W.D. McElroy, B. Glass, (Eds.); Johns Hop- kins Press: Baltimore, 1951, pp 67.
- Thorens, B., Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am. J. Physiol. 1996, 270, G541–G553.
- Gould, G.W., Bell, G.I., Facilitative glucose transporters: an expanding family. Trends. Biochem. Sci. 1990, 15, 18–23.
- Gould, G.W., Holman, G.D., The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 1993, 295, 329–341.
- Walmsley, A.R., Barrett, M.P., Bringaud, F., Gould, G.W., Sugar Transporters from Bacteria, Parasites and Mammals: Structure-activity Relationships. TIBS 1998, 23, 476–481.
- Panneerselvam, K., Freeze, H.H., Mannose enters mammalian cells using a specific transporter that is insensitive to glucose. J. Biol. Chem. 1996, 19:271, 9417–9421.
- Ogier-Denis, E., Blais, A., Houri, J.J., Voisin, T., Trugnan, G., Codogno, P., The emergence of a basolateral 1-deoxymannojirimycin-sensitive mannose carrier is a function of intestinal epithelial cell differentiation. Evidence for a new inhibitory effect of 1-deoxymannojirimycin on facilitative mannose transport. J. Biol. Chem. 1994, 269, 4285–4290.
- Ogier-Denis, E., Codogno, P., Chantret, I., Trugnan, G., The processing of asparagine-linked oligosaccharides in HT-29 cells is a function of their state of enterocytic differentiation. An accumulation of Man9,8-GlcNAc2-Asn species is indicative of an impaired N-glycan trimming in undifferentiated cells. J. Biol. Chem. 1988, 263, 6031–6037.
- Ogier-Denis, E., Trugnan, G., Sapin, C., Aubery, M., Codogno, P., Dual effect of 1-deoxymannojirimycin on the mannose uptake and on the N-glycan processing of the human colon cancer cell line HT-29. J. Biol. Chem. 1990, 265, 5366–5369.
- Alton, G., Hasilik, M., Niehues, R., Panneerselvam, K., Etchison, J.R., Fana, F., Freeze, H.H., Direct utilzation of mannose for mammalian glycoprotein biosynthesis. Glycobiology 1998, 8, 285–295.
- Silverman, M., Aganon, M.A., Chinard, F.P., Specificity of monosaccharide transport in dog kidney. Am. J. Physiol. 1970, 218, 743–750.
- Panneerselvam, K., Etchison, J.R., Freeze, H.H., Human fibroblasts prefer mannose over glu- cose as a source of mannose for N-glycosylation. Evidence for the functional importance of transported mannose. J. Biol. Chem. 1997, 272, 23123–23129.
- Wiese, T.J., Dunlap, J.A., Yorek, M.A., L-fucose is accumulated via a specific transport system in eukaryotic cells. J. Biol. Chem. 1994, 269, 22705–22711.
- Ripka, J., Adamany, A., Stanley, P., Two Chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose. Arch. Biochem. Biophys. 1986, 249, 533–545.
- Shetlar, M.R., Capps, J.C., Hern, D.L., Incorporation of radioactive glucosamine into the serum proteins of intact rats and rabbits. Biochim. Biophys. Acta. 1964, 83, 93–101.
- Aronson, N.N. Jr., Docherty, P.A., Degradation of [6-3H]- and [1-14C]glucosamine- labeled asialo-alpha 1-acid glycoprotein by the perfused rat liver. J. Biol. Chem. 1983, 258, 4266–4271.
- Rome, L.H., Hill, D.F., Lysosomal degradation of glycoproteins and glycosaminoglycans. Efflux and recycling of sulphate and N-acetylhexosamines. Biochemical J. 1986, 235, 707–713.
- Trujillo, J.L., Gan, J.C., Glycoprotein biosynthesis. VI. Regulation of uridine diphosphate N-acetyl-D-glucosamine metabolism in bovine thyroid gland slices. Biochim. Biophys. Acta. 1973, 304, 32–41.
- Krieger, M., Reddy, P., Kozarsky, K., Kingsley, D., Hobbie, L., Penman, M., Analysis of the synthesis, intracellular sorting, and function of glycoproteins using a mammalian cell mutant with reversible glycosylation defects. Methods Cell Biol. 1989, 32, 57–84.
- Kingsley, D.M., Kozarsky, K.F., Hobbie, L., Krieger, M., Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 1986, 44, 749–759.
- Schauer, R., Sialic acids as antigenic determinants of complex carbohydrates. Adv. Exper. Med. Biol. 1988, 228, 47–72.
- Chigorno, V., Tettamanti, G., Sonnino, S., Metabolic processing of gangliosides by normal and Salla human fibroblasts in culture. A study performed by administering radioactive GM3 ganglioside. J. Biol. Chem. 1996, 271, 21738–21744.
- Lloyd, J.B., Metabolite efflux and influx across the lysosome membrane. Subcell. Biochem. 1996, 27, 361–386.
- Van Rinsum, J., Van Dijk, W., Hooghwinkel, G.J., Ferwerda, W., Subcellular localization and tissue distribution of sialic acid precursor-forming enzymes. Biochemical Journal 1983, 210, 21–28.
- Martin, A., Rambal, C., Berger, V., Perier, S., Louisot, P., Availability of specific sugars for glyconjugate biosynthesis—a need for further investigations in man. Biochimie 1998, 80, 75–86.
- Berger, B., Périer, S., Pachiaudi, C., Normand, S., Louisot, P., Martin, A., Dietary speci- fic sugars for serum protein enzymatic glycosylation in man. Metabolism 1998, 47, 1499–1503.
- Freeze, H.H., Human Glycosylation Disorders and Sugar Supplement Therapy. Biochem. Biophys. Res. Commun. 1999, 255, 189–193.
- Hinderlich, S., Stasche, R., Zeitler, R., Reutter, W., A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 1997, 272, 24313–24318.
- Niehues, R., Hasilik, M., Alton, G., Korner, C., Schiebe-Sukumar, M., Koch, H.G., Zimmer, K.P., Wu, R., Harms, E., Reiter, K., Von Figura, K., Freeze, H.H., Harms, H.K., Marquardt, T., Carbohydrate-deficient glycoprotein syndrome type lb. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 1998, 101, 1414–1420.
- Babovic-Vuksanovic, D., Patterson, M.C., Schwenk, W.F., O'Brien, J.F., Vockley, J., Freeze, H.H., Mehta, D.P., Michels, V.V., Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. J Pediatr. 1999 Dec, 135 (6): 775–81.
- Baque, S., Guinovart, J.J., Ferrer, J.C., Glycogenin the primer of glycogen synthesis, binds to actin. FEBS Lett. 1997, 417, 355–359.
- Lomako, J., Lomako, W.M., Whelan, W.J., Glycogen metabolism in quail embryo muscle. The role of the glycogenin primer and the intermediate proglycogen. Eur. J. Biochem. 1995, 234, 343–349.
- Lomako, J., Lomako, W.M., Whelan, W.J., A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J. 1988, 2, 3097–3103.
- Harris, R.J., Spellman, M.W., O-linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 1993, 3, 219–224.
- Lin, X., Buff, E.M., Perrimon, N., Michelson, A.M., Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development. 1999 Sep; 126 (17): 3715–23.
- Benevolenskaya, E.V., Frolov, M.V., Birchler, J.A., The sugarless mutation affects the expression of the white eye color gene in Drosophila melanogaster. Mol Gen Genet. 1998 Nov; 260 (2–3): 131–43.
- Hacker, U., Lin, X., Perrimon, N., The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 1997, 124, 3565–3573.
- Cumberledge, S., Reichsman, F., Glycosaminoglycans and WNTs: just a spoonful of sugar helps the signal go down. Trends Genet. 1997, 13, 421–423.
- Yuen, C.T., Chai, W., Loveless, R.W., Lawson, A.M., Margolis, R.U., Feizi, T., Brain contains HNK-1 immunoreactive O-glycans of the sulfoglucuronyl lactosamine series that terminate in 2-linked or 2,6-linked hexose (mannose). J. Biol. Chem. 1997, 272, 8924–8931.
- Tereyama, K., Seiki, T., Nakamura, A., Matsumori, K., Ohta, S., Oka, S., Sugita, M., Kawasaki, T., Purification and characterization of a glucuronyltransferase involved in the biosynthesis of the HNK-1 epitope on glycoproteins from rat brain. J. Biol. Chem. 1998, 273, 30295–30300.
- Kim, B.H., Takahashi, M., Tada, K., Bosma, P.J., Roy-Chowdbury, J., Roy-Chowdbury, N., Cell and gene therapy for inherited deficiency of bilirubin glucuronidation. J. Perinatol. 1996, 16, S67–S72.
- Burchell, B., Brierley, C.H., Ranee, D., Specificity of human UDP-glucuronosyltransferases and xenobiotic glucuronidation. Life Sci. 1995, 57, 1819–1831.
- Banhegyi, G., Garzo, T., Antoni, F., Mandl, J., Glycogenosis—and not gluconeogenesis—is the source of UDP-glucuronic acid for glucuronidation. Biochim. Biophys. Acta 1988, 967, 429–435.
- Vertel, B.M., Walters, L.M., Flay, N., Kearns, A.E., Schwartz, N.B., Xylosylation is an endoplasmic reticulum to Golgi event. J. Biol. Chem. 1993, 268, 11105–11112.
- Kearns, A.E., Vertel, B.M., Schwartz, N.B., Topography of glycosylation and UDP-xylose production. J. Biol. Chem. 1993, 268, 11097–11104.
- Stetten, M.R., Goldsmith, P.K., Two hexokinases of Homarus americanus (lobster), one having great affinity for mannose and fructose and low affinity for glucose. Biochim. Biophys. Acta 1981, 657, 468–481.
- Freeze, H.H., Disorders in protein glycosylation and potential therapy: Tip of an iceberg? J. Pediatr. 1998, 133, 593–600.
- Jaeken, J., Matthijs, G., Saudubray, J.M., Dionisivici, C., Bertini, E., Delonlay, P., Henri, H., Carchon, H., Schollen, E., Vanschaftingen, E., Phosphomannose isomerase deficiency—A carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am. J. Hum. Genet. 1998, 62, 1535–1539.
- Smith, D.J., Proudfoot, A., Friedli, L., Klig, L.S., Paravicini, G., Payton, M.A., PMI40, an intron-containing gene required for early steps in yeast mannosylation. Mol. Cell. Biol. 1992, 12, 2924–2930.
- Freinkel, N., Lewis, N.J., Akazawa, S., Roth, S.I., Gorman, L., The honeybee syndrome—implications of the teratogenicity of mannose in rat-embryo culture. N. Eng. J. Med. 1984, 310, 223–230.
- Buchanan, T., Freinkel, N., Lewis, N.J., Metzger, B.E., Akazawa, S., Fuel-mediated teratogenesis. Use of D-mannose to modify organogenesis in the rat embryo in vivo. J. Clin. Invest. 1985, 75, 1927–1934.
- Moore, D.C., Stanisstreet, M., Beck, F., Clarke, C.A., The effects of mannose on rat embryos grown in vitro. Life Sci. 1987, 41, 1885–1893.
- Krasnewich, D., Gahl, W.A., Carbohydrate-deficient glycoprotein syndrome. Adv. Pediatr. 1997, 44, 109–140.
- Matthijs, G., Schollen, E., Van Schaftingen, E., Cassiman, J.J., Jaeken, J., Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A. Am. J. Hum. Genet. 1998, 62, 542–550.
- Doucey, M.A., Hess, D., Cacan, R., Hofsteenge, J., Protein C-mannosylation is enzymecatalysed and uses dolichyl-phosphate-mannose as a precursor. Mol. Biol. Cell 1998, 9, 291–300.
- Kim, S., Westphal, V., Srikrishna, G., Mehta, D.P., Peterson, S., Filiano, J., Karnes, P.S., Patterson, M.C., Freeze, H.H., Dolichol phosphate mannose synthase (DPMI) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J Clin Invest. 2000 Jan; 105 (2): 191–8.
- Sullivan, F.X., Kumar, R., Kriz, R., Stahl, M., Xu, G.Y., Rouse, J., Chang, X.J., Boodhoo, A., Potvin, B., Cumming, D.A., Molecular cloning of human GDP-mannose 4,6–dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J. Biol. Chem. 1998, 273, 8193–8202.
- Chang, S., Duerr, B., Serif, G., An Epimerase-Reductase in L-Fucose Synthesis. J. Biol. Chem. 1988, 265, 1693–1697.
- Tonetti, M., Sturla, L., Bisso, A., Benatti, U., De Flora, A., Synthesis of GDP-L-fucose by the Human FX Protein. J. Biol. Chem. 1996, 271, 27274–27279.
- Kornfeld, R.H., Givsburg, V., Control of Synthesis of Guanosine 5′-Diphosphate D-Mannose and Guanosine 5′-Diphosphate L-Fucose in Bacteria. Biochim. Biophys. Acta 1966, 117, 79–87.
- Sturla, L., Etzioni, A., Bisso, A., Zanardi, D., Deflora, G., Silengo, L., Deflora, A., Tonetti, M., Defective intracellular activity of GDP-D-Mannose-4,6-Dehydratase in leukocyte adhesion deficiency type II syndrome. FEBS Lett. 1998, 429, 274–278.
- Etzioni, A., Phillips, L.M., Paulson, J.C., Harlan, J.M., Leukocyte adhesion deficiency (LAD) II. Ciba Found. Symp. 1995, 189, 51–58.
- Park, S.H., Pastuszak, I., Drake, R., Elbein, A.D., Purification to apparent homogeneity and properties of pig kidney L-fucose kinase. J. Biol. Chem. 1998, 273, 5685–5691.
- Marquardt, T., Liihn, K., Srikrishna, G., Freeze, H.H., Harms, E., Vestweber, D., Fucose Therapy for Leukocyte Adhesion Deficiency Type II (LAD II). Blood 1999, 94, 3976–3985.
- Chan, J.Y., Nwokoro, N.A., Schachter, H., L-Fucose metabolism in mammals. The conversion of L-fucose to two moles of L-lactate, of L-galactose to L-lactate and glycerate, and of D- arabinose to L-lactate and glycollate. J. Biol. Chem. 1979, 254, 7060–7068.
- Holton, J.B., Galactosaemia: pathogenesis and treatment. J. Inherit. Metab. Dis. 1996, 19, 3–7.
- McDowell, G., Gahl, W.A., Inherited disorders of glycoprotein synthesis: cell biological insights. Proc. Soc. Exp. Biol Med. 1991, 215, 145–157.
- Wolosker, H., Kline, D., Bian, Y., Blackshaw, S., Cameron, A.M., Fralich, T.J., Schnaar, R.L., Snyder, S.H., Molecularly coned mammalian glucosamine-6-phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB J. 1998, 12, 91–99.
- Pels Rijcken, W.R., Ferwerda, W., Van den Eijnden, D.H., Overdijk, B., Influence of D-galactosamine on the synthesis of sugar nucleotides and glycoconjugates in rat hepatocytes. Glycobiology 1995, 5, 495–502.
- Pastuszak, I., Drake, R., Elbein, A.D., Kidney N-acetylgalactosamine (GalNAc)-1-phosphate kinase, a new pathway of GalNAc activation. J. Biol. Chem. 1996, 271, 20776–20782.
- Kean, E.L., Sialic acid activation. Glycobiology 1991, 1, 441–447.
- Varki, A., Diversity in the sialic acids [published erratum appears in Glycobiology 1992 Apr; 2(2): following 168], Glycobiology 1992, 2, 25–40.
- Reuter, G., Gabius, H.J., Sialic acids structure-analysis-metabolism-occurrence-recognition. Biol. Chem. Hoppe-Seyler 1996, 377, 325–342.
- Allen, M.B., Walker, D.G., Kinetic characterization of N-acetyl-D-glucosamine kinase from rat liver and kidney. Biochem. J. 1980, 185, 577–582.
- Hirschberg, C.B., Robbins, P.W., Abeijon, C., Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 1998, 67, 49–69.
- Abeijon, C., Mandon, E.C., Hirschberg, C.B., Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. Trends Biochem. Sci. 1997, 22, 203–207.
- Trombetta, E.S., Helenius, A., Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol. 1998, 8, 587–592.
- Abeijon, C., Yanagisawa, K., Mandon, E.C., Hausler, A., Moremen, K., Hirschberg, C.B., Robbins, P.W., Guanosine siphosphatase is required for protein and shpingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J. Cell Biol. 1993, 122, 307–323.
- Varki, A., Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol. 1998, 8, 34–40.
- Hayes, B.K., Freeze, H.H., Varki, A., Biosynthesis of oligosaccharides in intact Golgi preparations from rat liver. Analysis of N-linked glycans labeled by UDP-[6-3H]N-acetylglucosamine. J. Biol. Chem. 1993, 268, 16139–16154.
- Etchison, J.R., Freeze, H.H., A new approach to mapping co-localization of multiple glycosyl transferases in functional Golgi preparations. Glycobiology 1996, 6, 177–189.
- Dean, N., Zhang, Y.B., Poster, J.B., The VRG4 Gene is Required for GDP-mannose Transport into the Lumen of the Golgi in the Yeast, Saccharomyces cerevisiae. J. Biol. Chem. 1997. 272, 31908–31914.
- Ma, D., Russell, D.G., Beverley, S.M., Turco, S.J., Golgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters. J. Biol. Chem. 1997, 272, 3799–3805.
- Toma, L., Pinhal, M.A., Dietrich, C.P., Nader, H.B., Hirschberg, C.B., Transport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. J. Biol. Chem. 1996, 271, 3897–3901.
- Jungmann, J., Munro, S., Multi-protein complexes in the cis golgi of Saccharomyces cerevisiae with alpha-1,6-mannosyltransferase activity. EMBO J. 1998, 17, 423–434.
- Thomas, G.H., Reynolds, L.W., Miller, C.S., Overproduction of N-acetylneuraminic acid (sialic acid) by sialuria fibroblasts. Bed. Res. 1985, 19, 451–455.
- Strecker, G., Genetic disorders of N-acetylneuraminic acid metabolism: sialurias and sialidoses. Comp. Rend. Seances Soc. Biol. Fil. 1999, 179, 567–576.
- Weiss, P., Tietze, F., Gahl, W.A., Seppala, R., Ashwell, G., Identification of the metabolic defect in sialuria. J. Biol. Chem. 1989, 264, 17635–17636.
- Hawkins, M., Angelov, I., Liu, R., Barzilai, N., Rossetti, L., The tissue concentration of UDP-N-acetylglucosamine modulates the stimulatory effect of insulin on skeletal muscle glucose uptake. J. Biol. Chem. 1997, 272, 4889–4895.
- Spiro, R.G., The effect of N-acetylglucosamine and glucosamine on carbohydrate metabolism in rat liver slices. J. Biol. Chem. 1958, 233, 546–550.
- Hawkins, M., Barzilai, N., Liu, R., Hu, M., Chen, W., Rossetti, L., Role of the glucosamine pathway in fat-induced insulin resistance. J. Clin. Invest. 1997, 99, 2173–2182.
- Rossetti, L., Hawkins, M., Chen, W., Gindi, J., Barzilai, N., In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J. Clin. Invest. 1995, 96, 132–140.
- Snow, D.M., Hart, G.W., Nuclear and cytoplasmic glycosylation. Intl Rev. Cytol. 1998, 181, 43–74.
- Yki-Jarvinen, H., Vogt, C., Lozzo, P., Pipek, R., Daniels, M.C., Virkamaki, A., Makimattila, S., Mandarino, L., DeFronzo, R.A., McClain, D., Gottschalk, W.K., UDP-N-acetylglucosamine transferase and glutamine: Fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues. Diabetologia 1997, 40, 76–81.
- Hresko, R.C., Heimberg, H., Chi, M.M.Y., Mueckler, M., Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. J. Biol. Chem. 1998, 273, 20658–20668.