3D Printing Techniques in a Medical Setting
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
One of the most pressing problems in modern medicine is the lack of available organ donors for transplant procedures. Traditional procedures always carry the risk of difficulties, additional injuries, and a scarcity of donors. These problems may be amenable to resolution using three-dimensional (3D)-printing technology, which might be used to print out replacement tissues and organs as well as to print out individualized tissue engineering scaffolds, repair tissue abnormalities in situ with cells, and so on. Besides a perfect anatomical match with the patient's injured tissue, 3D-printed organs and implants can also feature designed material microstructures and cell groupings that spur cell proliferation and differentiation. Hence, the needed tissue restoration can be accomplished with the help of these implants, and the issue of a lack of donors may one day be resolved. This chapter discusses various kinds of biomedical materials, summarizes pertinent research and recent breakthroughs on four levels, and examines current concerns and research challenges associated with 3D-printing materials and in vitro extracellular matrix construction for medicinal use.
References
- Wolfe , R.A. , Roys , E.C. , Merion , R.M. , Trends in organ donation and transplantation in the United States, 1999-2008 . Am. J. Transplant. , 10 , 4 , 961 – 72 , 2010 Apr 1.
- Wan , Q. , Liu , H. , Ye , S. , Ye , Q. , Confirmed transmission of bacterial or fungal infection to kidney transplant recipients from donated after cardiac death (DCD) donors in China: A single-center analysis . Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res. , 23 , 3770 , 2017 .
- Butscher , A. , Bohner , M. , Doebelin , N. , Hofmann , S. , Müller , R. , New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes . Actabiomaterialia , 9 , 11 , 9149 – 58 , 2013 Nov 1.
- Saunders , R.E. , Gough , J.E. , Derby , B. , Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing . Biomaterials , 29 , 2 , 193 – 203 , 2008 Jan 1.
- Xu , T. , Zhao , W. , Zhu , J.M. , Albanna , M.Z. , Yoo , J.J. , Atala , A. , Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology . Biomaterials , 34 , 1 , 130 – 9 , 2013 Jan 1.
- Derby , B. , Printing and prototyping of tissues and scaffolds . Science , 338 , 6109 , 921 – 6 , 2012 Nov 16.
- Wang , K. , Ho , C.C. , Zhang , C. , Wang , B. , A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications . Engineering , 3 , 5 , 653 – 62 , 2017 Oct 1.
- Zhao , Y. , Yao , R. , Ouyang , L. , Ding , H. , Zhang , T. , Zhang , K. , Cheng , S. , Sun , W. , Three-dimensional printing of Hela cells for cervical tumor model in vitro . Biofabrication , 6 , 3 , 035001 , 2014 Apr 11.
- Yap , Y.L. , Tan , Y.S. , Tan , H.K. , Peh , Z.K. , Low , X.Y. , Yeong , W.Y. , Tan , C.S. , Laude , A. , 3D printed bio-models for medical applications . Rapid Prototyp. J. , 23 , 227 – 235 , 2017 Mar 20.
- Mogali , S.R. , Yeong , W.Y. , Tan , H.K. , Tan , G.J. , Abrahams , P.H. , Zary , N. , Low-Beer , N. , Ferenczi , M.A. , Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education . Anat. Sci. Educ. , 11 , 1 , 54 – 64 , 2018 Jan.
- Al-Tamimi , A.A. , Fernandes , P.R. , Peach , C. , Cooper , G. , Diver , C. , Bartolo , P.J. , Metallic bone fixation implants: A novel design approach for reducing the stress shielding phenomenon . Virtual Phys. Prototyp. , 12 , 2 , 141 – 51 , 2017 Apr 3.
- Zhang , Y. , Yang , Z. , Li , X. , Chen , Y. , Zhang , S. , Du , M. , Li , J. , Custom prosthetic reconstruction for proximal tibial osteosarcoma with proximal tibiofibular joint involved . Surg. Oncol. , 17 , 2 , 87 – 95 , 2008 Aug 1.
-
Galasso , O.
,
Mariconda , M.
,
Brando , A.
,
Iannò , B.
,
Disassembly of a distal femur modular prosthesis after tumor resection
.
J. Arthroplasty
,
25
,
2
,
334
–
e5
,
2010
Feb 1.
10.1016/j.arth.2008.10.011 Google Scholar
- Winder , J. , Cooke , R.S. , Gray , J. , Fannin , T. , Fegan , T. , Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates . J. Med. Eng. Technol. , 23 , 1 , 26 – 8 , 1999 Jan 1.
- Bian , W.G. , Lei , P. , Liang , F.H. , Bone , X.H. , Morphogenetic protein-2 and gel complex on hydroxyapatite-coated porous titanium to repair defects of distalfemur in rabbits . Chin. J. Orthop. Trauma , 9 , 6 , 550 – 4 , 2007 .
- Sing , S.L. , Wang , S. , Agarwala , S. , Wiria , F.E. , Ha , T.M. , Yeong , W.Y. , Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion . Int. J. Bioprinting , 3 , 1 , 65 – 71 , 2017 .
- Sanchez Salcedo , S. , Colilla , M. , Izquierdo-Barba , I. , ValletRegí , M. , Preventing bacterial adhesion on scaffolds for bone tissue engineering . Int. J. Bioprinting , 12 , 52 , 2017 .
- Sanchez-Salcedo , S. , Colilla , M. , Izquierdo-Barba , I. , Vallet-Regí , M. , Design and preparation of biocompatible zwitterionic hydroxyapatite . J. Mater. Chem. B , 1 , 11 , 1595 – 606 , 2013 .
- Izquierdo-Barba , I. , García-Martín , J.M. , Álvarez , R. , Palmero , A. , Esteban , J. , Pérez-Jorge , C. , Arcos , D. , Vallet-Regí , M. , Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation . Actabiomaterialia , 15 , 20 – 8 , 2015 Mar 15.
- Langer , R. and Vacanti , J.P. , Tissue engineering . Science , 260 , 5110 , 920 – 6 , 1993 .
- Li , S. , Qian , T. , Wang , X. , Liu , J. , Gu , X. , Noncoding RNAs and their potential therapeutic applications in tissue engineering . Engineering , 3 , 1 , 3 – 15 , 2017 Feb 1.
- Billiet , T. , Vandenhaute , M. , Schelfhout , J. , Van Vlierberghe , S. , Dubruel , P. , A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering . Biomaterials , 33 , 26 , 6020 – 41 , 2012 Sep 1.
- An , J. , Teoh , J.E. , Suntornnond , R. , Chua , C.K. , Design and 3D printing of scaffolds and tissues . Engineering , 1 , 2 , 261 – 8 , 2015 Jun 1.
- Mosadegh , B. , Xiong , G. , Dunham , S. , Min , J.K. , Current progress in 3D printing for cardiovascular tissue engineering . Biomed. Mater. , 10 , 3 , 034002 , 2015 Mar 16.
- Ng , W.L. , Wang , S. , Yeong , W.Y. , Naing , M.W. , Skin bioprinting: Impending reality or fantasy? Trends Biotechnol. , 34 , 9 , 689 – 99 , 2016 Sep 1.
- Hutmacher , D.W. , Scaffolds in tissue engineering bone and cartilage . Biomaterials , 21 , 24 , 2529 – 43 , 2000 Dec 15.
- Pan , T. and Cao , X. , Progress in the development of hydrogel-rapid prototyping for tissue engineering . Mater. Chin. , 34 , 3 , 236 – 45 , 2015 .
- Ozbolat , I.T. and Hospodiuk , M. , Current advances and future perspectives in extrusion-based bioprinting . Biomaterials , 76 , 321 – 43 , 2016 Jan 1.
- Gudapati , H. , Dey , M. , Ozbolat , I. , A comprehensive review on drop-let-based bioprinting: Past, present and future . Biomaterials , 102 , 20 – 42 , 2016 Sep 1.
- Koch , L. , Brandt , O. , Deiwick , A. , Chichkov , B. , Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study . Int. J. Bioprinting , 3 , 1 , 42 – 53 , 2017 .
- Fedorovich , N.E. , Schuurman , W. , Wijnberg , H.M. , Prins , H.J. , Van Weeren , P.R. , Malda , J. , Alblas , J. , Dhert , W.J. , Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds . Tissue Eng. Part C: Methods , 18 , 1 , 33 – 44 , 2012 Jan 1.
- Martin , I. , Wendt , D. , Heberer , M. , The role of bioreactors in tissue engineering . Trends Biotechnol. , 22 , 2 , 80 – 6 , 2004 Feb 1.
- Stephens , J.S. , Cooper , J.A. , Phelan Jr. , F.R. , Dunkers , J.P. , Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions . Biotechnol. Bioeng. , 97 , 4 , 952 – 61 , 2007 Jul 1.
- Hong , S. , Sycks , D. , Chan , H.F. , Lin , S. , Lopez , G.P. , Guilak , F. , Leong , K.W. , Zhao , X. , 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures . Adv. Mater. , 27 , 27 , 4035 – 40 , 2015 Jul.
- Hockaday , L.A. , Kang , K.H. , Colangelo , N.W. , Cheung , P.Y. , Duan , B. , Malone , E. , Wu , J. , Girardi , L.N. , Bonassar , L.J. , Lipson , H. , Chu , C.C. , Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds . Biofabrication , 4 , 3 , 035005 , 2012 Aug 23.
- Xue , S.H. , Wang , Y. , Zhao , Y. , Zhang , T. , Lin , F. , Sun , W. et al ., Preliminary study on three dimensional bioprinting of human dental pulp cells . Sci. Tech. Eng. , 12 , 17 , 4103 – 7 , 2012 .
- Cohen , D.L. , Lipton , J.I. , Bonassar , L.J. , Lipson , H. , Additive manufacturing for in situ repair of osteochondral defects . Biofabrication , 2 , 3 , 035004 , 2010 Sep 8.
- Cui , X. , Breitenkamp , K. , Finn , M.G. , Lotz , M. , D'Lima , D.D. , Direct human cartilage repair using three-dimensional bioprinting technology . Tissue Eng. Part A , 18 , 11-12 , 1304 – 12 , 2012 Jun 1.
- Liu , Y. , Zhou , G. , Cao , Y. , Recent progress in cartilage tissue engineering— Our experience and future directions . Engineering , 3 , 1 , 28 – 35 , 2017 Feb 1.
- Gratson , G.M. , Xu , M. , Lewis , J.A. , Direct writing of three-dimensional webs . Nature , 428 , 6981 , 386 , 2004 Mar 25.
- Ivirico , J.L. , Bhattacharjee , M. , Kuyinu , E. , Nair , L.S. , Laurencin , C.T. , Regenerative engineering for knee osteoarthritis treatment: Biomaterials and cell-based technologies . Engineering , 3 , 1 , 16 – 27 , 2017 Feb 1.
- Wu , C. , Luo , Y. , Cuniberti , G. , Xiao , Y. , Gelinsky , M. , Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability . Actabiomaterialia , 7 , 6 , 2644 – 50 , 2011 Jun 1.
- Lian , Q. , Li , D.C. , Chen , C. , Zhang , W.J. , Liu , Y.X. , He , J.K. , Jin , Z.M. , Tissue-Engineered soft tissue oriented manufacturing technologies and additive manufacturing . Chin. J. Tissue Eng. Res. , 18 , 8 , 1263 , 2014 Feb 19.
- Mironov , V. , Kasyanov , V. , Markwald , R.R. , Organ printing: From bioprinter to organ biofabrication line . Curr. Opin. Biotechnol. , 22 , 5 , 667 – 73 , 2011 Oct 1.
- Yang , Y. , Wang , K. , Gu , X. , Leong , K.W. , Biophysical regulation of cell behavior—Cross talk between substrate stiffness and nanotopography . Engineering , 3 , 1 , 36 – 54 , 2017 Feb 1.
- Fischer , M. , Joguet , D. , Robin , G. , Peltier , L. , Laheurte , P. , In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders . Mater. Sci. Eng.: C , 62 , 852 – 9 , 2016 May 1.
- Song , C. , Study on digital and direct manufacturing of customized implant based on selective laser melting [dissertation], South China University of Technology , Guangzhou , 2014 .
- Speirs , M. , Van Hooreweder , B. , Van Humbeeck , J. , Kruth , J.P. , Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison . J. Mech. Behav. Biomed. Mater. , 70 , 53 – 9 , 2017 Jun 1.
-
Yang , Y.
,
Wu , P.
,
Lin , X.
,
Liu , Y.
,
Bian , H.
,
Zhou , Y.
,
Gao , C.
,
Shuai , C.
,
System development, formability quality and microstructure evolution of selective laser-melted magnesium
.
Virtual Phys. Prototyp.
,
11
,
3
,
173
–
81
,
2016
Jul 2.
10.1080/17452759.2016.1210522 Google Scholar
- Xu , T. , Binder , K.W. , Albanna , M.Z. , Dice , D. , Zhao , W. , Yoo , J.J. , Atala , A. , Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications . Biofabrication , 5 , 1 , 015001 , 2012 Nov 21.
- Yue , J. , Zhao , P. , Gerasimov , J.Y. , van de Lagemaat , M. , Grotenhuis , A. , Rustema-Abbing , M. , van der Mei , H.C. , Busscher , H.J. , Herrmann , A. , Ren , Y. , 3D-printable antimicrobial composite resins . Adv. Funct. Mater. , 25 , 43 , 6756 – 67 , 2015 Nov.
- Pistone , A. , Iannazzo , D. , Espro , C. , Galvagno , S. , Tampieri , A. , Montesi , M. , Panseri , S. , Sandri , M. , Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys peptides on Mg-doped hydroxyapatite . Engineering , 3 , 1 , 55 – 9 , 2017 Feb 1.
- Sing , S.L. , Yeong , W.Y. , Wiria , F.E. , Tay , B.Y. , Zhao , Z. , Zhao , L. , Tian , Z. , Yang , S. , Direct selective laser sintering and melting of ceramics: A review . Rapid Prototyp. J. , 23 , 3 , 611 – 23 , 2017 Apr 18.
- Trombetta , R. , Inzana , J.A. , Schwarz , E.M. , Kates , S.L. , Awad , H.A. , 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery . Ann. Biomed. Eng. , 45 , 23 – 44 , 2017 Jan.
- Zhang , G. , Li , J. , Li , J. , Zhou , X. , Xie , J. , Wang , A. , Selective laser melting molding of individualized femur implant: Design, process, optimization . J. Bionic Eng. , 18 , 128 – 37 , 2021 Jan.
- Lee , A.Y. , An , J. , Chua , C.K. , Two-way 4D printing: A review on the reversibility of 3D-printed shape memory materials . Engineering , 3 , 5 , 663 – 74 , 2017 Oct 1.
- Quan , W. , 3D-printed alginate/hydroxyapatite hydrogel in combination of Atsttrin to repair bone defects (Doctoral dissertation, dissertation], Zhejiang University , Hangzhou , 2023 .
-
Yongnian , Y.A.
,
Shengjie , L.I.
,
Zhuo , X.I.
,
Xiaohong , W.A.
,
Ting , Z.H.
,
Renji , Z.H.
,
Fabrication technology of tissue engineering scaffold based on rapid prototyping
.
J. Mech. Eng.
,
46
,
5
,
93
–
8
,
2010
Mar 5.
10.3901/JME.2010.05.093 Google Scholar
- McGuigan , A.P. and Sefton , M.V. , Design criteria for a modular tissue-engineered construct . Tissue Eng. , 13 , 5 , 1079 – 89 , 2007 May 1.
- Chai , G. , Zhang , Y. , Liu , Q.H. , Ma , S.X. , Hu , Q.X. , Cui , L. , Cao , Y.L. , A pilot study of three dimensional printing of human bone marrow stem cells (hBMSCs) . Shanghai Kou Qiang Yi Xue= Shanghai J. Stomatol. , 19 , 1 , 77 – 80 , 2010 Feb 1.
- Mironov , V. , Drake , C. , Wen , X. , Research project: Charleston bioengineered kidney project . Biotechnol. J.: Healthc. Nutrition Technol. , 1 , 9 , 903 – 5 , 2006 Sep.