Advanced Drug Delivery Systems with 3D Printing
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
Using computer-aided design (CAD) and a variety of processes and materials, 3D printing (3DP) allows for the creation of novel geometries with promising potential in fields like pharmaceutical drug delivery treatment. With the Food and Drug Administration's (FDA) blessing (2015), printed medicine presents a once-in-a-generation chance to advance the pharmaceutical business through the discovery of novel substances and technology. The benefits, restrictions, problems, and prospects of 3DP of pharmaceutical-grade formulations and polymers used in drug delivery systems are discussed in this chapter.
References
- Elkomy , M.H. , Changing the drug delivery system: Does it add to noncompliance ramifications control? A simulation study on the pharmacokinetics and pharmacodynamics of an atypical antipsychotic drug . Pharmaceutics , 12 , 4 , 297 , Mar. 25, 2020 .
- Reddy , R.D. and Sharma , V. , Additive manufacturing in drug delivery applications: A review . Int. J. Pharm. , 589 , 119820 , Nov. 15, 2020 .
- Shi , K. , Aviles-Espinosa , R. , Rendon-Morales , E. , Woodbine , L. , Maniruzzaman , M. , Nokhodchi , A. , Novel 3D printed device with integrated macroscale magnetic field triggerable anti-cancer drug delivery system . Colloids Surf. B Biointerfaces , 192 , 111068 , Aug. 1, 2020 .
- Menditto , E. , Orlando , V. , De Rosa , G. , Minghetti , P. , Musazzi , U.M. , Cahir , C. , Kurczewska-Michalak , M. , Kardas , P. , Costa , E. , Sousa Lobo , J.M. , Almeida , I.F. , Patient centric pharmaceutical drug product design—The impact on medication adherence . Pharmaceutics , 12 , 1 , 44 , 2020 .
- Stewart , S.A. , Domínguez-Robles , J. , McIlorum , V.J. , Mancuso , E. , Lamprou , D.A. , Donnelly , R.F. , Larrañeta , E. , Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing . Pharmaceutics , 12 , 2 , 105 , Jan. 28, 2020 .
- Lee , D. , Park , K. , Seo , J. , Recent advances in anti-inflammatory strategies for implantable biosensors and medical implants . BioChip J. , 14 , 48 – 62 , Mar. 2020 .
- Lee , H.J. , Choi , N. , Yoon , E.S. , Cho , I.J. , MEMS devices for drug delivery . Adv. Drug Deliv. Rev. , 128 , 132 – 47 , Mar. 15, 2018 .
- Jacob , S. , Nair , A.B. , Shah , J. , Emerging role of nanosuspensions in drug delivery systems . Biomater. Res. , 24 , 1 – 6 , Dec. 2020 .
-
Singh , R.
,
Gehlot , A.
,
Akram , S.V.
,
Gupta , L.R.
,
Jena , M.K.
,
Prakash , C.
,
Singh , S.
,
Kumar , R.
,
Cloud manufacturing, internet of things-assisted manufacturing and 3D printing technology: Reliable tools for sustainable construction
.
Sustainability
,
13
,
13
,
7327
, Jun. 30,
2021
.
10.3390/su13137327 Google Scholar
- Maniruzzaman , M. , Pharmaceutical applications of hot-melt extrusion: Continuous manufacturing, twin-screw granulations, and 3D printing . Pharmaceutics , 11 , 5 , 218 , May 7, 2019 .
-
M. Maniruzzaman
(Ed.),
3D And 4D Printing In Biomedical Applications: Process Engineering And Additive Manufacturing
,
John Wiley & Sons
,
Germany
, ISBN: ISBN: 978-3-527-34443-7, Mar. 18,
2019
.
10.1002/9783527813704 Google Scholar
- Al-Dulimi , Z. , Wallis , M. , Tan , D.K. , Maniruzzaman , M. , Nokhodchi , A. , 3D printing technology as innovative solutions for biomedical applications . Drug Discovery Today , 26 , 2 , 360 – 83 , Nov. 16, 2020 .
- Vaut , L. , Juszczyk , J.J. , Kamguyan , K. , Jensen , K.E. , Tosello , G. , Boisen , A. , 3D printing of reservoir devices for oral drug delivery: From concept to functionality through design improvement for enhanced mucoadhesion . ACS Biomater. Sci. Eng. , 6 , 4 , 2478 – 86 , Feb. 21, 2020 .
- Katstra , W.E. , Palazzolo , R.D. , Rowe , C.W. , Giritlioglu , B. , Teung , P. , Cima , M.J. , Oral dosage forms fabricated by Three Dimensional Printing™ . J. Control. Release , 66 , 1 , 1 – 9 , May 3, 2000 .
- Robles-Martinez , P. , Xu , X. , Trenfield , S.J. , Awad , A. , Goyanes , A. , Telford , R. , Basit , A.W. , Gaisford , S. , 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method . Pharmaceutics , 11 , 6 , 274 , Jun. 11, 2019 .
- Keikhosravi , N. , Mirdamadian , S.Z. , Varshosaz , J. , Taheri , A. , Preparation and characterization of polypills containing aspirin and simvastatin using 3D printing technology for the prevention of cardiovascular diseases . Drug Dev. Ind. Pharm. , 46 , 10 , 1665 – 75 , Oct. 2, 2020 .
- Pereira , B.C. , Isreb , A. , Forbes , R.T. , Dores , F. , Habashy , R. , Petit , J.B. , Alhnan , M.A. , Oga , E.F. , ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill'architectures . Eur. J. Pharm. Biopharm. , 135 , 94 – 103 , Feb. 1, 2019 .
-
Qi , S.
,
Nasereddin , J.
,
Alqahtani , F.
,
Personalized polypills produced by fused deposition modeling 3d printing
, in:
3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing
, pp.
273
–
95
, Feb. 19,
2019
.
10.1002/9783527813704.ch11 Google Scholar
- Han , D. and Lee , H. , Recent advances in multi-material additive manufacturing: methods and applications . Curr. Opin. Chem. Eng. , 28 , 158 – 66 , Jun. 1, 2020 .
- Joshi , S. , Rawat , K. , Karunakaran , C. , Rajamohan , V. , Mathew , A.T. , Koziol , K. , Thakur , V.K. , Balan , A.S. , 4D printing of materials for the future: Opportunities and challenges . Appl. Mater. Today , 18 , 100490 , Mar. 1, 2020 .
- Han , D. , Morde , R.S. , Mariani , S. , La Mattina , A.A. , Vignali , E. , Yang , C. , Barillaro , G. , Lee , H. , 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion . Adv. Funct. Mater. , 30 , 11 , 1909197 , Mar. 2020 .
- Goyanes , A. , Det-Amornrat , U. , Wang , J. , Basit , A.W. , Gaisford , S. , 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems . J. Control. Release , 234 , 41 – 8 , Jul. 28, 2016 .
- Xu , X. , Awad , A. , Robles-Martinez , P. , Gaisford , S. , Goyanes , A. , Basit , A.W. , Vat photopolymerization 3D printing for advanced drug delivery and medical device applications . J. Control. Release , 329 , 743 – 57 , Jan. 10, 2021 .
- Zhao , Z. , Kuang , X. , Yuan , C. , Qi , H.J. , Fang , D. , Hydrophilic/hydrophobic composite shape-shifting structures . ACS Appl. Mater. Interfaces , 10 , 23 , 19932 – 9 , May 8, 2018 .
- Bagheri , A. and Jin , J. , Photopolymerization in 3D printing . ACS Appl. Polym. Mater. , 1 , 4 , 593 – 611 , Feb. 20, 2019 .
- C.W. Hull , Apparatus for production of three-dimensional objects by stereolithography . United States Patent, Appl., No. 638905, Filed. 1984 .
- J.P. Davim (Ed.), Additive And Subtractive Manufacturing: Emergent Technologies , Walter de Gruyter GmbH & Co KG , Berlin, Germany , ISBN: ISBN. 9783110548334, Jan. 20, 2020 .
- Uddin , M.J. , Scoutaris , N. , Economidou , S.N. , Giraud , C. , Chowdhry , B.Z. , Donnelly , R.F. , Douroumis , D. , 3D printed microneedles for anticancer therapy of skin tumours . Mater. Sci. Eng. C. , 107 , 110248 , Feb. 1, 2020 .
- Yang , Y. , Zhou , Y. , Lin , X. , Yang , Q. , Yang , G. , Printability of external and internal structures based on digital light processing 3D printing technique . Pharmaceutics , 12 , 3 , 207 , Feb. 28, 2020 .
- Kadry , H. , Wadnap , S. , Xu , C. , Ahsan , F. , Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets . Eur. J. Pharm. Sci. , 135 , 60 – 7 , Jul. 1, 2019 .
- J.M. DeSimone , E.T. Samulski , J.P. Rolland , Inventors; Carbon Inc, assignee, Methods and apparatus for continuous liquid interface production with rotation . United States patent US 10,589,512, Mar. 17, 2020 .
- Taki , K. , A simplified 2D numerical simulation of photopolymerization kinetics and oxygen diffusion–reaction for the continuous liquid interface production (CLIP) system . Polymers , 12 , 4 , 875 , Apr. 10, 2020 .
- Janusziewicz , R. , Tumbleston , J.R. , Quintanilla , A.L. , Mecham , S.J. , DeSimone , J.M. , Layerless fabrication with continuous liquid interface production . Proc. Natl. Acad. Sci. , 113 , 42 , 11703 – 8 , Oct. 18, 2016 .
- Xing , J.F. , Zheng , M.L. , Duan , X.M. , Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery . Chem. Soc Rev. , 44 , 15 , 5031 – 9 , 2015 .
- Shavkuta , B. , Bardakova , K. , Khristidis , Y. , Minaev , N.V. , Frolova , A. , Kotova , S. , Aksenova , N. , Heydari , Z. , Semenova , E. , Khlebnikova , T. , Golubeva , E.N. , Approach to tune drug release in particles fabricated from methacrylate functionalized polylactides . Mol. Syst. Des. Eng. , 6 , 3 , 202 – 13 , 2021 .
-
Cordeiro , A.S.
,
Tekko , I.A.
,
Jomaa , M.H.
,
Vora , L.
,
McAlister , E.
,
Volpe-Zanutto , F.
,
Nethery , M.
,
Baine , P.T.
,
Mitchell , N.
,
McNeill , D.W.
,
Donnelly , R.F.
,
Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: Application in the development of polymeric drug delivery systems
.
Pharm. Res.
,
37
,
1
–
5
, Sep.
2020
.
10.1007/s11095-020-02887-9 Google Scholar
- Homayun , B. , Lin , X. , Choi , H.J. , Challenges and recent progress in oral drug delivery systems for biopharmaceuticals . Pharmaceutics , 11 , 3 , 129 , Mar. 19, 2019 .
- Ensign , L.M. , Cone , R. , Hanes , J. , Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers . Advanced Drug delivery Rev. , 64 , 6 , 557 – 70 , 2012 .
- Zunhammer , M. , Ploner , M. , Engelbrecht , C. , Bock , J. , Kessner , S.S. , Bingel , U. , The effects of treatment failure generalize across different routes of drug administration . Sci. Transl. Med. , 9 , 393 , eaal2999 , Jun. 7, 2017 .
- Mondal , S. and Pal , U. , 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications . J. Drug Deliv. Sci. Technol. , 53 , 101131 , Oct. 1, 2019 .
- Zhou , Y. , Chen , X. , Cao , J. , Gao , H. , Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy . J. Mater. Chem. B , 8 , 31 , 6765 – 81 , 2020 .
- Lee , J.H. , Baik , J.M. , Yu , Y.S. , Kim , J.H. , Ahn , C.B. , Son , K.H. , Kim , J.H. , Choi , E.S. , Lee , J.W. , Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis . Sci. Rep. , 10 , 1 , 7554 , May 5, 2020 .
- Lee , J.W. , Kang , K.S. , Lee , S.H. , Kim , J.Y. , Lee , B.K. , Cho , D.W. , Bone regeneration using a microstereolithography-produced customized poly (propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres . Biomaterials , 32 , 3 , 744 – 52 , Jan. 1, 2011 .
- Timmer , C.J. and Mulders , T.M. , Pharmacokinetics of etonogestrel and ethinylestradiol released from a combined contraceptive vaginal ring . Clin. Pharmacokinetics , 39 , 233 – 42 , Sep. 2000 .
- Wang , J. , Zhang , Y. , Aghda , N.H. , Pillai , A.R. , Thakkar , R. , Nokhodchi , A. , Maniruzzaman , M. , Emerging 3D printing technologies for drug delivery devices: Current status and future perspective . Adv. Drug Deliv. Rev. , 174 , 294 – 316 , Jul. 1, 2021 .
- R.A. Patel , L.R. Bucalo , Inventors, Titan Pharmaceuticals Inc, assignee, Implantable polymeric device for sustained release of buprenorphine . United States patent US 7,736,665, Jun. 15, 2010 .
- Kleppner , S.R. , Patel , R. , Costantini , L.C. , McDonough , J. , In-vitro and in-vivo characterization of a buprenorphine delivery system . J. Pharm. Pharmacol. , 58 , 3 , 295 – 302 , Mar, 2006 .
- Fu , J. , Yu , X. , Jin , Y. , 3D printing of vaginal rings with personalized shapes for controlled release of progesterone . Int. J. Pharm. , 539 , 1-2 , 75 – 82 , Mar. 25, 2018 .
- Pavithra , D. and Doble , M. , Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention . Biomed. Mater. , 3 , 3 , 034003 , Aug. 8, 2008 .
- Vivero-Lopez , M. , Xu , X. , Muras , A. , Otero , A. , Concheiro , A. , Gaisford , S. , Basit , A.W. , Alvarez-Lorenzo , C. , Goyanes , A. , Anti-biofilm multi drug-loaded 3D printed hearing aids . Mater. Sci. Eng. C. , 119 , 111606 , Feb. 1, 2021 .
- Wu , Y. , Woodbine , L. , Carr , A.M. , Pillai , A.R. , Nokhodchi , A. , Maniruzzaman , M. , 3D printed calcium phosphate cement (CPC) scaffolds for anti-cancer drug delivery . Pharmaceutics , 12 , 11 , 1077 , Nov. 11, 2020 .
- Deny , A. , Loiez , C. , Deken , V. , Putman , S. , Duhamel , A. , Girard , J. , Pasquier , G. , Chantelot , C. , Senneville , E. , Migaud , H. , Epidemiology of patients with MSSA versus MRSA infections of orthopedic implants: Retrospective study of 115 patients . Orthop. Traumatol. Surg. Res. , 102 , 7 , 919 – 23 , Nov. 1, 2016 .
- Wang , J. , Zhang , Y. , Aghda , N.H. , Pillai , A.R. , Thakkar , R. , Nokhodchi , A. , Maniruzzaman , M. , Emerging 3D printing technologies for drug delivery devices: Current status and future perspective . Adv. Drug Deliv. Rev. , 174 , 294 – 316 , Jul. 1, 2021 .
- Wang , J. , Zhang , Y. , Aghda , N.H. , Pillai , A.R. , Thakkar , R. , Nokhodchi , A. , Maniruzzaman , M. , Emerging 3D printing technologies for drug delivery devices: Current status and future perspective . Adv. Drug Deliv. Rev. , 174 , 294 – 316 , Jul. 1, 2021 .
- Nanda , A. and Patra , D.P. , Surgical complications in neurosurgery , in: Complications in Neurosurgery , pp. 17 – 22 , Elsevier , Amsterdam, Netherlands , Jan. 1, 2018 .
- VanEpps , J.S. and Younger , J.G. , Implantable device related infection . Shock (Augusta, Ga.) , 46 , 6 , 597 , Dec. 2016 .
- Fouladian , P. , Kohlhagen , J. , Arafat , M. , Afinjuomo , F. , Workman , N. , Abuhelwa , A.Y. , Song , Y. , Garg , S. , Blencowe , A. , Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers . Biomater. Sci. , 8 , 23 , 6625 – 36 , 2020 .
- Guerra , A.J. , Cano , P. , Rabionet , M. , Puig , T. , Ciurana , J. , 3D-printed PCL/ PLA composite stents: Towards a new solution to cardiovascular problems . Materials , 11 , 9 , 1679 , Sep. 11, 2018 .
- Van Lith , R. , Baker , E. , Ware , H. , Yang , J. , Farsheed , A.C. , Sun , C. , Ameer , G. , 3D-printing strong high-resolution antioxidant bioresorbable vascular stents . Adv. Mater. Technol. , 1 , 9 , 1600138 , Dec. 2016 .
- Weisman , J.A. , Ballard , D.H. , Jammalamadaka , U. , Tappa , K. , Sumerel , J. , D'Agostino , H.B. , Mills , D.K. , Woodard , P.K. , 3D printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: In vitro proof of concept study . Acad. Radiol. , 26 , 2 , 270 – 4 , Feb. 1, 2019 .
- Tappa , K. , Jammalamadaka , U. , Weisman , J.A. , Ballard , D.H. , Wolford , D.D. , Pascual-Garrido , C. , Wolford , L.M. , Woodard , P.K. , Mills , D.K. , 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery . J. Funct. Biomater. , 10 , 2 , 17 , Apr. 1, 2019 .
- Domínguez-Robles , J. , Mancinelli , C. , Mancuso , E. , García-Romero , I. , Gilmore , B.F. , Casettari , L. , Larrañeta , E. , Lamprou , D.A. , 3D printing of drug-loaded thermoplastic polyurethane meshes: A potential material for soft tissue reinforcement in vaginal surgery . Pharmaceutics , 12 , 1 , 63 , Jan. 13, 2020 .
- Aduba Jr. , D.C. , Margaretta , E.D. , Marnot , A.E. , Heifferon , K.V. , Surbey , W.R. , Chartrain , N.A. , Whittington , A.R. , Long , T.E. , Williams , C.B. , Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications . Mater. Today Commun. , 19 , 204 – 11 , Jun. 1, 2019 .
-
Ranganathan , S.I.
,
Kohama , C.
,
Mercurio , T.
,
Salvatore , A.
,
Benmassaoud , M.M.
,
Kim , T.W.
,
Effect of temperature and ultraviolet light on the bacterial kill effectiveness of antibiotic-infused 3D printed implants
.
Biomed. Microdevices
,
22
,
1
–
4
, Sep.
2020
.
10.1007/s10544-020-00512-5 Google Scholar
- Bandyopadhyay , A. and Heer , B. , Additive manufacturing of multi-material structures . Mater. Sci. Eng. R Rep. , 129 , 1 – 6 , Jul. 1, 2018 .
- Chen , G. , Xu , Y. , Kwok , P.C. , Kang , L. , Pharmaceutical applications of 3D printing . Addit. Manuf. , 34 , 101209 , Aug. 1, 2020 .
- Yang , J. , Liu , X. , Fu , Y. , Song , Y. , Recent advances of microneedles for biomedical applications: drug delivery and beyond . Acta Pharm. Sin. B , 9 , 3 , 469 – 83 , May 1, 2019 .
- Ma , G. and Wu , C. , Microneedle, bio-microneedle and bio-inspired microneedle: A review . J. Control. Release , 251 , 11 – 23 , Apr. 10, 2017 .
- Joyee , E.B. and Pan , Y. , Additive manufacturing of multi-material soft robot for on-demand drug delivery applications . J. Manuf. Process. , 56 , 1178 – 84 , Aug. 1, 2020 .
-
West , T.G.
and
Bradbury , T.J.
,
3D printing: A case of zipdose® technology– world›s first 3d printing platform to obtain fda approval for a pharmaceutical product
, in:
3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing
, pp.
53
–
79
, Feb. 19,
2019
.
10.1002/9783527813704.ch3 Google Scholar
- Abdollahi , S. , Boktor , J. , Hibino , N. , Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses . Transl. Res. , 211 , 123 – 38 , Sep. 1, 2019 .
- Wang , J. , Zhang , Y. , Aghda , N.H. , Pillai , A.R. , Thakkar , R. , Nokhodchi , A. , Maniruzzaman , M. , Emerging 3D printing technologies for drug delivery devices: Current status and future perspective . Adv. Drug Deliv. Rev. , 174 , 294 – 316 , Jul. 1, 2021 .
- Shah , J. , Snider , B. , Clarke , T. , Kozutsky , S. , Lacki , M. , Hosseini , A. , Large-scale 3D printers for additive manufacturing: Design considerations and challenges . Int. J. Adv. Manuf. Technol. , 104 , 9-12 , 3679 – 93 , Oct. 2019 .
- Shim , J.S. , Kim , J.E. , Jeong , S.H. , Choi , Y.J. , Ryu , J.J. , Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations . J. Prosthet. Dent. , 124 , 4 , 468 – 75 , Oct. 1, 2020 .
- Kalyan , B.G.P. and Kumar , L. , 3D printing: Applications in tissue engineering, medical devices, and drug delivery . AAPS PharmSciTech , 23 , 4 , 92 , Mar. 17, 2022 .
- Zhu , J. , Zhang , Q. , Yang , T. , Liu , Y. , Liu , R. , 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization . Nat. Commun. , 11 , 1 , 3462 , Jul. 10, 2020 .
- Gu , J. , Wensing , M. , Uhde , E. , Salthammer , T. , Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer . Environ. Int. , 123 , 476 – 85 , Feb. 1, 2019 .
- Lim , S.H. , Kathuria , H. , Tan , J.J. , Kang , L. , 3D printed drug delivery and testing systems—a passing fad or the future? Adv. Drug Deliv. Rev. , 132 , 139 – 68 , Jul. 1, 2018 .
-
Thomas , D.S.
and
Gilbert , S.W.
,
Costs And Cost Effectiveness Of Additive Manufacturing
, vol.
NIST Special Publication, National Institute of Standards and Technology
,
USA
, 1176, p.
12
, Dec. 4,
2014
.
10.6028/NIST.SP.1176 Google Scholar
- Danayat , S.S. , Investigating 3-D Printed Polymer Heat Exchanger , Doctoral Dissertation, Arizona State University , 2019 .