The Potential of 3D-Printed Anatomical Model for Surgical Planning
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
The possible surgical applications of 3D printing for anatomical simulations are discussed in this chapter. Since its introduction, 3D printing has revolutionized several industries and fields. Orthopedic, neurological, heart valve, and cancerous tissue surgeries are all listed as potential applications for 3D-printed models. Congenital anomaly surgical planning has also been considered. The use of 3D-printed models to teach surgical anatomy has been outlined. The notion of bone grinding has highlighted the central importance of 3D-printed models during the treatment of benign and malignant malignancies. Finally, several potential problems and benefits of using 3D-printed models in surgery, as well as certain ethical considerations, are discussed.
References
- Johnson , B.N. , Lancaster , K.Z. , Zhen , G. , He , J. , Gupta , M.K. , Kong , Y.L. , Engel , E.A. , Krick , K.D. , Ju , A. , Meng , F. , Enquist , L.W. , 3D printed anatomical nerve regeneration pathways . Adv. Funct. Mater. , 25 , 39 , 6205 – 17 , Oct. 2015 .
- Liaw , C.Y. and Guvendiren , M. , Current and emerging applications of 3D printing in medicine . Biofabrication , 9 , 2 , 024102 , Jun. 7, 2017 .
- Zhang , Y. , Yang , Z. , Li , X. , Chen , Y. , Zhang , S. , Du , M. , Li , J. , Custom prosthetic reconstruction for proximal tibial osteosarcoma with proximal tibiofibular joint involved . Surg. Oncol. , 17 , 2 , 87 – 95 , Aug. 1, 2008 .
-
Galasso , O.
,
Mariconda , M.
,
Brando , A.
,
Iannò , B.
,
Disassembly of a distal femur modular prosthesis after tumor resection
.
J. Arthroplasty
,
25
,
2
,
334
–
e5
, Feb. 1,
2010
.
10.1016/j.arth.2008.10.011 Google Scholar
- Tejo-Otero , A. , Buj-Corral , I. , Fenollosa-Artés , F. , 3D printing in medicine for preoperative surgical planning: A review . Ann. Biomed. Eng. , 48 , 2 , 536 – 55 , Feb. 2020 .
- Segaran , N. , Saini , G. , Mayer , J.L. , Naidu , S. , Patel , I. , Alzubaidi , S. , Oklu , R. , Application of 3D printing in preoperative planning . J. Clin. Med. , 10 , 5 , 917 , Feb. 26, 2021 .
- Tack , P. , Victor , J. , Gemmel , P. , Annemans , L. , 3D-printing techniques in a medical setting: A systematic literature review . Biomed. Eng. Online , 15 , 1 – 21 , Dec. 2016 .
- Martelli , N. , Serrano , C. , van den Brink , H. , Pineau , J. , Prognon , P. , Borget , I. , El Batti , S. , Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review . Surgery , 159 , 6 , 1485 – 500 , Jun. 1, 2016 .
- I. Gibson , Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing , Springer , New York , 2016 .
- M.H. Nasab (Ed.), Handbook of Robotic and Image-Guided Surgery , Elsevier , USA , Sep. 25, 2019 .
- Cornejo , J. , Cornejo-Aguilar , J.A. , Perales-Villarroel , J.P. , Innovaciones internacionales en robótica médica para mejorar el manejo del paciente en Perú . Rev. Fac. Med. Hum. , 19 , 4 , 105 – 13 , Oct. 2019 .
- Desai , J.P. , The Encyclopedia Of Medical Robotics, (In 4 Volumes) , World Scientific , Singapore , Aug. 28, 2018 .
-
Cornejo , J.
,
Cornejo-Aguilar , J.A.
,
Palomares , R.
,
Biomedik surgeon: Surgical robotic system for training and simulation by medical students in Peru
, in:
2019 International Conference on Control of Dynamical and Aerospace Systems (XPOTRON)
,
IEEE
, pp.
1
–
4
, Apr. 23,
2019
.
10.1109/XPOTRON.2019.8705717 Google Scholar
-
Cornejo , J.
,
Cornejo-Aguilar , J.A.
,
Sebastian , R.
,
Perales , P.
,
Gonzalez , C.
,
Vargas , M.
,
Elli , E.F.
,
Mechanical design of a novel surgical laparoscopic simulator for telemedicine assistance and physician training during aerospace applications
, in:
2021 IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)
,
IEEE
, pp.
53
–
56
, May 28,
2021
.
10.1109/ECBIOS51820.2021.9510753 Google Scholar
-
Cornejo , J.
,
Perales-Villarroel , J.P.
,
Sebastian , R.
,
Cornejo-Aguilar , J.A.
,
Conceptual design of space biosurgeon for robotic surgery and aerospace medicine
, in:
2020 IEEE ANDESCON
,
IEEE
, pp.
1
–
6
, Oct. 13,
2020
.
10.1109/ANDESCON50619.2020.9272122 Google Scholar
-
Cornejo , J.
,
Cornejo-Aguilar , J.A.
,
Gonzalez , C.
,
Sebastian , R.
,
Mechanical and kinematic design of surgical mini robotic manipulator used into SP-LAP multi-DOF platform for training and simulation
, in:
2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON)
,
IEEE
, pp.
1
–
4
, Aug. 5,
2021
.
10.1109/INTERCON52678.2021.9532965 Google Scholar
- Mitsouras , D. , Liacouras , P.C. , Wake , N. , Rybicki , F.J. , RadioGraphics update: Medical 3D printing for the radiologist . Radiographics , 40 , 4 , E21 – 3 , Jul. 2020 .
- Bücking , T.M. , Hill , E.R. , Robertson , J.L. , Maneas , E. , Plumb , A.A. , Nikitichev , D.I. , From medical imaging data to 3D printed anatomical models . PloS One , 12 , 5 , e0178540 , May 31, 2017 .
- Liaw , C.Y. and Guvendiren , M. , Current and emerging applications of 3D printing in medicine . Biofabrication , 9 , 2 , 024102 , Jun. 7, 2017 .
- Christensen , A. and Rybicki , F.J. , Maintaining safety and efficacy for 3D printing in medicine . 3D Print. Med. , 3 , 1 , 1 – 0 , Mar. 2017 .
-
Gibson , I.
and
Srinath , A.
,
Simplifying medical additive manufacturing: Making the surgeon the designer
.
Proc. Technol.
,
20
,
237
–
42
, Jan. 1,
2015
.
10.1016/j.protcy.2015.07.038 Google Scholar
- Bücking , T.M. , Hill , E.R. , Robertson , J.L. , Maneas , E. , Plumb , A.A. , Nikitichev , D.I. , From medical imaging data to 3D printed anatomical models . PloS One , 12 , 5 , e0178540 , May 31, 2017 .
- Giannopoulos , A.A. , Mitsouras , D. , Yoo , S.J. , Liu , P.P. , Chatzizisis , Y.S. , Rybicki , F.J. , Applications of 3D printing in cardiovascular diseases . Nat. Rev. Cardiol. , 13 , 12 , 701 – 18 , Dec. 2016 .
-
Babbar , A.
,
Jain , V.
,
Gupta , D.
,
Thermogenesis mitigation using ultrasonic actuation during bone grinding: A hybrid approach using CEM43 C and Arrhenius model
.
J. Braz. Soc. Mech. Sci. Eng.
,
41
,
1
–
4
, Oct.
2019
.
10.1007/s40430-019-1913-6 Google Scholar
- Jacobs , S. , Grunert , R. , Mohr , F.W. , Falk , V. , 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: A preliminary study . Interact. Cardiovasc. Thorac. Surg. , 7 , 1 , 6 – 9 , Feb. 1, 2008 .
- Kumar , M. , Babbar , A. , Sharma , A. , Shahi , A.S. , Effect of post weld thermal aging (PWTA) sensitization on micro-hardness and corrosion behavior of AISI 304 weld joints . J. Phys. Conf. Ser. IOP Publishing , 1240 , 1 , 012078 , Jul. 1, 2019 .
- Babbar , A. , Singh , P.A. , Farwaha , H.S. , Parametric study of magnetic abrasive finishing of UNS C26000 flat brass plate . Int. J. Adv. Mechatron. Robot. , 9 , 83 – 9 , 2017 .
- Kang , H.W. , Lee , S.J. , Ko , I.K. , Kengla , C. , Yoo , J.J. , Atala , A. , A 3D bioprinting system to produce human-scale tissue constructs with structural integrity . Nat. Biotechnol. , 34 , 3 , 312 – 9 , Mar. 2016 .
- Mitsouras , D. , Liacouras , P. , Imanzadeh , A. , Giannopoulos , A.A. , Cai , T. , Kumamaru , K.K. , George , E. , Wake , N. , Caterson , E.J. , Pomahac , B. , Ho , V.B. , Medical 3D printing for the radiologist . Radiographics , 35 , 7 , 1965 – 88 , Nov. 2015 .
- Edelman , R.R. , The history of MR imaging as seen through the pages of radiology . Radiology , 273 , 2S , S181 – 200 , Nov. 2014 .
-
Thomas , A.M.
and
Banerjee , A.K.
,
The History of Radiology
,
OUP
,
Oxford
, May 9,
2013
.
10.1093/med/9780199639977.001.0001 Google Scholar
- Tahmaseb , A. , Wu , V. , Wismeijer , D. , Coucke , W. , Evans , C. , The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis . Clin. Oral. Implants Res. , 29 , 416 – 35 , Oct. 2018 .
- Gao , C. , Wang , C. , Jin , H. , Wang , Z. , Li , Z. , Shi , C. , Leng , Y. , Yang , F. , Liu , H. , Wang , J. , Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics . RSC Adv. , 8 , 44 , 25210 – 27 , 2018 .
- Kimpe , T. and Tuytschaever , T. , Increasing the number of gray shades in medical display systems—how much is enough? J. Digit. Imaging , 20 , 4 , 422 – 32 , Dec. 2007 .
-
Pieper , S.
,
Halle , M.
,
Kikinis , R.
,
3D Slicer
, in:
2004 2nd IEEE International Symposium on Biomedical Imaging: Nano To Macro (IEEE Cat No. 04EX821)
, pp.
632
–
635
, Apr. 18,
2004
IEEE
.
10.1109/ISBI.2004.1398617 Google Scholar
- Esses , S.J. , Berman , P. , Bloom , A.I. , Sosna , J. , Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping . Am. J. Roentgenol. , 196 , 6 , W683 – 8 , Jun. 2011 .
- Mohan , N. , Senthil , P. , Vinodh , S. , Jayanth , N. , A review on composite materials and process parameters optimisation for the fused deposition modelling process . Virtual Phys. Prototyp. , 12 , 1 , 47 – 59 , Jan. 2, 2017 .
- Jin , Y.A. , Li , H. , He , Y. , Fu , J.Z. , Quantitative analysis of surface profile in fused deposition modelling . Addit. Manuf. , 8 , 142 – 8 , Oct. 1, 2015 .
- Espalin , D. , Arcaute , K. , Rodriguez , D. , Medina , F. , Posner , M. , Wicker , R. , Fused deposition modeling of patient-specific polymethylmethacrylate implants . Rapid Prototyp. J. , 16 , 3 , 164 – 73 , Apr. 27, 2010 .
- Mazzoli , A. , Selective laser sintering in biomedical engineering . Med. Biol. Eng. Comput. , 51 , 245 – 56 , Mar. 2013 .
- Choi , J.W. and Kim , N. , Clinical application of three-dimensional printing technology in craniofacial plastic surgery . Arch. Plast. Surg. , 42 , 03 , 267 – 77 , May 2015 .
- Murr , L.E. , Esquivel , E.V. , Quinones , S.A. , Gaytan , S.M. , Lopez , M.I. , Martinez , E.Y. , Medina , F. , Hernandez , D.H. , Martinez , E. , Martinez , J.L. , Stafford , S.W. , Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V . Mater. Charact. , 60 , 2 , 96 – 105 , Feb. 1, 2009 .
- Grover , T. , Pandey , A. , Kumari , S.T. , Awasthi , A. , Singh , B. , Dixit , P. , Singhal , P. , Saxena , K.K. , Role of titanium in bio implants and additive manufacturing: An overview . Mater. Today Proc. , 26 , 3071 – 80 , Jan. 1, 2020 .
- Zhao , X. , Li , S. , Zhang , M. , Liu , Y. , Sercombe , T.B. , Wang , S. , Hao , Y. , Yang , R. , Murr , L.E. , Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting . Mater. Des. , 95 , 21 – 31 , Apr. 5, 2016 .
- Nematollahi , M. , Baghbaderani , K.S. , Amerinatanzi , A. , Zamanian , H. , Elahinia , M. , Application of NiTi in assistive and rehabilitation devices: A review . Bioengineering , 6 , 2 , 37 , Apr. 29, 2019 .
- Li , Y. , Hu , Y. , Cong , W. , Zhi , L. , Guo , Z. , Additive manufacturing of alumina using laser engineered net shaping: Effects of deposition variables . Ceram. Int. , 43 , 10 , 7768 – 75 , Jul. 1, 2017 .
- Zhang , L.C. , Klemm , D. , Eckert , J. , Hao , Y.L. , Sercombe , T.B. , Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb– 4Zr–8Sn alloy . Scr. Mater. , 65 , 1 , 21 – 4 , Jun. 1, 2011 .
- Ghai , S. , Sharma , Y. , Jain , N. , Satpathy , M. , Pillai , A.K. , Use of 3-D printing technologies in craniomaxillofacial surgery: A review . Oral. Maxillofac. Surg. , 22 , 249 – 59 , Sep. 2018 .
- Crafts , T.D. , Ellsperman , S.E. , Wannemuehler , T.J. , Bellicchi , T.D. , Shipchandler , T.Z. , Mantravadi , A.V. , Three-dimensional printing and its applications in otorhinolaryngology–head and neck surgery . Otolaryngol. Head Neck Surg. , 156 , 6 , 999 – 1010 , Jun. 2017 .
- Pettersson , A.B. , Salmi , M. , Vallittu , P. , Serlo , W. , Tuomi , J. , Mäkitie , A.A. , Main clinical use of additive manufacturing (three-dimensional printing) in Finland restricted to the head and neck area in 2016–2017 . Scand. J. Surg. , 109 , 2 , 166 – 73 , Jun. 2020 .
- Zimmerer , R.M. , Ellis III , E. , Aniceto , G.S. , Schramm , A. , Wagner , M.E. , Grant , M.P. , Cornelius , C.P. , Strong , E.B. , Rana , M. , Chye , L.T. , Calle , A.R. , A prospective multicenter study to compare the precision of posttraumatic internal orbital reconstruction with standard preformed and individualized orbital implants . J. Craniomaxillofac. Surg. , 44 , 9 , 1485 – 97 , Sep. 1, 2016 .
- Rana , M. , Chui , C.H. , Wagner , M. , Zimmerer , R. , Rana , M. , Gellrich , N.C. , Increasing the accuracy of orbital reconstruction with selective laser-melted patient-specific implants combined with intraoperative navigation . J. Oral. Maxillofac. Surg. , 73 , 6 , 1113 – 8 , Jun. 1, 2015 .
- Mazzoni , S. , Bianchi , A. , Schiariti , G. , Badiali , G. , Marchetti , C. , Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning . J. Oral. Maxillofac. Surg. , 73 , 4 , 701 – 7 , Apr. 1, 2015 .
- Laure , B. , Louisy , A. , Joly , A. , Travers , N. , Listrat , A. , Pare , A. , Virtual 3D planning of osteotomies for craniosynostoses and complex craniofacial malformations . Neurochirurgie , 65 , 5 , 269 – 78 , Nov. 1, 2019 .
- Lin , H.H. , Lonic , D. , Lo , L.J. , 3D printing in orthognathic surgery–a literature review . J. Formos. Med. Assoc. , 117 , 7 , 547 – 58 , Jul. 1, 2018 .
-
Mercuri , L.G.
,
The role of custom-made prosthesis for temporomandibular joint replacement
.
Rev. Esp. Cir. Oral. Maxilofac.
,
35
,
1
,
1
–
10
, Jan. 1,
2013
.
10.1016/j.maxilo.2012.02.003 Google Scholar
- Avraham , T. , Franco , P. , Brecht , L.E. , Ceradini , D.J. , Saadeh , P.B. , Hirsch , D.L. , Levine , J.P. , Functional outcomes of virtually planned free fibula flap reconstruction of the mandible . Plast. Reconstr. Surg. , 134 , 4 , 628e – 34e , Oct. 1, 2014 .
- Shenaq , D.S. and Matros , E. , Virtual planning and navigational technology in reconstructive surgery . J. Surg. Oncol. , 118 , 5 , 845 – 52 , Oct. 2018 .
- Nicot , R. , Druelle , C. , Schlund , M. , Roland-Billecart , T. , Gwénaël , R. , Ferri , J. , Gosset , D. , Use of 3D printed models in student education of craniofacial traumas . Dent. Traumatol. , 35 , 4–5 , 296 – 9 , Oct. 2019 .
- Low , C.M. , Morris , J.M. , Matsumoto , J.S. , Stokken , J.K. , O'Brien , E.K. , Choby , G. , Use of 3D-printed and 2D-illustrated international frontal sinus anatomy classification anatomic models for resident education . Otolaryngol. Head Neck Surg. , 161 , 4 , 705 – 13 , Oct. 2019 .
- Ayoub , N. , Ghassemi , A. , Rana , M. , Gerressen , M. , Riediger , D. , Hölzle , F. , Modabber , A. , Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: A randomized prospective clinical trial . Trials , 15 , 1 , 1 – 4 , Dec. 2014 .
- Dumas , B.M. , Nava , A. , Law , H.Z. , Smartt , J. , Derderian , C. , Seaward , J.R. , Kane , A.A. , Hallac , R.R. , Three-dimensional printing for craniofacial surgery: A single institution's 5-year experience . Cleft Palate Craniofac. J. , 56 , 6 , 729 – 34 , Jul. 2019 .
- Berner , A. , Woodruff , M.A. , Lam , C.X. , Arafat , M.T. , Saifzadeh , S. , Steck , R. , Ren , J. , Nerlich , M. , Ekaputra , A.K. , Gibson , I. , Hutmacher , D.W. , Effects of scaffold architecture on cranial bone healing . Int. J. Oral. Maxillofac. Surg. , 43 , 4 , 506 – 13 , Apr. 1, 2014 .
- Tao , O. , Kort-Mascort , J. , Lin , Y. , Pham , H.M. , Charbonneau , A.M. , ElKashty , O.A. , Kinsella , J.M. , Tran , S.D. , The applications of 3D printing for craniofacial tissue engineering . Micromachines , 10 , 7 , 480 , Jul. 17, 2019 .
- Nyberg , E.L. , Farris , A.L. , Hung , B.P. , Dias , M. , Garcia , J.R. , Dorafshar , A.H. , Grayson , W.L. , 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration . Ann. Biomed. Eng. , 45 , 45 – 57 , Jan. 2017 .
- Clifton , W. , Damon , A. , Valero-Moreno , F. , Nottmeier , E. , Pichelmann , M. , The SpineBox: A freely available, open-access, 3D-printed simulator design for lumbar pedicle screw placement . Cureus , 12 , 4 , 1 – 9 , Apr. 20, 2020 .
- Damon , A. , Clifton , W. , Valero-Moreno , F. , Quinones-Hinojosa , A. , Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models . World Neurosurg. , 140 , 173 – 9 , Aug. 1, 2020 .
- Panesar , S.S. , Magnetta , M. , Mukherjee , D. , Abhinav , K. , Branstetter , B.F. , Gardner , P.A. , Iv , M. , Fernandez-Miranda , J.C. , Patient-specific 3-dimensionally printed models for neurosurgical planning and education . Neurosurg. Focus , 47 , 6 , E12 , Dec. 1, 2019 .
- Mashiko , T. , Otani , K. , Kawano , R. , Konno , T. , Kaneko , N. , Ito , Y. , Watanabe , E. , Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping . World Neurosurg. , 83 , 3 , 351 - 61 , Mar. 1, 2015 .
- Colaguori , F. , Marin-Mera , M. , McDonnell , M. , Martínez , J. , Valero-Moreno , F. , Damon , A. , Domingo , R.A. , Clifton , W. , Fox , W.C. , Chaichana , K. , Middlebrooks , E.H. , Three-dimensionally printed surgical simulation tool for brain mapping training and preoperative planning . Oper. Neurosurg. , 21 , 6 , 523 - 32 , Nov. 15, 2021 .
- Martinez , J.L. , Damon , A. , Domingo , R.A. , Valero-Moreno , F. , Quiñones-Hinojosa , A. , Retrosigmoid craniectomy and suprameatal drilling—3-dimensionally printed microneurosurgical simulation: 2-dimensional operative video . Oper. Neurosurg. , 21 , E355 – E356 , Sep. 15, 2021 .
- Vukicevic , M. , Mosadegh , B. , Min , J.K. , Little , S.H. , Cardiac 3D printing and its future directions . JACC: Cardiovasc. Imaging , 10 , 2 , 171 – 84 , Feb. 2017 .
- Ryan , J. , Plasencia , J. , Richardson , R. , Velez , D. , Nigro , J.J. , Pophal , S. , Frakes , D. , 3D printing for congenital heart disease: A single site's initial three-year-experience . 3D Print. Med. , 4 , 1 , 1 – 9 , Dec, 2018 .
- Hermsen , J.L. , Roldan-Alzate , A. , Anagnostopoulos , P.V. , Three-dimensional printing in congenital heart disease . J. Thorac. Dis. , 12 , 3 , 1194 , Mar. 2020 .
- Biglino , G. , Koniordou , D. , Gasparini , M. , Capelli , C. , Leaver , L.K. , Khambadkone , S. , Schievano , S. , Taylor , A.M. , Wray , J. , Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations . Pediatr. Cardiol. , 38 , 813 – 8 , Apr. 2017 .
- Valverde , I. , Three-dimensional printed cardiac models: Applications in the field of medical education, cardiovascular surgery, and structural heart interventions . Rev. Esp. Cardiol. (English Edition) , 70 , 4 , 282 – 91 , Apr. 1, 2017 .
- Costello , J.P. , Olivieri , L.J. , Su , L. , Krieger , A. , Alfares , F. , Thabit , O. , Marshall , M.B. , Yoo , S.J. , Kim , P.C. , Jonas , R.A. , Nath , D.S. , Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians . Congenit. Heart Dis. , 10 , 2 , 185 – 90 , Mar. 2015 .
- Lau , I. , Sun , Z. , Three-dimensional printing in congenital heart disease: A systematic review . J. Med. Radiat. Sci. , 65 , 3 , 226 – 36 , Sep. 2018 .
- Nishimura , R.A. , Vahanian , A. , Eleid , M.F. , Mack , M.J. , Mitral valve disease—current management and future challenges . Lancet , 387 , 10025 , 1324 – 34 , Mar. 26, 2016 .
- Daemen , J.H. , Heuts , S. , Olsthoorn , J.R. , Maessen , J.G. , SardariNia , P. , Mitral valve modelling and three-dimensional printing for planning and simulation of mitral valve repair . Eur. J. Cardiothorac. Surg. , 55 , 3 , 543 – 51 , Mar. 1, 2019 .
- Tuncay , V. , van Ooijen , P. , 3D printing for heart valve disease: A systematic review . Eur. Radiol. Exp. , 3 , 1 , 1 - 0 , Dec. 2019 .
- Yoon , S.H. , Bleiziffer , S. , Latib , A. , Eschenbach , L. , Ancona , M. , Vincent , F. , Kim , W.K. , Unbehaum , A. , Asami , M. , Dhoble , A. , Silaschi , M. , Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement . JACC Cardiovasc. Interv. , 12 , 2 , 182 – 93 , Jan. 28, 2019 .
- Kohli , K. , Wei , Z.A. , Yoganathan , A.P. , Oshinski , J.N. , Leipsic , J. , Blanke , P. , Transcatheter mitral valve planning and the neo-LVOT: utilization of virtual simulation models and 3D printing . Curr. Treat. Options Cardiovasc. Med. , 20 , 1 – 4 , Dec. 2018 .
- Christou , S. , Chatziathanasiou , T. , Angeli , S. , Koullapis , P. , Stylianou , F. , Sznitman , J. , Guo , H.H. , Kassinos , S.C. , Anatomical variability in the upper tracheobronchial tree: Sex-based differences and implications for personalized inhalation therapies . J. Appl. Physiol. , 130 , 3 , 678 – 707 , Mar. 1, 2021 .
- Lermusiaux , P. , Leroux , C. , Tasse , J.C. , Castellani , L. , Martinez , R. , Aortic aneurysm: Construction of a life-size model by rapid prototyping . Ann. Vasc. Surg. , 15 , 2 , 131 – 5 , Mar. 1, 2001 .
- Marti , P. , Lampus , F. , Benevento , D. , Setacci , C. , Trends in use of 3D printing in vascular surgery: A survey . Int. Angiol. , 38 , 5 , 418 – 24 , Sep. 20, 2019 .
- Sheth , R. , Balesh , E.R. , Zhang , Y.S. , Hirsch , J.A. , Khademhosseini , A. , Oklu , R. , Three-dimensional printing: An enabling technology for IR . J. Vasc. Interv. Radiol. , 27 , 6 , 859 – 65 , Jun. 1, 2016 .
- He , L. , Cheng , G.S. , Du , Y.J. , Zhang , Y.S. , Feasibility of device closure for multiple atrial septal defects with an inferior sinus venosus defect: Procedural planning using three-dimensional printed models . Heart Lung Circ. , 29 , 6 , 914 – 20 , Jun. 1, 2020 .
- Thakkar , A.N. , Chinnadurai , P. , Breinholt , J.P. , Lin , C.H. , Transcatheter closure of a sinus venosus atrial septal defect using 3D printing and image fusion guidance . Catheter. Cardiovasc. Interv. , 92 , 2 , 353 – 7 , Aug. 1, 2018 .
- Forte , M.N.V. , Byrne , N. , Valverde , I. , Gomez Ciriza , G. , Hermuzi , A. , Prachasilchai , P. , Mainzer , G. , Pushparajah , K. , Henningsson , M. , Hussain , T. , Qureshi , S. , Interventional correction of sinus venosus atrial septal defect and partial anomalous pulmonary venous drainage: Procedural planning using 3D printed models . JACC Cardiovasc. Imaging , 11 , 2 Part 1 , 275 – 8 , Feb. 2018 .
- Bhatla P , Mosca RS , Tretter JT . Altering management decisions with gained anatomical insight from a 3D printed model of a complex ventricular septal defect . Cardiol. Young , 27 , 2 , 377 – 80 , Mar. 2017 .
- Costello JP , Olivieri LJ , Krieger A , Thabit O , Marshall MB , Yoo SJ , Kim PC , Jonas RA , Nath DS . Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education . World J. Pediatr. Congenit. Heart Surg. , 5 , 3 , 421 – 6 , Jul. 2014 .
- Garekar , S. , Bharati , A. , Chokhandre , M. , Mali , S. , Trivedi , B. , Changela , V.P. , Solanki , N. , Gaikwad , S. , Agarwal , V. , Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect . World J. Pediatr. Congenit. Heart Surg. , 7 , 3 , 344 – 50 , May 2016 .
- Kim , M.S. , Hansgen , A.R. , Wink , O. , Quaife , R.A. , Carroll , J.D. , Rapid prototyping: A new tool in understanding and treating structural heart disease . Circulation , 117 , 18 , 2388 – 94 , May 6, 2008 .
- Ryan , J.R. , Moe , T.G. , Richardson , R. , Frakes , D.H. , Nigro , J.J. , Pophal , S. , A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals . JACC Cardiovasc. Imaging , 8 , 1 , 103 – 4 , Jan. 2015 .
- Vukicevic , M. , Puperi , D.S. , Jane Grande-Allen , K. , Little , S.H. , 3D printed modeling of the mitral valve for catheter-based structural interventions . Ann. Biomed. Eng. , 45 , 508 – 19 , Feb. 2017 .
- Randazzo , M. , Pisapia , J.M. , Singh , N. , Thawani , J.P. , 3D printing in neurosurgery: A systematic review . Surg. Neurol. Int. , 7 , Suppl 33 , S801 , 2016 .
- Nagesh , S.S. , Hinaman , J. , Sommer , K. , Xiong , Z. , Ionita , C.N. , Bednarek , D.R. , Rudin , S. , A simulation platform using 3D printed neurovascular phantoms for clinical utility evaluation of new imaging technologies , in: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging , vol. 10578 , SPIE , pp. 157 – 165 , Mar. 12, 2018 .
- Nagesh , S.S. , Russ , M. , Ionita , C.N. , Bednarek , D. , Rudin , S. , Use of patient specific 3D printed neurovascular phantoms to evaluate the clinical utility of a high resolution x-ray imager , in: Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging , vol. 10137 , SPIE , pp. 114 – 122 , Mar. 13, 2017 .
- Potjewyd , G. , Moxon , S. , Wang , T. , Domingos , M. , Hooper , N.M. , Tissue engineering 3D neurovascular units: A biomaterials and bioprinting perspective . Trends Biotechnol. , 36 , 4 , 457 – 72 , Apr. 1, 2018 .
- Nawka MT , Spallek J , Kuhl J , Krause D , Buhk JH , Fiehler J , Frölich A . Evaluation of a modular in vitro neurovascular procedure simulation for intracranial aneurysm embolization . J. Neurointerv. Surg. , 12 , 2 , 214 – 9 , Feb. 1, 2020 .
- Leal , A. , Souza , M. , Nohama , P. , Additive manufacturing of 3D biomodels as adjuvant in intracranial aneurysm clipping . Artif. Organs , 43 , 1 , E9 – 15 , Jan. 2019 .
- Mashiko , T. , Otani , K. , Kawano , R. , Konno , T. , Kaneko , N. , Ito , Y. , Watanabe , E. , Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping . World Neurosurg. , 83 , 3 , 351 – 61 , Mar. 1, 2015 .
-
Morris , S.
,
Hirata , M.
,
Sugata , H.
,
Goto , T.
,
Matsushita , K.
,
Yanagisawa , T.
,
Saitoh , Y.
,
Kishima , H.
,
Yoshimine , T.
,
Patient-specific cortical electrodes for sulcal and gyral implantation
.
IEEE Trans. Biomed. Eng.
,
62
,
4
,
1034
–
41
, Jul. 11,
2014
.
10.1109/TBME.2014.2329812 Google Scholar
- Kozakiewicz , M. , Elgalal , M. , Loba , P. , Komuński , P. , Arkuszewski , P. , Broniarczyk-Loba , A. , Stefańczyk , L. , Clinical application of 3D pre-bent titanium implants for orbital floor fractures . J. Craniomaxillofac. Surg. , 37 , 4 , 229 – 34 , Jun. 1, 2009 .
- Da Cruz , M.J. , Francis , H.W. , Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development . J. Laryngol. Otol. , 129 , S3 , S23 – 9 , Jul. 2015 .
- Hochman , J.B. , Rhodes , C. , Kraut , J. , Pisa , J. , Unger , B. , End user comparison of anatomically matched 3-dimensional printed and virtual haptic temporal bone simulation: A pilot study . Otolaryngol. Head Neck Surg. , 153 , 2 , 263 – 8 , Aug. 2015 .
- Hochman , J.B. , Rhodes , C. , Wong , D. , Kraut , J. , Pisa , J. , Unger , B. , Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education . Laryngoscope , 125 , 10 , 2353 – 7 , Oct. 2015 .
- Longfield , E.A. , Brickman , T.M. , Jeyakumar , A. , 3D printed pediatric temporal bone: A novel training model . Otol. Neurotol. , 36 , 5 , 793 - 5 , Jun. 1, 2015 .
- Rose , A.S. , Kimbell , J.S. , Webster , C.E. , Harrysson , O.L. , Formeister , E.J. , Buchman , C.A. , Multi-material 3D models for temporal bone surgical simulation . Ann. Otol. Rhinol. Laryngol. , 124 , 7 , 528 – 36 , Jul. 2015 .
- Xiong , L. , Li , X. , Li , H. , Chen , Z. , Xiao , T. , The efficacy of 3D printing- assisted surgery for traumatic fracture: A meta-analysis . Postgrad. Med. J. , 95 , 1126 , 414 - 9 , Aug. 1, 2019 .
- Yang , L. , Shang , X.W. , Fan , J.N. , He , Z.X. , Wang , J.J. , Liu , M. , Zhuang , Y. , Ye , C. , Application of 3D printing in the surgical planning of trimalleolar fracture and doctor-patient communication . BioMed Res. Int. , 2016 , 1 – 5 , Oct. 2016 .
- Hung , C.C. , Li , Y.T. , Chou , Y.C. , Chen , J.E. , Wu , C.C. , Shen , H.C. , Yeh , T.T. , Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture . Int. Orthop. , 43 , 425 – 31 , Feb. 14, 2019 .
- Kang , H.J. , Kim , B.S. , Kim , S.M. , Kim , Y.M. , Kim , H.N. , Park , J.Y. , Cho , J.H. , Choi , Y. , Can preoperative 3D printing change surgeon's operative plan for distal tibia fracture? BioMed Res. Int. , 2019 , 1 – 7 , Feb. 11, 2019 .
- Sheth , R. , Balesh , E.R. , Zhang , Y.S. , Hirsch , J.A. , Khademhosseini , A. , Oklu , R. , Three-dimensional printing: An enabling technology for IR . J. Vasc. Interv. Radiol. , 27 , 6 , 859 – 65 , Jun. 1, 2016 .
- Giannopoulos , A.A. , Steigner , M.L. , George , E. , Barile , M. , Hunsaker , A.R. , Rybicki , F.J. , Mitsouras , D. , Cardiothoracic applications of 3D printing . J. Thorac. Imaging , 31 , 5 , 253 , Sep. 2016 .
- Itagaki , M.W. , Using 3D printed models for planning and guidance during endovascular intervention: A technical advance . Diagn. Interv. Radiol. , 21 , 4 , 338 , Jul. 2015 .
- Zein , N.N. , Hanouneh , I.A. , Bishop , P.D. , Samaan , M. , Eghtesad , B. , Quintini , C. , Miller , C. , Yerian , L. , Klatte , R. , Three-dimensional print of a liver for preoperative planning in living donor liver transplantation . Liver Transplant. , 19 , 12 , 1304 – 10 , Dec. 2013 .
- Chandak , P. , Byrne , N. , Coleman , A. , Karunanithy , N. , Carmichael , J. , Marks , S.D. , Stojanovic , J. , Kessaris , N. , Mamode , N. , Patient-specific 3D printing: A novel technique for complex pediatric renal transplantation . Ann. Surg. , 269 , 2 , e18 – 23 , Feb. 1, 2019 .
- Silberstein , J.L. , Maddox , M.M. , Dorsey , P. , Feibus , A. , Thomas , R. , Lee , B.R. , Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: A pilot study . Urology , 84 , 2 , 268 – 73 , Aug. 1, 2014 .