3D Printing in Medical Science
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
Customizable, biocompatible, and sterile components are in high demand in the healthcare industry. When it comes to healthcare, 3D printing is a game-changer that opens up vast new possibilities for study and innovation. A straightforward 3D printing service provides patients with inexpensive, customized prostheses, implants, and devices; aids surgeons in performing more precise procedures with individualized tools and models; and helps medical device makers create cutting-edge, time-saving products. The use of 3D-printed tissue components has the potential to simplify drug development and help overcome several obstacles. Possible future benefits include making drugs more affordable for all people and expanding their availability. The literature on the benefits of using 3D-printed anatomic models in education and training is expanding rapidly. This chapter, however, focuses on recent advances in medical science using 3D printing.
References
- Loughborough , W.W. , Yeong , M. , Hamilton , M. , Manghat , N. , Computed tomography in congenital heart disease: How generic principles can be applied to create bespoke protocols in the Fontan circuit . Quant. Imaging Med. Surg. , 7 , 1 , 79 , Feb. 2017 .
- Liu , D. , Fan , Z. , Li , Y. , Zhang , N. , Sun , Z. , An , J. , Stalder , A.F. , Greiser , A. , Liu , J. , Quantitative study of abdominal blood flow patterns in patients with aortic dissection by 4-dimensional flow MRI . Sci. Rep. , 8 , 1 , 9111 , Jun. 14, 2018 .
- Wang , R. , Liu , X. , Schoepf , U.J. , van Assen , M. , Alimohamed , I. , Griffith , L.P. , Luo , T. , Sun , Z. , Fan , Z. , Xu , L. , Extracellular volume quantitation using dual-energy CT in patients with heart failure: Comparison with 3T cardiac MR . Int. J. Cardiol. , 268 , 236 – 40 , Oct. 1, 2018 .
- Sun , Z. , 3D printing in medicine: Current applications and future directions . Quant. Imaging Med. Surg. , 8 , 11 , 1069 , Dec. 2018.
- D'Errico , L. , Salituri , F. , Ciardetti , M. , Favilla , R. , Mazzarisi , A. , Coppini , G. , Bartolozzi , C. , Marraccini , P. , Quantitative analysis of epicardial fat volume: effects of scanning protocol and reproducibility of measurements in non-contrast cardiac CT vs. coronary CT angiography . Quant. Imaging Med. Surg. , 7 , 3 , 326 , Jun. 2017 .
- Almutairi , A. , Al Safran , Z. , AlZaabi , S.A. , Sun , Z. , Dual energy CT angiography in peripheral arterial stents: Optimal scanning protocols with regard to image quality and radiation dose . Quant. Imaging Med. Surg. , 7 , 5 , 520 , Oct. 2017 .
- Sun , Z. and Chaichana , T. , An investigation of correlation between left coronary bifurcation angle and hemodynamic changes in coronary stenosis by coronary computed tomography angiography-derived computational fluid dynamics . Quant. Imaging Med. Surg. , 7 , 5 , 537 , Oct. 2017 .
- Hidrovo , I. , Dey , J. , Chesal , M.E. , Shumilov , D. , Bhusal , N. , Mathis , J.M. , Experimental method and statistical analysis to fit tumor growth model using SPECT/CT imaging: A preclinical study . Quant. Imaging Med. Surg. , 7 , 3 , 299 , Jun. 2017 .
- Mustapha , F.A. , Bashah , F.A. , Yassin , I.M. , Fikri , A.S. , Nordin , A.J. , Razak , H.R. , Estimation of kidneys and urinary bladder doses based on the region of interest in 18fluorine-fluorodeoxyglucose positron emission tomography/ computed tomography examination: A preliminary study . Quant. Imaging Med. Surg. , 7 , 3 , 310 , Jun. 2017 .
- Esposito , F. , Mamone , R. , Di Serafino , M. , Mercogliano , C. , Vitale , V. , Vallone , G. , Oresta , P. , Diagnostic imaging features of necrotizing enterocolitis: A narrative review . Quant. Imaging Med. Surg. , 7 , 3 , 336 , Jun. 2017 .
-
Zanetti , E.M.
,
Aldieri , A.
,
Terzini , M.
,
Calì , M.
,
Franceschini , G.
,
Bignardi , C.
,
Additively manufactured custom load-bearing implantable devices: Grounds for caution
.
Australas. Med. J.
,
10
,
8
,
694
–
700
, Aug. 1,
2017
.
10.21767/AMJ.2017.3093 Google Scholar
- Giannopoulos , A.A. , Steigner , M.L. , George , E. , Barile , M. , Hunsaker , A.R. , Rybicki , F.J. , Mitsouras , D. , Cardiothoracic applications of 3D printing . J. Thorac. Imaging , 31 , 5 , 253 , Sep. 2016 .
- Zanetti , E.M. and Bignardi , C. , Mock-up in hip arthroplasty pre-operative planning . Acta Bioeng. Biomech. , 15 , 3 , 123 – 128 , 2013 .
-
Speranza , D.
,
Citro , D.
,
Padula , F.
,
Motyl , B.
,
Marcolin , F.
,
Calì , M.
,
Martorelli , M.
,
Additive manufacturing techniques for the reconstruction of 3D fetal faces
.
Appl. Bionics Biomech.
,
2017
,
1
–
10
, Dec. 19,
2017
.
10.1155/2017/9701762 Google Scholar
- Sun , Z. and Liu , D. , A systematic review of clinical value of three-dimensional printing in renal disease . Quant. Imaging Med. Surg. , 8 , 3 , 311 , Apr. 2018 .
- Chepelev , L. , Wake , N. , Ryan , J. , Althobaity , W. , Gupta , A. , Arribas , E. , Santiago , L. , Ballard , D.H. , Wang , K.C. , Weadock , W. , Ionita , C.N. , Radiological society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios . 3D Print. Med. , 4 , 1 , 1 – 38 , Dec. 2018 .
- Chepelev , L. , Souza , C. , Althobaity , W. , Miguel , O. , Krishna , S. , Akyuz , E. , Hodgdon , T. , Torres , C. , Wake , N. , Alexander , A. , George , E. , Preoperative planning and tracheal stent design in thoracic surgery: A primer for the 2017 Radiological Society of North America (RSNA) hands-on course in 3D printing . 3D Print. Med. , 3 , 1 – 26 , Mar. 2017 .
- Lau , I.W. , Liu , D. , Xu , L. , Fan , Z. , Sun , Z. , Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments . PloS One , 13 , 3 , e0194333 , Mar. 21, 2018 .
- Aldosari , S. , Jansen , S. , Sun , Z. , Patient-specific 3D printed pulmonary artery model with simulation of peripheral pulmonary embolism for developing optimal computed tomography pulmonary angiography protocols . Quant. Imaging Med. Surg. , 9 , 1 , 75 , Jan. 2019 .
- Witowski , J. , Wake , N. , Grochowska , A. , Sun , Z. , Budzyński , A. , Major , P. , Popiela , T.J. , Pędziwiatr , M. , Investigating accuracy of 3D printed liver models with computed tomography . Quant. Imaging Med. Surg. , 9 , 1 , 43 , Jan. 2019 .
- Mankovich , N.J. , Cheeseman , A.M. , Stoker , N.G. , The display of three-dimensional anatomy with stereolithographic models . J. Digit. Imaging , 3 , 200 – 3 , Aug. 1990 .
- Winder , J. , Cooke , R.S. , Gray , J. , Fannin , T. , Fegan , T. , Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates . J. Med. Eng. Technol. , 23 , 1 , 26 – 8 , Jan. 1, 1999 .
- Lau , I. and Sun , Z. , Three-dimensional printing in congenital heart disease: A systematic review . J. Med. Radiat. Sci. , 65 , 3 , 226 – 36 , Sep. 2018 .
- Costello , J.P. , Olivieri , L.J. , Krieger , A. , Thabit , O. , Marshall , M.B. , Yoo , S.J. , Kim , P.C. , Jonas , R.A. , Nath , D.S. , Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education . World J. Pediatr. Congenit. Heart Surg. , 5 , 3 , 421 – 6 , Jul. 2014 .
- Costello , J.P. , Olivieri , L.J. , Su , L. , Krieger , A. , Alfares , F. , Thabit , O. , Marshall , M.B. , Yoo , S.J. , Kim , P.C. , Jonas , R.A. , Nath , D.S. , Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians . Congenit. Heart Dis. , 10 , 2 , 185 – 90 , Mar. 2015 .
- Jones , T.W. and Seckeler , M.D. , Use of 3D models of vascular rings and slings to improve resident education . Congenit. Heart Dis. , 12 , 5 , 578 – 82 , Sep. 2017 .
- Lim , K.H. , Loo , Z.Y. , Goldie , S.J. , Adams , J.W. , McMenamin , P.G. , Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy . Anat. Sci. Educ. , 9 , 3 , 213 – 21 , May 6, 2016 .
- Loke , Y.H. , Harahsheh , A.S. , Krieger , A. , Olivieri , L.J. , Usage of 3D models of tetralogy of Fallot for medical education: Impact on learning congenital heart disease . BMC Med. Educ. , 17 , 1 , 1 – 8 , Dec. 2017 .
- White , S.C. , Sedler , J. , Jones , T.W. , Seckeler , M. , Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects . Congenit. Heart Dis. , 13 , 6 , 1045 – 9 , Nov. 2018 .
- Valverde , I. , Gomez-Ciriza , G. , Hussain , T. , Suarez-Mejias , C. , Velasco-Forte , M.N. , Byrne , N. , Ordoñez , A. , Gonzalez-Calle , A. , Anderson , D. , Hazekamp , M.G. , Roest , A.A. , Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study . Eur. J. Cardiothorac. Surg. , 52 , 6 , 1139 – 48 , Dec. 1, 2017 .
- Ryan , J. , Plasencia , J. , Richardson , R. , Velez , D. , Nigro , J.J. , Pophal , S. , Frakes , D. , 3D printing for congenital heart disease: A single site's initial three-year-experience . 3D Print. Med. , 4 , 1 , 1 – 9 , Dec. 2018 .
- Sun , Z. and Shen-Yuan , L. , A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases . Anatol. J. Cardiol. , 17 , 6 , 423 – 35 , 2017 .
- Ho , D. , Squelch , A. , Sun , Z. , Modelling of aortic aneurysm and aortic dissection through 3D printing . J. Med. Radiat. Sci. , 64 , 1 , 10 – 7 , Mar. 2017 .
-
Sun , Z.
and
Squelch , A.
,
Patient-specific 3D printed models of aortic aneurysm and aortic dissection
.
J. Med. Imaging Health Inform.
,
7
,
4
,
886
–
9
, Aug. 1,
2017
.
10.1166/jmihi.2017.2093 Google Scholar
- Hossien , A. , Gelsomino , S. , Maessen , J. , Autschbach , R. , The interactive use of multi-dimensional modeling and 3D printing in preplanning of type A aortic dissection . J. Card. Surg. , 31 , 7 , 441 – 5 , Jul. 2016 .
- Wang , H. , Liu , J. , Zheng , X. , Rong , X. , Zheng , X. , Peng , H. , Silber-Li , Z. , Li , M. , Liu , L. , Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies . Sci. Rep. , 5 , 1 , 10945 , Jun. 4, 2015 .
- Huang , J. , Li , G. , Wang , W. , Wu , K. , Le , T. , 3D printing guiding stent graft fenestration: A novel technique for fenestration in endovascular aneurysm repair . Vascular , 25 , 4 , 442 – 6 , Aug. 2017 .
- Ganau , M. , Syrmos , N. , Martin , A.R. , Jiang , F. , Fehlings , M.G. , Intraoperative ultrasound in spine surgery: history, current applications, future developments . Quant. Imaging Med. Surg. , 8 , 3 , 261 , Apr. 2018 .
- Perica , E.R. and Sun , Z. , A systematic review of three-dimensional printing in liver disease . J. Digit. Imaging , 31 , 692 – 701 , Oct. 2018 .
- Javan , R. and Zeman , M.N. , A prototype educational model for hepatobiliary interventions: Unveiling the role of graphic designers in medical 3D printing . J. Digit. Imaging , 31 , 133 – 43 , Feb. 2018 .
- Javan , R. , Herrin , D. , Tangestanipoor , A. , Understanding spatially complex segmental and branch anatomy using 3D printing: Liver, lung, prostate, coronary arteries, and circle of Willis . Acad. Radiol. , 23 , 9 , 1183 – 9 , Sep. 1, 2016 .
- Perica , E. and Sun , Z. , Patient-specific three-dimensional printing for presurgical planning in hepatocellular carcinoma treatment . Quant. Imaging Med. Surg. , 7 , 6 , 668 , Dec. 2017 .
-
Lau , I.
,
Squelch , A.
,
Wan , Y.L.
,
Wong , A.M.
,
Ducke , W.
,
Sun , Z.
,
Patient-specific 3D printed model in delineating brain glioma and surrounding structures in a pediatric patient
.
Digit. Med.
,
3
,
2
,
86
, Apr. 1,
2017
.
10.4103/digm.digm_25_17 Google Scholar
- Al Jabbari , O. , Abu Saleh , W.K. , Patel , A.P. , Igo , S.R. , Reardon , M.J. , Use of three-dimensional models to assist in the resection of malignant cardiac tumors . J. Card. Surg. , 31 , 9 , 581 – 3 , Sep. 2016 .
- Thawani , J.P. , Singh , N. , Pisapia , J.M. , Abdullah , K.G. , Parker , D. , Pukenas , B.A. , Zager , E.L. , Verma , R. , Brem , S. , Three-dimensional printed modeling of diffuse low-grade gliomas and associated white matter tract anatomy . Neurosurgery , 80 , 4 , 635 – 45 , Apr. 1, 2017 .
- Sun , Z. and Aldosari , S. , Three-dimensional printing in medicine: Opportunities for development of optimal CT scanning protocols . Australas. Med. J. (Online) , 11 , 11 , 529 – 32 , 2018 .
- Abdullah , K.A. , McEntee , M.F. , Reed , W. , Kench , P.L. , Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols . J. Med. Radiat. Sci. , 65 , 3 , 175 – 83 , Sep. 2018 .
- Aldosari , S. , Jansen , S. , Sun , Z. , Optimization of computed tomography pulmonary angiography protocols using 3D printed model with simulation of pulmonary embolism . Quant. Imaging Med. Surg. , 9 , 1 , 53 , Jan. 2019 .
- Aldosari , S. , Jansen , S. , Sun , Z. , Patient-specific 3D printed pulmonary artery model with simulation of peripheral pulmonary embolism for developing optimal computed tomography pulmonary angiography protocols . Quant. Imaging Med. Surg. , 9 , 1 , 75 , Jan. 2019 .
- Seoane-Viaño , I. , Trenfield , S.J. , Basit , A.W. , Goyanes , A. , Translating 3D printed pharmaceuticals: From hype to real-world clinical applications . Adv. Drug Deliv. Rev. , 174 , 553 – 75 , Jul. 1, 2021 .
- Dharmamoorthy , G. , Sabareesh , M. , Balaji , A. , Reddy , Y.K. , Monika , B. , Hema , A.N. , Reddy , P.S. , Kartheek , U. , A overview on 3d printing–current pharmaceutical applications and future directions . YMER , 21 , 11 , 749 – 765 , 2022 .
- Gioumouxouzis , C.I. , Karavasili , C. , Fatouros , D.G. , Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies . Drug Discov. Today , 24 , 2 , 636 – 43 , Feb. 1, 2019 .
- Market , A.C. , Global Forecast to 2021 , Maharashtra, India , 2019 , URL: https://www.meticulousresearch.com/product/healthcare-analytics-market/ (accessed 15.05. 2021).
- Dharmamoorthy , G. , Sabareesh , M. , Balaji , A. , Reddy , Y.K. , Monika , B. , Hema , A.N. , Reddy , P.S. , Kartheek , U. , A overview on 3D printing – current pharmaceutical applications and future directions . https://www.european-pharmaceuticalreview.com/article/162544/3d-printing-current-pharmaceutical-applications-and-future-directions/ (accessed on Jan 2023).
- Cui , M. , Pan , H. , Su , Y. , Fang , D. , Qiao , S. , Ding , P. , Pan , W. , Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development . Acta Pharm. Sin. B , 11 , 8 , 2488 – 504 , Aug. 1, 2021 .
- Beitler , B.G. , Abraham , P.F. , Glennon , A.R. , Tommasini , S.M. , Lattanza , L.L. , Morris , J.M. , Wiznia , D.H. , Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care . 3D Print. Med. , 8 , 1 , 7 , Feb. 1, 2022 .
- Zidan , A. , CDER Researchers Explore The Promise And Potential Of 3D Printed Pharmaceuticals , Spotlight on CDER Science, US Food & Drug Administration , Maryland, USA , 2017 .
- Dhyani , A. , Singh , N. , Kumar , V. , Dhyani , A. , Applications of 3 dimensional (3D) printing in biomedical field . Int. J. Curr. Res. Rev. , 12 , 71 – 5 , Oct. 2020 .
-
Desai , H.
,
Shah , N.
,
Saiyad , M.
,
Dwivedi , A.
,
Joshipura , M.
,
Polymers for 3D printing in biomedical engineering applications
.
J. Pharm. Negat. Results
,
12
,
1870
–
80
, Oct.
2022
.
10.47750/pnr.2022.13.S06.246 Google Scholar
-
Mohammed , A.A.
,
Algahtani , M.S.
,
Ahmad , M.Z.
,
Ahmad , J.
,
Kotta , S.
,
3D printing in medicine: Technology overview and drug delivery applications
.
Ann. 3D Print. Med.
,
4
,
100037
, Dec. 1,
2021
.
10.1016/j.stlm.2021.100037 Google Scholar
- Seoane-Viaño , I. , Trenfield , S.J. , Basit , A.W. , Goyanes , A. , Translating 3D printed pharmaceuticals: From hype to real-world clinical applications . Adv. Drug Deliv. Rev. , 174 , 553 – 75 , Jul. 1, 2021 .
- Arafat , B. , Qinna , N. , Cieszynska , M. , Forbes , R.T. , Alhnan , M.A. , Tailored on demand anti-coagulant dosing: An in vitro and in vivo evaluation of 3D printed purpose-designed oral dosage forms . Eur. J. Pharm. Biopharm. , 128 , 282 – 9 , Jul. 1, 2018 .
- Goyanes , A. , Madla , C.M. , Umerji , A. , Piñeiro , G.D. , Montero , J.M. , Diaz , M.J. , Barcia , M.G. , Taherali , F. , Sánchez-Pintos , P. , Couce , M.L. , Gaisford , S. , Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients . Int. J. Pharm. , 567 , 118497 , Aug. 15, 2019 .
- Global, B ., Aprecia pharmaceuticals and cycle pharmaceuticals partner to develop 3D-printed orphan drugs . https://www.cambridgeindependent.co.uk/business/cycle-pharmaceuticals-to-use-3d-printing-to-develop-orphan-drugs-9053341/ (accessed on January 2023).
- Algahtani , M.S. , Assessment of pharmacist's knowledge and perception toward 3D printing technology as a dispensing method for personalized medicine and the readiness for implementation . Pharmacy , 9 , 1 , 68 , Mar. 23, 2021 .
-
Christensen , A.
and
Wake , N.
,
Regulatory perspectives for 3D printing in hospitals
, in:
3D Printing for the Radiologist
, vol.
1
, pp.
109
–
16
, Jan.
2022
.
10.1016/B978-0-323-77573-1.00015-4 Google Scholar
-
Madla , C.M.
,
Trenfield , S.J.
,
Goyanes , A.
,
Gaisford , S.
,
Basit , A.W.
,
3D printing technologies, implementation and regulation: An overview
, in:
3D Printing of Pharmaceuticals
, pp.
21
–
40
,
2018
.
10.1007/978-3-319-90755-0_2 Google Scholar
- Markarian , J. , FDA and the emerging technology of 3D printing . Pharm. Technol. , 40 , 8 , 1 – 36 , 2016 .
- Beg , S. , Almalki , W.H. , Malik , A. , Farhan , M. , Aatif , M. , Rahman , Z. , Alruwaili , N.K. , Alrobaian , M. , Tarique , M. , Rahman , M. , 3D printing for drug delivery and biomedical applications . Drug Discov. Today , 25 , 9 , 1668 – 81 , Sep. 1, 2020 .
- Sekar , M.P. , Budharaju , H. , Zennifer , A. , Sethuraman , S. , Vermeulen , N. , Sundaramurthi , D. , Kalaskar , D.M. , Current standards and ethical landscape of engineered tissues—3D bioprinting perspective . J. Tissue Eng. , 12 , 1 – 33 , 20417314211027677, Jul. 2021 .
- Trenfield , S.J. , Goyanes , A. , Telford , R. , Wilsdon , D. , Rowland , M. , Gaisford , S. , Basit , A.W. , 3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach . Int. J. Pharm. , 549 , 1-2 , 283 – 92 , Oct. 5, 2018 .
- Trenfield , S.J. , Tan , H.X. , Goyanes , A. , Wilsdon , D. , Rowland , M. , Gaisford , S. , Basit , A.W. , Non-destructive dose verification of two drugs within 3D printed polyprintlets . Int. J. Pharm. , 577 , 119066 , Mar. 15, 2020 .