Modeling and Simulations of Functionalized Nanomaterials for Electronic and Optoelectronic Devices
Atefeh Nazary
Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Search for more papers by this authorHassan Shamloo
Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
Search for more papers by this authorSattar Mirzakuchaki
School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorAtefeh Nazary
Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Search for more papers by this authorHassan Shamloo
Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
Search for more papers by this authorSattar Mirzakuchaki
School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
Nanoscience and nanotechnology present challenges beyond understanding the nanoscale systems. Challenges include designing, synthesizing, and interacting with the larger world, as well as achieving large-scale production. Large-scale manufacturing is important for making nanotechnology practical and applicable in society. Commercial enterprises require a full understanding of materials and precise control over the manufacturing process within specific limits before investing in large-scale production. While empirical knowledge gained from experimental characterization has traditionally been the foundation for understanding and producing larger-scale systems, the complexity and dependence on molecular composition and structures at the nanoscale make it impossible to rely solely on experimentation. That is where molecular modeling comes into play. Tools like electronic structure modeling, molecular simulation, and mesoscale modeling are becoming increasingly important in characterizing nanoscale systems. Nanoscience has the potential to revolutionize science and technology. Nanoscale structures often involve different materials, making experimental characterization difficult. Manipulation of nanoscale structures at the larger macroscale is necessary. Bridging the gap between nanoscale and larger scales requires new theories and methods. Device simulation, with a focus on quantum effects, plays a vital role in the success of the semiconductor industry. With the expanding design space in nanoelectronics and the abundance of material systems and design concepts, simulation tools are carefully selected to capture the appropriate quantum mechanical effects, ensuring accurate results. This chapter explores various modeling and simulation methods for functionalized nanomaterials in electronic and optoelectronic devices, highlighting the importance of precise quantum effects representation through appropriate simulation tool choices.
References
- Kantner , M. , Mittnenzweig , M. , Koprucki , T. , Hybrid quantum-classical modeling of quantum dot devices . Phys. Rev. B , 96 , 20 , 205301 , 2017 .
- Lee , K. , Shur , M. , Fjeldly , T.A. , Ytterdal , T. , Semiconductor device modeling for VLSI , Prentice-Hall, Inc , Upper Saddle River, New Jersey , 1993 .
- Brennan , K.F. , The physics of semiconductors: with applications to optoelectronic devices , Cambridge University Press , Cambridge, United Kingdom , 1999 .
- Balkanski , M. , Wallis , R.F. , Wallis , R.F. , Semiconductor physics and applications , Oxford University Press , New York , 2000 .
- Gutierrez-D , E.A. , Deen , J. , Claeys , C. , Low temperature electronics: physics, devices, circuits, and applications , Elsevier , Amsterdam, Netherlands , 2000 .
- Vurgaftman , I. , á. Meyer , J. , Ram-Mohan , L.R. , Band parameters for III–V compound semiconductors and their alloys . J. Appl. Phys. , 89 , 11 , 5815 – 5875 , 2001 .
- Neamen , D.A. , Semiconductor physics and devices: basic principles , McGraw-hill , New York, NY , 2003 .
- DasGupta , N. and DasGupta , A. , Semiconductor devices: modelling and technology , PHI Learning Pvt. Ltd , Delhi, India , 2004 .
- Cardona , M. and Peter , Y.Y. , Fundamentals of semiconductors , Springer , Heidelberg, Germany , 2005 .
- Colinge , J.-P. and Colinge , C.A. , Physics of semiconductor devices , Springer Science & Business Media , Heidelberg, Germany , 2005 .
- Dean , P.J. , III–V compound semiconductors , in: Electroluminescence , pp. 63 – 132 , Springer , Heidelberg, Germany , 2005 .
- Razeghi , M. , Fundamentals of solid state engineering , Springer , Heidelberg, Germany , 2006 .
- Ng , S.M.S.K.K. , Physics of Semiconductor Devices , John Wiley & Sons, Inc , Hoboken, NJ, United States , 2007 .
- Singh , J. , Electronic and optoelectronic properties of semiconductor structures , Cambridge University Press , Cambridge, United Kingdom , 2007 .
- Joannopoulos , J.D. , Johnson , S.G. , Winn , J.N. , Meade , R.D. , Photonic Crystals: Molding the Flow of Light - Second Edition , Princeton University Press , Princeton, NJ, United States , 2008 .
- Mishra , U.K. and Singh , J. , Semiconductor device physics and design , Springer , Heidelberg, Germany , 2008 .
- Voon , L.C.L.Y. and Willatzen , M. , The kp method: electronic properties of semiconductors , Springer Science & Business Media , Dordrecht, Netherlands , 2009 .
- Grundmann , M. , Physics of semiconductors , Springer , Heidelberg, Germany, New Delhi, India , 2010 .
- Claeys , C. and Simoen , E. , Germanium-based technologies: from materials to devices , elsevier , Amsterdam, Netherlands , 2011 .
- Van Zeghbroeck , B.J. , Principles of semiconductor devices , University of Colorado , Boulder, CO, United States , 2011 .
- Chuang , S.L. , Physics of photonic devices , John Wiley & Sons, Inc. , Hoboken, NJ, United States , 2012 .
- Jacoboni , C. and Lugli , P. , The Monte Carlo method for semiconductor device simulation , Springer Science & Business Media , Dordrecht, Netherlands , 2012 .
- Li , S.S. , Semiconductor physical electronics , Springer Science & Business Media , 2012 .
- Milnes , A.G. , Semiconductor devices and integrated electronics , Springer Science & Business Media , Dordrecht, Netherlands , 2012 .
- Scarselli , M. , Castrucci , P. , De Crescenzi , M. , Electronic and optoelectronic nano-devices based on carbon nanotubes . J. Phys.: Condens. Matter , 24 , 31 , 313202 , 2012 /07/11 2012, doi: 10.1088/0953-8984/24/31/313202 .
- Yi , G.-C. , Semiconductor nanostructures for optoelectronic devices: Processing, characterization and applications , Springer Science & Business Media , Dordrecht, Netherlands , 2012 .
- Piprek , J. , Semiconductor optoelectronic devices: introduction to physics and simulation , Elsevier , Amsterdam, Netherlands , 2013 .
- Singh , Y. , Semiconductor devices , IK International Pvt Ltd , 2013 .
- Wilmsen , C. , Physics and chemistry of III-V compound semiconductor interfaces , Springer Science & Business Media , Dordrecht, Netherlands , 2013 .
- Xia , F. , Wang , H. , Xiao , D. , Dubey , M. , Ramasubramaniam , A. , Two-dimensional material nanophotonics . Nat. Photonics , 8 , 12 , 899 – 907 , 2014 /12/01 2014, doi: 10.1038/nphoton.2014.271 .
- Alkauskas , A. , McCluskey , M.D. , Van de Walle , C.G. , Tutorial: Defects in semiconductors— Combining experiment and theory . J. Appl. Phys. , 119 , 18 , 181101 , 2016 .
- Liang , F.-X. , Gao , Y. , Xie , C. , Tong , X.-W. , Li , Z.-J. , Luo , L.-B. , Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications . J. Mater. Chem. C , 6 , 15 , 3815 – 3833 , 2018 .
- Bao , Q. and Hoh , H.Y. , 2D Materials for Photonic and Optoelectronic Applications , Woodhead Publishing , Sawston, Cambridge, United Kingdom , 2019 .
- Jhon , Y.M. and Jhon , Y. , II , Chapter 4 - Optical properties of two-dimensional materials , in: 2D Materials for Nanophotonics , Y.M. Jhon and J.H. Lee (Eds.), pp. 165 – 206 , Elsevier , Amsterdam, Netherlands , 2021 .
- Krishnaswamy , J.A. , Ramamurthy , P.C. , Hegde , G. , Mahapatra , D.R. , Modelling and Design of Nanostructured Optoelectronic Devices: Solar Cells and Photodetectors , Springer , Cham, Switzerland , 2022 .
- del Molino , F. and Muñoz , A. , Polarization mapping . Comput. Graphics , 83 , 42 – 50 , 2019 .
- Sweeney , S. and Adams , A. , Optoelectronic Devices and Materials , in: Springer Handbook of Electronic and Photonic Materials , S. Kasap and P. Capper (Eds.), pp. 887 – 916 , Springer US, Boston, MA , 2007 .
- Xia , F. , et al ., Two-dimensional material nanophotonics . Nat. Photonics , 8 , 12 , 899 – 907 , 2014 .
- Mugnaini , G. and Iannaccone , G. , Analytical model for nanowire and nanotube transistors covering both dissipative and ballistic transport , in: Proceedings of 35th European Solid-State Device Research Conference , vol. ESSDERC 2005 , IEEE , pp. 213 – 216 , 2005 .
- Frensley , W.R. , Ballistic and Dissipative Effects in Barrier-Limited Current Transport , in: The Physics of Submicron Structures , H.L. Grubin , K. Hess , G.J. Iafrate , D.K. Ferry (Eds.), pp. 341 – 347 , Springer US, Boston, MA , 1984 .
- Spiegelman , F. , et al ., Density-functional tight-binding: basic concepts and applications to molecules and clusters . Adv. Phys.: X , 5 , 1 , 1710252 , 2020 /01/01 2020, doi: 10.1080/23746149.2019.1710252 .
- An , S. , Park , H. , Kim , M. , Recent advances in single crystalline narrow band-gap semiconductor nanomembranes and their flexible optoelectronic device applications: Ge, GeSn, InGaAs, and 2D materials . J. Mater. Chem. C , 11 , 1 , 1 – 25 , 2023 .
- Bowler , D.R. and Miyazaki , T. , Methods in electronic structure calculations . Rep. Prog. Phys. , 75 , 3 , 036503 , 2012 .
- Car , R. , Introduction to Density-Functional Theory and ab-Initio Molecular Dynamics . Quant. Struct.-Act. Relat. , 21 , 2 , 97 – 104 , 2002 .
- Singh , A.K. , et al ., MATLAB user interface for simulation of silicon germanium solar cell . J. Mater. , 2015 , 1 – 6 , 2015 .
- Yong , X. and Zhang , J. , A rational design strategy for donors in organic solar cells: the conjugated planar molecules possessing anisotropic multibranches and intramolecular charge transfer . J. Mater. Chem. , 21 , 30 , 11159 – 11166 , 2011 .
- Tadjouteu Assatse , Y. , et al ., DFT studies of nanomaterials designed by the functionalization of modified carboxylated carbon nanotubes with biguanide derivatives for nanomedical, nonlinear and electronic applications . Chin. J. Phys. , 58 , 253 – 262 , 2019 .
- Peter , Y. and Cardona , M. , Fundamentals of semiconductors: physics and materials properties , Springer Science & Business Media , Dordrecht, Netherlands , 2010 .
- Harrison , W.A. , Electronic structure and the properties of solids: the physics of the chemical bond , Courier Corporation , North Chelmsford, MA, United States , 2012 .
- Kittel , C. and Fong , C. , Quantum theory of solids , Wiley , Hoboken, NJ, United States , 1987 .
- Nazari , A. , Faez , R. , Shamloo , H. , Improving ION/IOFF and sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects . Superlattices Microstruct. , 86 , 483 – 492 , 2015 /10/01/2015, doi: https://doi.org/10.1016/j.spmi.2015.08.018 .
- Nazari , A. , Faez , R. , Shamloo , H. , Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect . Superlattices Microstruct. , 97 , 28 – 45 , 2016 /09/01/2016, doi: https://doi.org/10.1016/j.spmi.2016.06.008 .
- Lake , R.K. , Application of the Keldysh formalism to quantum device modeling and analysis , Purdue University , West Lafayette, IN, United States , 1992 .
- Jauho , A. , Introduction to the Keldysh nonequilibrium Green function technique . Lect. Notes , 17 , 1 – 30 , 2006 .
- Sieberer , L.M. , Buchhold , M. , Diehl , S. , Keldysh field theory for driven open quantum systems . Rep. Prog. Phys. , 79 , 9 , 096001 , 2016 .
- Rahman , M.H. , Mitra , S. , Redwan , D.A. , Electronic Band Structure of Group IV 2D Materials: Graphene, Silicene, Germanene, Stanene using Tight Binding Approach , in: 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) , IEEE , pp. 207 – 212 , 2020 .
- Boykin , T.B. , Kharche , N. , Klimeck , G. , Korkusinski , M. , Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations . J. Phys.: Condens. Matter , 19 , 3 , 036203 , 2007 .
- Karakachian , H. , et al ., One-dimensional confinement and width-dependent bandgap formation in epitaxial graphene nanoribbons . Nat. Commun. , 11 , 1 , 1 – 8 , 2020 .
- Mostafaei , A. and Heidari Semiromi , E. , A tight-binding model for the electronic structure of MXene monolayers . Nanoscale , 14 , 32 , 11760 – 11769 , 2022 .
- Nguyen , G.D. , et al ., Atomically Precise PdSe2 Pentagonal Nanoribbons . ACS Nano , 14 , 2 , 1951 – 1957 , 2020 .
- Tan , Y. , Povolotskyi , M. , Kubis , T. , Boykin , T.B. , Klimeck , G. , Transferable tight-binding model for strained group IV and III-V materials and heterostructures . Phys. Rev. B , 94 , 4 , 045311 , 2016 .
- Ahmadi , N. , Optoelectronic properties of silicon nanotubes with electron–electron interactions in orthogonal tight-binding model . Optik , 170 , 436 – 443 , 2018 .
- Shokri , A. and Ahmadi , N. , Tight-binding description of optoelectronic properties of silicon nanotubes . Opt. Quantum Electron. , 47 , 2169 – 2179 , 2015 .
- Sink , J. and Pryor , C. , Empirical tight-binding parameters for wurtzite group III–V (nonnitride) and IV materials . AIP Adv. , 13 , 2 , 025354 , 2023 .
- Hammond , B.L. , Lester , W.A. , Reynolds , P.J. , Monte Carlo methods in ab initio quantum chemistry , World Scientific , Singapore , 1994 .
- Nightingale , M.P. and Umrigar , C.J. , Quantum Monte Carlo methods in physics and chemistry (no. 525) , Springer Science & Business Media , Dordrecht, Netherlands , 1998 .
- Foulkes , W. , Mitas , L. , Needs , R. , Rajagopal , G. , Quantum Monte Carlo simulations of solids . Rev. Mod. Phys. , 73 , 1 , 33 , 2001 .
- Kolorenč , J. and Mitas , L. , Applications of quantum Monte Carlo methods in condensed systems . Rep. Prog. Phys. , 74 , 2 , 026502 , 2011 .
- Shulenburger , L. and Mattsson , T.R. , Quantum Monte Carlo applied to solids . Phys. Rev. B , 88 , 24 , 245117 , 2013 .
- Chernatynskiy , A. and Phillpot , S.R. , Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations . Phys. Rev. B , 82 , 13 , 134301 , 2010 .
- Faghaninia , A. , Ager III , J.W. , Lo , C.S. , Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation . Phys. Rev. B , 91 , 23 , 235123 , 2015 .
- Li , W. , Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS 2 . Phys. Rev. B , 92 , 7 , 075405 , 2015 .
- Li , W. , Carrete , J. , Katcho , N.A. , Mingo , N. , ShengBTE: A solver of the Boltzmann transport equation for phonons . Comput. Phys. Commun. , 185 , 6 , 1747 – 1758 , 2014 .
- Narumanchi , S.V. , Murthy , J.Y. , Amon , C.H. , Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics . Heat Mass Transfer , 42 , 478 – 491 , 2006 .
- Péraud , J.-P.M. , Landon , C.D. , Hadjiconstantinou , N.G. , Monte Carlo methods for solving the Boltzmann transport equation . Annu. Rev. Heat Transfer , 17 , 205 – 265 , 2014 .
- Pisipati , S. , Geer , J. , Sammakia , B. , Murray , B.T. , A novel alternate approach for multiscale thermal transport using diffusion in the Boltzmann Transport Equation . Int. J. Heat Mass Transfer , 54 , 15–16 , 3406 – 3419 , 2011 .
- Samian , R. , Abbassi , A. , Ghazanfarian , J. , Thermal investigation of common 2D FETs and new generation of 3D FETs using Boltzmann transport equation in nanoscale . Int. J. Mod. Phys. C , 24 , 09 , 1350064 , 2013 .
- Singh , S. and Battiato , M. , An explicit modal discontinuous Galerkin method for Boltzmann transport equation under electronic nonequilibrium conditions . Comput. Fluids , 224 , 104972 , 2021 .
- Zhang , C. , Chen , S. , Guo , Z. , Wu , L. , A fast synthetic iterative scheme for the stationary phonon Boltzmann transport equation . Int. J. Heat Mass Transfer , 174 , 121308 , 2021 .
- Baseden , K.A. and Tye , J.W. , Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom . J. Chem. Educ. , 91 , 12 , 2116 – 2123 , 2014 /12/09 2014, doi: 10.1021/ed5004788 .
- Zheng , X. , Wang , F. , Yam , C.Y. , Mo , Y. , Chen , G. , Time-dependent density-functional theory for open systems . Phys. Rev. B , 75 , 19 , 195127 , 2007 .
- Stradi , D. , Martinez , U. , Blom , A. , Brandbyge , M. , Stokbro , K. , General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function . Phys. Rev. B , 93 , 15 , 155302 , 04/07/ 2016 , doi: 10.1103/PhysRevB.93.155302 .
- Zhang , D. , Zhang , Y. , Li , X. , Luo , Y. , Huang , H. , Chu , P.K. , Self-assembly of mesoporous ZnCo2O4 nanomaterials: density functional theory calculation and flexible all-solid-state energy storage . J. Mater. Chem. A , 4 , 2 , 568 – 577 , 2016 .
- Zheng , K. , Yang , Q. , Tan , C.J. , Ye , H.Y. , Chen , X.P. , A two-dimensional van der Waals CdS/germanene heterojunction with promising electronic and optoelectronic properties: DFT + NEGF investigations . PCCP , 19 , 28 , 18330 – 18337 , 2017 , doi: 10.1039/C7CP03388E .
- Sun , C. , Wang , Y. , Jiang , Y. , Yang , Z.-D. , Zhang , G. , Hu , Y. , Tunable transport and optoelectronic properties of monolayer black phosphorus by grafting PdCl2 quantum dots . RSC Adv. , 8 , 61 , 35226 – 35236 , 2018 , doi: 10.1039/C8RA07053A .
- McGhee , J. and Georgiev , V.P. , Electronic and Optical Properties of Hydrogen-Terminated Diamond Doped by Molybdenum Oxide: A Density Functional Theory Study , in: 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) , vol. 2020 , pp. 1 – 2 , 14-18 Sept. 2020 , doi: 10.1109/NUSOD49422.2020.9217662 .
- Rai , D.P. , Vu , T.V. , Laref , A. , Joshi , H. , Patra , P.K. , Promising optoelectronic response of 2D monolayer MoS2: A first principles study . Chem. Phys. , 538 , 110824 , 2020 /10/01/2020, doi: https://doi.org/10.1016/j.chemphys.2020.110824 .
- Joseph , I. , Wan , K. , Hussain , S. , Guo , L. , Xie , L. , Shi , X. , Interlayer angle-dependent electronic structure and optoelectronic properties of BP-MoS2 heterostructure: A first principle study . Comput. Mater. Sci , 186 , 110056 , 2021 /01/01/2021, doi: https://doi.org/10.1016/j.commatsci.2020.110056 .
- Zhao , R.-N. , Chen , R. , Lin , F. , Han , C. , A density functional theory computational investigation on geometries and electronic properties of the inner hollow (GaP)n (n = 1–38) nanomaterials . J. Nanopart. Res. , 23 , 2021 .
- Dolmaseven , S. , Yuksel , N. , Fellah , M. , Au, Ag and Cu Doped BNNT for ethylene oxide gas detection: A density functional theory study . Sens. Actuators, A , 350 , 114109 , 2023 .
- Jönsson , J. , Electronic transitions and correlation effects: From pure elements to complex materials , vol. 2053 , Linköping University Electronic Press , Linköping, Sweden , 2020 .
- Jewel , M.U. , Hasan , S. , Ahmad , I. , A comprehensive study of defects in gallium oxide by density functional theory . Comput. Mater. Sci , 218 , 111950 , 2023 .
- Havu , P. , Havu , V. , Puska , M. , Nieminen , R. , Non-Equilibrium Electron Transport in Two-Dimensional Nano-Structures Modeled by Green's Functions and the Finite-Element Method , 2003 , arXiv preprint cond-mat/0308105.
- Bhavikatti , S. , Finite element analysis , New Age International , New Delhi, India , 2005 .
- Pomplun , J. , Burger , S. , Zschiedrich , L. , Schmidt , F. , Adaptive finite element method for simulation of optical nano structures . Phys. Status solidi (b) , 244 , 10 , 3419 – 3434 , 2007 .
- Mao , D. , Liu , P. , Ho , K.-M. , Dong , L. , A theoretical study of a nano-opto-mechanical sensor using a photonic crystal-cantilever cavity . J. Opt. , 14 , 7 , 075002 , 2012 .
- Kim , N.-H. , Sankar , B.V. , Kumar , A.V. , Introduction to finite element analysis and design , John Wiley & Sons Inc. , Hoboken, NJ, United States , 2018 .
- Rezgui , H. , Nasri , F. , Aissa , M.F.B. , Belmabrouk , H. , Guizani , A.A. , Modeling thermal performance of nano-GNRFET transistors using ballistic-diffusive equation . IEEE Trans. Electron Devices , 65 , 4 , 1611 – 1616 , 2018 .
- RameshBabu , C. , Finite Element Analysis in Nanotechnology Research , in: Finite Element Methods and Their Applications , B. Mahboub (Ed.), p. Ch. 10, IntechOpen , Rijeka , 2020 .
- Harvey , J.E. , Irvin , R.G. , Pfisterer , R.N. , Modeling physical optics phenomena by complex ray tracing . Opt. Eng. , 54 , 3 , 035105 – 035105 , 2015 .
- Inan , U.S. and Marshall , R.A. , Numerical electromagnetics: the FDTD method , Cambridge University Press , Cambridge, United Kingdom , 2011 .
- Gallinet , B. , Butet , J. , Martin , O.J. , Numerical methods for nanophotonics: standard problems and future challenges . Laser Photonics Rev. , 9 , 6 , 577 – 603 , 2015 .
- de Lasson , J.R. , et al ., Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities . Opt. Express , 26 , 9 , 11366 – 11392 , 2018 /04/30 2018, doi: 10.1364/OE.26.011366 .
- Jester , P. , Menke , C. , Urban , K. , Wavelet methods for the representation, analysis and simulation of optical surfaces . IMA J. Appl. Math. , 77 , 4 , 495 – 515 , 2012 .
- Lee , W. and Degertekin , F.L. , Rigorous coupled-wave analysis of multilayered grating structures . J. Lightwave Technol. , 22 , 10 , 2359 – 2363 , 2004 .
- Weismann , M. , Gallagher , D.F. , Panoiu , N.C. , Accurate near-field calculation in the rigorous coupled-wave analysis method . J. Opt. , 17 , 12 , 125612 , 2015 .
- Shi , S. , Chen , C. , Prather , D.W. , Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers . JOSA A , 21 , 9 , 1769 – 1775 , 2004 .
- Dal Poggetto , V.F. and Serpa , A.L. , Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method . J. Sound Vib. , 495 , 115909 , 2021 .
- Haus , H.A. and Huang , W. , Coupled-mode theory . Proc. IEEE , 79 , 10 , 1505 – 1518 , 1991 .
- Huang , W.-P. , Coupled-mode theory for optical waveguides: an overview . JOSA A , 11 , 3 , 963 – 983 , 1994 .
- Wageeh , A. , El-Sabban , S. , Khalil , D. , 2D coupling configurations in integrated optical structures . Optik , 276 , 170649 , 2023 .
- Castiblanco , R. , Vargas , J. , Morales , J. , Torres , J. , Pardo , A. , Determination of the optical properties of ZnSe thin films using the transfer matrix method , in: Journal of Physics: Conference Series , vol. 480 , p. 012025 , IOP Publishing , 2014 .
- Ali , N.B. , Optical Fabry–Perot filters using hybrid Periodic, Fibonacci and Cantor photonic structures . Nano Commun. Netw. , 13 , 34 – 42 , 2017 .
- Zinßer , M. , et al ., Optical and electrical loss analysis of thin-film solar cells combining the methods of transfer matrix and finite elements . IEEE J. Photovoltaics , 12 , 5 , 1154 – 1161 , 2022 .