Polymer Blends and Reinforcements in 4D Printing
Sivanagaraju Namathoti
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorPavan Kumar Gurrala
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University -PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorPrakash Chandra
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University -PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorG. Naga Mallikarjun Rao
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorM. R. K. Vakkalagadda
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorSivanagaraju Namathoti
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorPavan Kumar Gurrala
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University -PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorPrakash Chandra
Mechanical Engineering Department, SoT, Pandit Deendayal Energy University -PDEU, Gandhinagar, Gujarat, India
Search for more papers by this authorG. Naga Mallikarjun Rao
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorM. R. K. Vakkalagadda
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
Shape memory polymers have many applications as they exhibit 100% shape recovery, good shape fixity, and are easy to process. One of the biggest problems with shape memory polymers (SMPs) is the requirement of petroleum-based polluting and non-biodegradable building blocks. To tackle solid waste pollution from petroleum-based plastics, researchers focus on eco-friendly, compostable, and biodegradable polymers. Poly(lactic acid) (PLA) stands out for its biodegradability, physical properties, and cost-effectiveness, including high strength, modulus, transparency, processability, and shape memory. However, PLA's brittleness requires plasticization for flexibility, often achieved with citrate esters, oligomeric lactic acid, poly(ethylene glycol) (PEG), or poly(propylene glycol). Combining blending and reinforcements can customize properties and create multi-stimuli responses in shape memory polymers (SMPs). For example, blending PLA with Fe 3 O 4 can enable both thermal and magnetic actuation, enhancing functionality. Furthermore, reinforcements significantly improve their properties and include tunable shape recovery based on the external stimuli. 3D printing of these shape memory blends, polymer composites and understanding their behavior is very important and may further lead to a reduction in their overall cost significantly without sacrificing the required properties. This chapter briefly discusses all the possibilities of SMPs and their blends with the inclusion of reinforcements.
References
- White , J.L. , First in a Series: Pioneers of Polymer Processing: Thomas Hancock – The First Polymer Processing Innovator . Int. Polym. Proc. , 11 , 4 , 298 – 298 , 1996 .
-
Markovic , G.
and
Visakh , P.M.
,
1 - Polymer blends: State of art, Recent Developments in Polymer Macro, Micro and Nano Blends
, pp.
1
–
15
,
Woodhead Publishing
,
Amsterdam, The Netherlands
,
2017
.
10.1016/B978-0-08-100408-1.00001-7 Google Scholar
-
Thomas , S.
,
Shanks , R.
,
Chandrasekhara kurup , S.
,
Nanostructured Polymer Blends
, pp.
xv
–
xvi
,
William Andrew Publishing
,
Norwich, NY
,
2014
.
10.1016/B978-1-4557-3159-6.00021-3 Google Scholar
- Mark , J.E. , Physical Properties of Polymers Handbook . J. Am. Chem. Soc. , 130 , 3 , 1111 – 1111 , 2008 .
- Chen , Z. , Mo , X. , long He , C. , Wang , H. , Intermolecular interactions in electrospun collagen–chitosan complex nanofibers . Carbohydr. Polym. , 72 , 3 , 410 – 418 , 2008 .
- Jeong , H.M. , Ahn , B. , Kim , B. , Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin . Eur. Polym. J. , 37 , 2245 – 2252 , 2001 .
-
Meng , Q.
and
Hu , J.
,
A review of shape memory polymer composites and blends
.
Composites, Part A
,
40
,
11
,
1661
–
1672
,
2009
.
10.1016/j.compositesa.2009.08.011 Google Scholar
- Alsaadi , M. , Hinchy , E.P. , McCarthy , C.T. , Moritz , V.F. , Zhuo , S. , Fuenmayor , E. , Devine , D.M. , Liquid-Based 4D Printing of Shape Memory Nanocomposites: A Review . J. Manuf. Mater. Process. , 7 , 35 , 2023 .
- Naga Mallikarjun Rao , G. and Vakkalagadda , M.R.K. , A review on synthesis, characterization and applications of nanoparticles in polymer nanocomposites . Mater. Today Proc. , 9 , 68 - 80 , 2023 .
-
Paul , D.R.
,
Control of phase structure in polymer blends
, in:
Functional polymers
, pp.
1
–
18
,
Plenum Press
,
New York
,
1989
.
10.1007/978-1-4613-0815-7_1 Google Scholar
-
Scobbo , J.J.
and
Goettler Jr. , L.A.
,
Applications of polymer alloys and blends
, in:
Polymer blends handbook
, pp.
951
–
76
,
Springer
,
Netherlands
,
2003
.
10.1007/0-306-48244-4_13 Google Scholar
-
White , J.L.
and
Bumm , S.H.
,
Polymer blend compounding and processing
, in:
Encyclopedia of polymer blends
, pp.
1
–
26
,
Wiley-VCH
,
Weinheim
,
2011
.
10.1002/9783527805242.ch1 Google Scholar
-
Mishra , J.
,
Tiwari , S.K.
,
Abolhasani , M.M.
,
Azimi , S.
,
Nayak , G.C.
,
2 -Fundamental of polymer blends and its thermodynamics
, in:
Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends
, pp.
27
–
55
,
Woodhead Publishing, Composites Science and Engineering
,
2017
.
10.1016/B978-0-08-101991-7.00002-9 Google Scholar
-
George , S.M.
,
Puglia , D.
,
Kenny , J.M.
,
Causin , V.
,
Parameswaranpillai , J.
,
Thomas , S.
,
Morphological and mechanical characterization of nanostructured thermosets from epoxy and styrene-block-butadiene-block-styrene triblock copolymer
.
Ind. Eng. Chem. Res.
,
52
,
91219
,
2013
.
10.1021/ie400813v Google Scholar
- Jyotishkumar , P. , Ozdilek , C. , Moldenaers , P. , Sinturel , C. , Janke , A. , Pionteck , P. , et al ., Dynamics of phase separation in poly(acrylonitrile-butadienestyrene)-modified epoxy/DDS system: kinetics and viscoelastic effects . J. Phys. Chem. B , 114 , 13271 – 81 , 2010 .
- Jiang , R. , Quirk , R.P. , White , J.L. , Min , K. , Polycarbonate-polystyrene block copolymers and their application as compatibilizing agents in polymer blends . Polym. Eng. Sci. , 31 , 1545 , 1991 .
- Jeong , H.M. , Song , J.H. , Lee , S.Y. , Kim , B.K. , Miscibility and shape memory property of poly(vinyl chloride)/thermoplastic polyurethane blends . J. Mater. Sci. , 36 , 5457 – 63 , 2001 .
- Zhang , W. , Chen , L. , Zhang , Y. , Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer . Polymer , 50 , 1311 – 5 , 2009 .
- Mather , P.T. , Liu , C. , Campo , C.J. , Blends of amorphous and semicrystalline polymers having shape memory properties , 2007 , US Patent and Trademark Office database . 7371799 .
- Liu , C. and Mather , P.T. , Thermomechanical characterization of blends of poly (vinyl acetate) with semicrystalline polymers for shape memory applications , in: Conference Proceedings , vol. 2 , pp. 1962 – 6 , 2003 .
- Arnoult , O.B. and Mather , P.T. , Crystallization of shape memory polymer blends , in: Society of Plastics Engineers Annual Technical Conference, conference proceedings , Cincinnati, OH, United States , vol. 2 , pp. 839 – 44 , 2007 .
- Behl , M. , Ridder , U. , Feng , Y. , Kelch , S. , Lendlein , A. , Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components . Soft Matter , 5 , 676 – 84 , 2009 .
- Li , S. , Lu , L. , Zeng , W. , Thermostimulative shape-memory effect of reactive compatibilized high-density polyethylene/poly(ethylene terephthalate) blends by an ethylene-butyl acrylate-glycidyl methacrylate terpolymer . J. Appl. Polym. Sci. , 112 , 3341 – 6 , 2009 .
- Weiss , R.A. , Izzo , E. , Mandelbaum , S. , New design of shape memory polymers: mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts . Macromolecules , 41 , 2978 – 80 , 2008 .
- Zhang , H. , Wang , H. , Zhong , W. , Du , Q. , A novel type of shape memory polymer blend and the shape memory mechanism . Polymer , 50 , 1596 – 601 , 2009 .
- Zhang , S. , Feng , Y. , Zhang , L. , Sun , J. , Xu , X. , Xu , Y. , Novel interpenetrating networks with shape-memory properties . J. Polym. Sci., Part A: Polym. Chem. , 45 , 768 – 75 , 2007 .
- Zhu , G. , Xu , S. , Wang , J. , Zhang , L. , Shape memory behaviour of radiation crosslinked PCL/PMVS blends . Radiat. Phys. Chem. , 75 , 443 – 8 , 2006 .
- Nagata , M. and Mamoto , Y. , Synthesis and characterization of photo cross-linked poly(e-caprolactone) s showing shape-memory properties . J. Polym. Sci., Part A: Polym. Chem. , 47 , 2422 – 33 , 2009 .
-
Zhang , C.S.
and
Nib , Q.Q.
,
Bending behavior of shape memory polymer based laminates
.
Compos. Struct.
,
78
,
153
–
61
,
2007
.
10.1016/j.compstruct.2005.08.029 Google Scholar
-
Schultz , M.R.
,
Francis , W.H.
,
Campbell , D.
,
Lake , M.S.
,
Analysis techniques for shape memory composite structures
, in:
AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference
, collection of technical papers – 48th Waikiki, HI,
United States
,
2007
, vol.
8
, pp.
8393
–
403
,
2007
.
10.2514/6.2007-2401 Google Scholar
- Gall , K. , Tupper , M.L. , Munshi , N.A. , Mikulas , M. , Micro-mechanisms of deformation in fiber reinforced polymer matrix elastic memory composites , in: AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference , Seattle, WA, United State , 2001, vol. 3 , pp. 1773 – 80 , 2001 .
-
Keller , P.N.
,
Lake , M.S.
,
Codell , D.
,
Barrett , R.
,
Taylor , R.
,
Schultz , M.R.
,
Development of elastic memory composite stiffeners for a flexible precision reflector
, in:
47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, AIAA 2006-2179
,
Newport, Rhode Island
, 1–4 May
2006
.
10.2514/6.2006-2179 Google Scholar
- Campbell , D. , Lake , M.S. , Scherbarth , M.R. , Nelson , E. , Six , R.W. , Elastic memory composite material: an enabling technology for future furable space structures, article no. AIAA 2005-2362 , in: AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, AIAA , Reston, VA , 2005 .
-
Ohki , T.
,
Ni , Q.Q.
,
Ohsako , N.
,
Iwamoto , M.
,
Mechanical and shape memory behavior of composites with shape memory polymer
.
Compos. Part A
,
35
,
1065
–
73
,
2004
.
10.1016/j.compositesa.2004.03.001 Google Scholar
- Liang , C. , Rogers , C. , Malafeew , E. , Investigation of shape memory polymers and their hybrid composites . J. Intell. Mater. Syst. Struct. , 8 , 380 – 6 , 1997 .
- Ni , Q.Q. , Ohsako , N. , Ohki , T. , Sakaguchi , M. , Wang , W. , Iwamoto , M. , Development of smart composites based on shape memory polymer , in: The international symposium on smart structures and microsystems , Hong Kong , 2000 .
- Wei , Z.G. and Sanstrom , R. , Shape memory materials and hybrid composites for smart systems. Part II. Shape-memory hybrid composites . J. Mater. Sci. , 33 , 3763 – 83 , 1998 .
- Gall , K. , Mikulas , M. , Munshi , N.A. , Beavers , F. , Tupper , M. , Carbon fiber reinforced shape memory polymer composites . J. Intell. Mater. Syst. Struct. , 11 , 877 – 86 , 2000 .
- Yang , J.H. , Chun , B.C. , Chung , Y.C. , Cho , J.W. , Cho , B.G. , Vibration control ability of multilayered composite material made of epoxy beam and polyurethane copolymer with shape memory effect . J. Appl. Polym. Sci. , 94 , 302 – 7 , 2004 .
-
Yang , C.
,
Wang , B.
,
Li , D.
,
Tian , X.
,
Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing
.
Virtual Phys. Prototyping
,
12
,
69
–
76
,
2017
.
10.1080/17452759.2016.1265992 Google Scholar
- Rodriguez , J.N. , Zhu , C. , Duoss , E.B. , Wilson , T.S. , Spadaccini , C.M. , Lewicki , J.P. , Shape-morphing composites with designed micro-architectures . Sci. Rep. , 6 , 27933 , 2016 .
- Le Duigou , A. , Chabaud , G. , Scarpa , F. , Castro , M. , Bioinspired Electro-Thermo-Hygro Reversible Shape-Changing Materials by 4D Printing . Adv. Funct. Mater. , 29 , 1903280 , 2019 .
- Demczyk , B.G. , Wang , Y.M. , Cumings , J. , Hetman , M. , Han , W. , Zettl , A. , et al ., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes . Mater. Sci. Eng., A , 334 , 173 – 8 , 2002 .
- Huang , H.M. , Liu , I.C. , Chang , Y.U.C. , Tsai , H.C. , Preparing a polystyrene functionalized multiple-walled carbon nanotubes via covalently linking acyl chloride functionalities with living polystyryllithium . J. Polym. Sci., Part A: Polym. Chem. , 42 , 5802 – 10 , 2004 .
- Zhang , W.D. , Shen , L. , Phang , I.Y. , Liu , T. , Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding . Macromolecules , 37 , 256 – 9 , 2004 .
- Jung , Y.C. , Sahoo , N.G. , Cho , J.W. , Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers . Macromol. Rapid Commun. , 27 , 126 – 31 , 2006 .
- Cadek , M. , Coleman , J. , Ryan , K. , Nicolosi , V. , Bister , G. , Fonseca , A. , Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area . Nano Lett. , 4 , 353 – 6 , 2004 .
- Haggenmueller , R. , Gommans , HHAGR , Fischer , J.E. , Winey , K.I. , Aligned singlewall carbon nanotubes composites by melt processing methods . Chem. Phys. Lett. , 330 , 219 – 25 , 2000 .
- Andrews , R. and Weisenberger , M.C. , Carbon nanotube polymer composites . Curr. Opin. Solid State Mater. Sci. , 8 , 31 – 7 , 2004 .
- Biercuk , M.J. , Llaguno , M.C. , Radosavljevic , M. , Hyun , J.K. , Johnson , A.T. , Fischer , J.E. , Carbon nanotube composites for thermal management . Appl. Phys. Lett. , 80 , 2767 – 9 , 2002 .
-
Rahul , S.
,
Bin , Z.
,
Daniel , P.
,
Mikhail , I.
,
Hui , H.
,
James , L.
,
Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning
.
Nano Lett.
,
4
,
459
–
64
,
2004
.
10.1021/nl035135s Google Scholar
- Gommans , H.H. , Alldredge , J.W. , Tashiro , H. , Park , J. , Magnuson , J. , Rinzler , A.G. , Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy . J. Appl. Phys. , 88 , 2509 – 14 , 2000 .
- Jimenez , G.A. and Jana , S.C. , Polyurethane-carbon nanofiber composites for shape memory effects , in: Society of Plastics Engineers Annual Technical Conference: plastics encounter at ANTEC 2007, conference proceedings , Paper presented at the annual technical conference – ANTEC, conference proceedings Cincinnati, OH, United States , vol. 1 , pp. 18 – 22 , 2007 .
- Thostenson , E.T. and Chou , T.W. , Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization . J. Phys. D Appl. Phys. , 35 , L77 – 80 , 2002 .
- Hou , H.Q. , Ge , J.J. , Zeng , J. , Li , Q. , Reneker , D.H. , Greiner , A. , et al ., Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes . Chem. Mater. , 17 , 967 – 73 , 2005 .
-
Kwon , J.
and
Kim , H.
,
Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by
in situ
polymerization
.
J. Polym. Sci., Part A: Polym. Chem.
,
43
,
973
–
3985
,
2005
.
10.1002/pola.20897 Google Scholar
- Chen , W. and Tao , X.M. , Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane . Macromol. Rapid Commun. , 26 , 1763 – 7 , 2005 .
- Mondal , S. and Hu , J.L. , Shape memory studies of functionalized MWNT-reinforced polyurethane copolymers . Iran. Polym. J. , 15 , 135 – 42 , 2006 .
- Wan , X. , Zhang , F. , Liu , Y. , Leng , J. , CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors . Carbon , 155 , 77 – 87 , 2019 .
- Cortés , A. , Cosola , A. , Sangermano , M. , Campo , M. , González Prolongo , S. , Pirri , C.F. , Jiménez-Suárez , A. , Chiappone , A. , DLP 4D-Printing of Remotely, Modularly, and Selectively Controllable Shape Memory Polymer Nanocomposites Embedding Carbon Nanotubes . Adv. Funct. Mater. , 31 , 2106774 , 2021 .
- Hua , D. , Zhang , X. , Ji , Z. , Yan , C. , Yu , B. , Li , Y. , Wang , X. , Zhou , F. , 3D printing of shape-changing composites for constructing flexible paper-based photothermal bilayer actuators . J. Mater. Chem. C , 6 , 2123 – 2131 , 2018 .
- Gunes , I.S. , Cao , F. , Jana , S.C. , Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites . Polymer , 49 , 2223 – 34 , 2008 .
- Meng , Q.H. , Hu , J.L. , Mondal , S. , Thermal sensitive shape recovery and mass transfer properties of polyurethane/modified MWNT composite membranes synthesized via in situ solution pre-polymerization . J. Membr. Sci. , 319 , 102 – 10 , 2008 .
- Namathoti , S. and Vakkalagadda , M.R.K. , Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive Shape Memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications . Polymers , 15 , 1371 , 2023 .
- Sahoo , N.G. , Jung , Y.C. , Yoo , H.J. , Cho , J.W. , Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites . Compos. Sci. Technol. , 67 , 1920 – 9 , 2007 .
- Kausar , A. , Ahmad , I. , Zhao , T. , Aldaghri , O. , Eisa , M.H. , Polymer/Graphene Nanocomposites via 3D and 4D Printing—Design and Technical Potential . Processes , 11 , 868 , 2023 .
- Wang , G. , Cheng , T. , Do , Y. , Yang , H. , Tao , Y. , Gu , J. , An , B. , Yao , L. , Printed paper actuator: A low-cost reversible actuation and sensing method for shape-changing interfaces , in: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems , pp. 1 – 12 , 2018 .
- Li , F. , Qi , L. , Yang , J. , Xu , M. , Luo , X. , Ma , D. , Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships . J. Appl. Polym. Sci. , 75 , 68 – 77 , 2000 .
- Yang , H. , Leow , W.R. , Wang , T. , Wang , J. , Yu , J. , He , K. , Qi , D. , Wan , C. , Chen , X. , 3D Printed Photo responsive Devices Based on Shape Memory Composites . Adv. Mater. , 29 , 1701627 , 2017 .
- Cao , F. and Jana , S.C. , Nanoclay-tethered shape memory polyurethane nanocomposites . Polymer , 48 , 3790 – 800 , 2007 .
- Cao , F. and Jana , S.C. , Nano-clay tethered shape memory polyurethane nanocomposites. Society of Plastics Engineers Annual Technical Conference 2006 , in: ANTEC 2006 – conference proceedings , vol. 2 , pp. 646 – 9 , 2006 .
- Bulut , M. , Alsaadi , M. , Erkliğ , A. , The effects of nanosilica and nanoclay particles inclusions on mode II delamination, thermal and water absorption of intraply woven carbon/aramid hybrid composites . Int. Polym. Proc. , 35 , 367 – 375 , 2020 .
-
Eng , H.
,
Maleksaeedi , S.
,
Yu , S.
,
Choong , Y.
,
Wiria , F.
,
Tan , C.
,
Su , P.
,
Wei , J.
,
3D stereolithography of polymer composites reinforced with orientated nanoclay
.
Procedia Eng.
,
216
,
17
,
2017
.
10.1016/j.proeng.2018.02.080 Google Scholar
- Hmeidat , N.S. , Kemp , J.W. , Compton , B.G. , High-strength epoxy nanocomposites for 3D printing . Compos. Sci. Technol. , 160 , 9 – 20 , 2018 .
- Alsaadi , M. , Erkliğ , A. , Abbas , M. , Effect of clay nanoparticles on the mechanical and vibration characteristics of intraply aramid/carbon fiber reinforced epoxy composite . Polym. Compos. , 41 , 2704 – 2712 , 2020 .
- Li , Y. , Zheng , W. , Li , B. , Dong , J. , Gao , G. , Jiang , Z. , Double-layer temperature-sensitive hydrogel fabricated by 4D printing with fast shape deformation . Colloids Surf., A , 648 , 129307 , 2022 .
- Mao , Y. , Ding , Z. , Yuan , C. , Ai , S. , Isakov , M. , Wu , J. , Wang , T. , Dunn , M.L. , Qi , H.J. , 3D printed reversible shape changing components with stimuli responsive materials . Sci. Rep. , 6 , 24761 , 2016 .
- Li , X. , Yang , Y. , Zhang , Y. , Wang , T. , Yang , Z. , Wang , Q. , Zhang , X. , Dual-method molding of 4D shape memory polyimide ink . Mater. Des. , 191 , 108606 , 2020 .
- Kumar , S. , Hofmann , M. , Steinmann , B. , Foster , E.J. , Weder , C. , Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals . ACS Appl. Mater. Interfaces , 4 , 5399 – 5407 , 2012 .
- Bodkhe , S. and Ermanni , P. , 3D printing of multifunctional materials for sensing and actuation: Merging piezoelectricity with shape memory . Eur. Polym. J. , 132 , 109738 , 2020 .
-
Choong , Y.Y.C.
,
Maleksaeedi , S.
,
Eng , H.
,
Yu , S.
,
Wei , J.
,
Su , P.-C.
,
High speed 4D printing of shape memory polymers with nanosilica
.
Appl. Mater. Today
,
18
,
100515
,
2020
.
10.1016/j.apmt.2019.100515 Google Scholar
- Ng , C.S. , Subramanian , A.S. , Su , P.-C. , Zinc oxide nanoparticles as additives for improved dimensional accuracy in vat photopolymerization . Addit. Manuf. , 59 , 103118 , 2022 .
- Krivec , M. , Roshanghias , A. , Abram , A. , Binder , A. , Exploiting the combination of 3D polymer printing and inkjet Ag-nanoparticle printing for advanced packaging . Microelectron. Eng. , 176 , 1 – 5 , 2017 .
-
Ikram , H.
,
Al Rashid , A.
,
Koç , M.
,
Synthesis, Characterization, and 3D Printing of Silver Nanoparticles/Photopolymer Resin Composites
, in:
IOP Conference Series: Materials Science and Engineering
,
IOP Publishing
, p.
012003
,
2022
.
10.1088/1757-899X/1248/1/012003 Google Scholar
- Chen , K. , Kuang , X. , Li , V. , Kang , G. , Qi , H.J. , Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing . Soft Matter , 14 , 1879 – 1886 , 2018 .
- Wu , A.S. , Small IV , W. , Bryson , T.M. , Cheng , E. , Metz , T.R. , Schulze , S.E. , Duoss , E.B. , Wilson , T.S. , 3D printed silicones with shape memory . Sci. Rep. , 7 , 4664 , 2017 .
- Zhang , B. , Zhang , W. , Zhang , Z. , Zhang , Y.-F. , Hingorani , H. , Liu , Z. , Liu , J. , Ge , Q. , Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System . ACS Appl. Mater. Interfaces , 11 , 10328 – 10336 , 2019 .
- Lin , C. , Lv , J. , Li , Y. , Zhang , F. , Li , J. , Liu , Y. , Liu , L. , Leng , J. , 4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices . Adv. Funct. Mater. , 29 , 1906569 , 2019 .
- Song , M. , Liu , X. , Yue , H. , Li , S. , Guo , J. , 4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase separation . Polymer , 256 , 125190 , 2022 .
- Lin , C. , Liu , L. , Liu , Y. , Leng , J. , 4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications . Compos. Struct. , 279 , 114729 , 2022 .
- Peng , B. , Yang , Y. , Ju , T. , Cavicchi , K. , Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends . ACS Appl. Mater. Interfaces , 13 , 1 , 12777 – 12788 , 2020 .
- Li , A. , Chen , X.-G. , Zhang , L.-Y. , Zhang , Y.-F. , Temperature and Infill Density Effects on Thermal, Mechanical and Shape Memory Properties of Polylactic Acid/Poly(ε-caprolactone) Blends for 4D printing . Materials , 15 , 8838 , 2022 .
-
Tekay , E.
,
Şen , S.
,
Korkmaz , M.
,
Nugay , N.
,
Preparation and characterization of thermo-responsive shape memory ester-based polymer blends
.
J. Mater. Sci.
,
58
,
1
–
20
,
2023
.
10.1007/s10853-023-08549-6
.
10.1007/s10853-023-08549-6 Google Scholar
- Rahmatabadi , D. , Ghasemi , I. , Baniassadi , M. , Abrinia , K. , Baghani , M. , 4D printing of PLA-TPU blends: effect of PLA concentration, loading mode, and programming temperature on the shape memory effect . J. Mater. Sci. , 58 , 16 , 7227 – 7243 , 2023
- Ma , S. , Jiang , Z. , Wang , M. , Zhang , L. , Liang , Y. , Zhang , Z. , Ren , L. , Ren , L. , 4D printing of PLA/PCL shape memory composites with controllable sequential deformation . Bio-Des. Manuf. , 4 , 1 – 12 , 2021 .
- Shan , W. , Chen , Y. , Hu , M. , Qin , S. , Peng , L. , 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing . Mater. Res. Express , 7 , 10 , 105305 , 2020 .
- Dong , X. , Zhang , F. , Wang , L. , Liu , Y. , Leng , J. , 4D printing of electroactive shape-changing composite structures and their programmable behaviors . Composites, Part A , 157 , 106925 , 2022 .
- Liu , H. , Wang , F. , Wu , W. , Dong , X. , Sang , L. , 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures . Composites, Part B , 248 , 110382 , 2023 .
- Wan , X. , He , Y. , Liu , Y. , Leng , J. , 4D Printing of Multiple Shape Memory Polymer and Nanocomposites with Biocompatible, Programmable and Selectively Actuated Properties . Addit. Manuf. , 53 , 53 , 102689 , 2022 .
- Lai , J. , Ye , X. , Liu , J. , Wang , C. , Li , J. , Wang , X. , Ma , M. , Wang , M. , 4D Printing of Highly Printable and Shape Morphing Hydrogels Consisted of Alginate and Methylcellulose . Mater. Des. , 205 , 109699 , 2021 .
-
Su , J.-W.
,
Gao , W.
,
Trinh , K.
,
Kenderes , S.
,
Pulatsu , E.
,
Zhang , C.
,
Whittington , A.
,
Lin , M.
,
Lin , J.
,
4D printing of polyurethane paint-based composites
.
Int. J. Smart Nano Mater.
,
10
,
1
–
12
,
2019
.
10.1080/19475411.2019.1618409 Google Scholar
- Liu , Y. , Zhang , F. , Jinsong , L. , Fu , K. , Lu , L. , Wang , L. , Cotton , C. , Sun , B. , Gu , B. , Chou , T.-W. , Remotely and Sequentially Controlled Actuation of Electroactivated Carbon Nanotube/Shape Memory Polymer Composites . Adv. Mater. Technol. , 4 , 2019 .
- Liu , Y. , Zhang , W. , Zhang , F. , Jinsong , L. , Pei , S. , Wang , L. , Jia , X. , Cotton , C. , Sun , B. , Chou , T.-W. , Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament . Compos. Sci. Technol. , 181 , 107692 , 2019 .
-
Herath , M.
,
Islam , M.M.
,
Epaarachchi , J.
,
Zhang , F.
,
Jinsong , L.
,
4D Printed Shape Memory Polymer Composite Structures for Deployable Small Spacecrafts
,
2019
.
10.1115/SMASIS2019-5583 Google Scholar
- Chowdhury , J. , Anirudh , P.V. , Karunakaran , C. , Rajmohan , V. , Mathew , A.T. , Koziol , K. , Alsanie , W.F. , Kannan , C. , Balan , A.S.S. , Thakur , V.K. , 4D Printing of Smart Polymer Nanocomposites: Integrating Graphene and Acrylate Based Shape Memory Polymers . Polymers , 13 , 3660 , 2021 .
- Wei , H. , Zhang , Q. , Yao , Y. , Liu , L. , Liu , Y. , Jinsong , L. , Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite . Appl. Mater. Interfaces , 2016 .