Innovation in Photoinduced Antibacterial 2D Nanomaterials
Zubaid ul Khazir Rather
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorShabnam Kawoosa
Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, J&K, India
Search for more papers by this authorGulam Nabi Yatoo
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorMohd Asif Hajam
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorSajad Ahmed Bhat
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorJavid Ahmed Banday
Search for more papers by this authorZubaid ul Khazir Rather
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorShabnam Kawoosa
Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, J&K, India
Search for more papers by this authorGulam Nabi Yatoo
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorMohd Asif Hajam
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorSajad Ahmed Bhat
NPCL-Lab, Department of Chemistry, National Institute of Technology, Srinagar, J&K, India
Search for more papers by this authorJavid Ahmed Banday
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
Bacterial disease epidemics continue to be a major escalating health concern worldwide. The advent of antibiotic overuse has since been linked to the continuous expansion of multi-drug resistant and “superbugs,” which in turn has led to MDR diseases. The intriguing physicochemical characteristics of versatile nanomaterials hold the potential to evaluate and optimize their antibacterial properties. An advantageous aspect of nanomaterials is their dimensionality, which can alter their intrinsic properties and influence the antibacterial mechanisms of different materials. Furthermore, 2D nanomaterials have attracted considerable attention for overcoming the problems of resistance and eliminating other side effects owing to their comparatively simple synthesis and the potential to modify their inherent properties to render them sensitive to a wide variety of stimuli. Photoinduced bacterial inactivation has garnered much attention, because photoinduced antibacterial nanomaterials target a particular site, which makes it difficult for bacteria to acquire resistance when they are exposed. Nanomaterials exhibit significant photoconversion efficiency, thermalizing the photon energy that has been absorbed. In this approach, the maximum heat stress generated by the photoinduced mechanism can denature most proteins, causing functional impairment in the cell and eventually leading to microbial death. 2D nanomaterials have been found to exhibit a variety of indistinguishable antimicrobial mechanisms, such as the ability to physically penetrate membranes, extract phospholipids or produce oxygen reactive species. To combat bacterial pests, it is necessary to evaluate the effectiveness and safety of the readily available nanomaterials.
References
-
Appelbaum , P.C.
,
2012 and beyond: Potential for the start of a second pre-antibiotic era?
J. Antimicrob. Chemother.
,
67
,
2062
,
2001
.
10.1093/jac/dks213 Google Scholar
- Interagency Coordination Group on Antimicrobial Resistance , No Time To Wait: Securing The Future From Drug-Resistant Infections , Report to the secretary-general of the United Nations, World Health Organization , Geneva, Switzerland , 2019 .
- Boyce , K. , Morrissey , O. , Idnurm , A. , Macreadie , I. , Insights into the global emergence of antifungal drug resistance . Microbiol. Aust. , 40 , 87 , 2019 .
- Percival , S.L. , Bowler , P.G. , Russell , D. , Bacterial resistance to silver in wound care . J. Hosp. Infect. , 60 , 1 , 1 – 7 , 2005 . DOI 10.1016/j.jhin.2004.11.014 .
- Helms , M. , Vastrup , P. , Gerner-Smidt , P. , Mølbak , K. , Excess mortality associated with antimicrobial drug-resistant salmonella typhimurium . Emerg. Infect. Dis. , 8 , 5 , 490 – 495 , 2002 . DOI 10.3201/eid0805.010267 .
- W. H. O ., Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis , Geneva , 2017 .
- Humphreys , G. and Fleck , F. , United Nations meeting on antimicrobial resistance . Bull. World Health Organ. , 94 , 638 , 2016 .
-
Singer , A.
,
Markoutsa , E.
,
Limayem , A.
,
Nanobiotechnology medical applications: Overcoming challenges through innovation
.
Eurobiotech. J.
,
2
,
146
–
160
,
2018
.
10.2478/ebtj-2018-0019 Google Scholar
- Willyard , C. , The drug-resistant bacteria that pose the greatest health threats . Nature , 543 , 15 , 2017 , doi: 10.1038/nature.2017.21550 .
- Miller , K.P. , Wang , L. , Benicewicz , B.C. , Decho , A.W. , Inorganic nanoparticles engineered to attack bacteria . Chem. Soc. Rev. , 44 , 7787 – 807 , 2015 .
- Chen , H. , Gu , Z. , An , H. , Chen , C. , Chen , J. , Cui , R. , Precise nanomedicine for intelligent therapy of cancer . Sci. China Chem. , 61 , 1503 – 52 , 2018 .
-
Liu , Z.
,
Lin , H.
,
Zhao , M.
,
Dai , C.
,
Zhang , S.
,
Peng , W.
,
2D superparamagnetic tantalum carbide composite mxenes for efficient breast-cancer theranostics
.
Theranostics
,
8
,
1648
–
64
,
2012
.
10.7150/thno.23369 Google Scholar
- Li , Y. , Liu , X. , Tan , L. , Cui , Z. , Jing , D. , Yang , X. , Eradicating multidrug-resistant bacteria rapidly using a multi-functional g-c3n4@bi2s3 nanorod heterojunction with or without antibiotics . Adv. Funct. Mater. , 29 , 1900946 , 2019 .
- Wang , Y. , Jin , Y. , Chen , W. , Wang , J. , Chen , H. , Sun , L. , Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections . Chem. Eng. J. , 358 , 74 – 90 , 2019 .
- Chitgupi , U. , Qin , Y. , Lovell , J.F. , Targeted nanomaterials for phototherapy . Nanotheranostics , 1 , 38 – 58 , 2017 .
- Shi , L. , Chen , J.G. , Teng , L.J. , Wang , L. , Zhu , G.L. , Liu , S. , Luo , Z.T. , Shi , X.T. , Wang , Y.J. , Ren , L. , The antibacterial applications of graphene and its derivatives . Small , 12 , 4165 – 4184 , 2016 .
- Liu , T. , Wang , C. , Gu , X. , Gong , H. , Cheng , L. , Shi , X.Z. , Feng , L.Z. , Sun , B.Q. , Liu , Z. , Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer . Adv. Mater. , 26 , 3433 – 3440 , 2014 .
- Han , J.Y. , Xia , H.P. , Wu , Y.F. , Kong , S.N. , Deivasigamani , A. , Xu , R. , Hui , K.M. , Kang , Y.J. , Single-layer MoS2 nanosheet grafted upconversion nanoparticles for nearinfrared fluorescence imaging-guided deep tissue cancer phototherapy . Nanoscale , 8 , 7861 – 7865 , 2016 .
- Wang , L.S. , Gupta , A. , Rotello , V.M. , Nanomaterials for the treatment of bacterial biofilms . ACS Infect. Dis. , 2 , 3 – 4 , 2016 .
- Beyth , N. , Houri-Haddad , Y. , Domb , A. , Khan , W. , Hazan , R. , Alternative antimicrobial approach: Nano-antimicrobial materials . Evid. Based Complement. Alternat. Med. , 2015 , 246012 , 2015 .
- Hemeg , H.A. , Nanomaterials for alternative antibacterial therapy . Int. J. Nanomedicine , 12 , 8211 – 25 , 2017 .
- Mei , L. , Zhu , S. , Yin , W. , Chen , C. , Nie , G. , Gu , Z. , Zhao , Y. , Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives . Theranostics , 10 , 2 , 757 – 781 , 2020 .
- Lambert , P.A. , Bacterial resistance to antibiotics: Modified target sites . Adv. Drug Delivery Rev. , 57 , 10 , 1471 – 85 , 2005 .
- Gu , Z. , Zhu , S. , Yan , L. , Zhao , F. , Zhao , Y. , Graphene-based smart platforms for combined cancer therapy . Adv. Mater. , 31 , 1800662 , 2019 .
- Sun , Z. , Li , Y. , Guan , X. , Chen , L. , Jing , X. , Xie , Z. , Rational design and synthesis of covalent organic polymers with hollow structure and excellent antibacterial efficacy . RSC Adv. , 4 , 40269 – 72 , 2014 .
- Mangadlao , J.D. , Santos , C.M. , Felipe , M.J.L. , de Leon , A.C.C. , Rodrigues , D.F. , Advincula , R.C. , On the antibacterial mechanism of graphene oxide (GO) langmuir-blodgett films . Chem. Commun. , 51 , 2886 – 9 , 2015 .
- Kurapati , R. , Kostarelos , K. , Prato ., M. , Bianco , A. , Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead . Adv. Mater. , 28 , 29 , 6052 – 74 , 2016 .
- Sajjad , S. , Leghari , S.A.K. , Iqbal , A. , Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications . ACS Appl. Mater. Interfaces , 9 , 43393 – 43414 , 2017 .
- Chen , J. , Fan , T. , Xie , Z. , Advances in nanomaterials for photodynamic therapy applications: Status and challenges . Biomaterials. , 237 , 119827 , 2020 .
- Kaur , N. , Aditya , R.N. , Singh , A. et al ., Biomedical applications for gold nanoclusters: Recent developments and future perspectives . Nanoscale Res. Lett. , 13 , 1 – 12 , 2018 , doi: 10.1186/s11671-018-2725-9 .
- Wang , Y.W. , Fu , Y.Y. , Wu , L.J. , Li , J. , Yang , H.H. , Chen , G.N. , Targeted photothermal ablation of pathogenic bacterium, staphylococcus aureus , with nanoscale reduced graphene oxide . J. Mater. Chem. B , 1 , 2496 – 2501 , 2013 .
- Qi , Z. , Bharate , P. , Lai , C.H. , Ziem , B. , Boettcher , C. , Schulz , A. , Beckert , F. , Hatting , B. , Muelhaupt , R. , Seeberger , P.H. , Haag , R. , Multivalency at interfaces: Supramolecular carbohydrate-functionalized graphene derivatives for bacterial capture, release, and disinfection . Nano Lett. , 15 , 6051 – 6057 , 2015 .
- Zhao , J. , Huang , S. , Ravisankar , P. , Zhu , H. , Two-dimensional nanomaterials for photoinduced antibacterial applications . ACS. Appl. Bio Mater. , 3 , 12 , 8188 – 8210 , 2020 .
- Roy , V. , Patra , S. , Kumar , D. , Madhuri , R. , Sharma , P.K. , Biosens. Bioelectron. , 68 , 726 , 2015 .
- Feng , L.L. and Liu , Z. , Graphene in biomedicine: Oppurtunities and challenges . Nanomedicine , 6 , 317 , 2011 .
- Han , W. , Wu , Z. , Li , Y. , Wang , Y. , Graphene family nanomaterials (GFNs) —; promising materials for antimicrobial coating and film: A review . Chem. Eng. J. , 358 , 1022 – 1037 , 2019 .
- Ji , H. , Sun , H. , Qu , X. , Antibacterial applications of graphenebased nanomaterials: Recent achievements and challenges . Adv. Drug Deliv. Rev. , 105 , 2016 , 176 – 189 , 2016 .
- Zarafu , I. , Turcu , I. , Culită , D. , Petrescu , S. , Popa , M. , Chifiriuc , M.C. , Limban , C. , Telehoiu , A. , Ionită , P. , Antimicrobial features of organic functionalized graphene-oxide with selected amines . Materials , 11 , 1704 , 2018 .
- Pulingam , T. , Thong , K.L. , Ali , M.E. , Appaturi , J.N. , Dinshaw , I.J. , Ong , Z.Y. , Leo , B.F. , Graphene oxide exhibits differential mechanistic action towards gram-positive and gram-negative bacteria . Colloids Surf. B Biointerfaces , 181 , 6 – 15 , 2019 .
- Jia , X. , Ahmad , I. , Yang , R. , Wang , C. , Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms . J. Mater. Chem. B , 5 , 2459 – 2467 , 2017 .
- Wu , M.C. , Deokar , A.R. , Liao , J.H. , Shih , P.Y. , Ling , Y.C. , Graphene-based photothermal agent for rapid and effective killing of bacteria . ACS Nano , 7 , 2 , 1281 – 90 , 2013 .
- Shahnawaz Khan , M. , Abdelhamid , H.N. , Wu , H.F. , Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment . Colloids Surf. B , 127 , 281 – 91 , 2015 .
- Li , R. , Mansukhani , N.D. , Guiney , L.M. , Ji , Z. , Zhao , Y. , Chang , C.H. , French , C.T. , Miller , J.F. , Hersam , M.C. , Nel , A.E. , Xia , T. , Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings . ACS Nano , 10 , 10966 – 10980 , 2016 .
- Chong , Y. , Ge , C. , Fang , G. , Wu , R. , Zhang , H. , Chai , Z. , Chen , C. , Yin , J.J. , Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer . Environ. Sci. Technol. , 51 , 10154 , 2017 .
- Hou , W.C. , Lee , P.L. , Chou , Y.C. , Wang , Y.S. , Antibacterial property of graphene oxide: The role of phototransformation . Environ. Sci. Nano , 4 , 647 – 657 , 2017 .
- Gurunathan , S. , Han , J.W. , Dayem , A.A. , Eppakayala , V. , Park , M.R. , Kwon , D.N. , Kim , J.H. , Antibacterial activity of dithiothreitol reduced graphene oxide . J. Ind. Eng. Chem. , 19 , 1280 – 1288 , 2013 .
- Liu , S. , Zeng , T.H. , Hofmann , M. , Burcombe , E. , Wei , J. , Jiang , R. , Kong , J. , Chen , Y. , Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress . ACS Nano , 5 , 6971 – 6980 , 2011 .
- Liu , S. , Hu , M. , Zeng , T.H. , Wu , R. , Jiang , R. , Wei , J. , Wang , L. , Kong , V. , Chen , Y. , Lateral dimension-dependent antibacterial activity of graphene oxide sheets . Langmuir , 28 , 12364 – 12372 , 2012 .
- Faria , A.F. , Perreault , F. , Elimelech , M. , Elucidating the role of oxidative debris in the antimicrobial properties of graphene oxide . ACS. Appl. Nano Mater. , 1 , 1164 , 2018 .
- Lu , X. , Feng , X. , Werber , J.R. , Chu , C. , Zucker , I. , Kim , J.H. , Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets . Proc. Natl. Acad. Sci. U. S. A. , 114 , E9793 – E801 , 2017 .
- Liu , R. , Wang , X. , Ye , J. , Xue , X. , Zhang , F. , Zhang , H. , Hou , X. , Liu , X. , Zhang , Y. , Enhanced antibacterial activity of silverdecorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect . Nanotechnology , 29 , 10 , 105704 , 2018 .
- Robinson , J.T. , Tabakman , S.M. , Liang , Y. , Wang , H. , Sanchez-Casalongue , H. , Vinh , D. , Dai , H. , Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy . J. Am. Chem. Soc. , 133 , 6825 – 6831 , 2011 .
- Wang , S.G. , Chen , Y.C. , Chai , C.Y. , Antibacterial gold nanoparticle-based photothermal killing of vancomycin-resistant bacteria . Nanomedicine , 13 , 1405 – 1416 , 2018 , doi: 10.2217/nnm-2017-0380 .
- Tan , S. , Wu , X. , Xing , Y. , Lilak , S. , Wu , M. , Zhao , J.X. , Enhanced synergetic antibacterial activity by a reduce graphene oxide/ag nanocomposite through the photothermal effect . Colloids Surf. B , 185 , 110616 , 2020 , doi: 10.1016/j.colsurfb.2019.110616 .
- Zhang , W. , Mou , Z. , Wang , Y. , Chen , Y. , Yang , E. , Guo , F. , Molybdenum disulfide nanosheets loaded with chitosan and silver nanoparticles effective antifungal activities: In vitro and in vivo . Mater. Sci. Eng. C , 97 , 486 – 97 , 2019 .
- Cao , W. , Yue , L. , Wang , Z. , High antibacterial activity of chitosanmolybdenum disulfide nanocomposite . Carbohydr Polym. , 215 , 226 – 34 , 2019 .
- Zhang , W. , Shi , S. , Wang , Y. , Yu , S. , Zhu , W. , Zhang , X. , Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy . Nanoscale , 8 , 11642 – 8 , 2016 .
- Yin , W. , Yu , J. , Lv , F. , Yan , L. , Zheng , L. , Gu , Z. , Functionalized nano-MoS 2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications . ACS Nano , 10 , 11000 – 11 , 2016 .
- Huang , X. , Wei , J. , Liu , T. , Zhang , X. , Bai , S. , Yang , H. , Silk fibroin- assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings . Nanoscale , 9 , 17193 – 8 , 2017 .
- Krishnamoorthy , K. , Veerapandian , M. , Yun , K. , Kim , S.J. , New function of molybdenum trioxide nanoplates: Toxicity towards pathogenic bacteria through membrane stress . Colloids Surf. B , 112 , 521 – 4 , 2013 .
- Mo , S. , Chen , X. , Chen , M. , He , C. , Lu , Y. , Zheng , N. , Two-dimensional antibacterial Pd@Ag nanosheets with a synergetic effect of plasmonic heating and Ag + release . J. Mater. Chem. B , 3 , 6255 – 60 , 2015 .
- Kaushik , R. , Vineeth Daniel , P. , Mondal , P. , Halder , A. , Transformation of 2-D TiO 2 to mesoporous hollow 3-D TiO 2 spheres-comparative studies on morphology-dependent photocatalytic and anti-bacterial activity . Microporous Mesoporous Mater. , 285 , 32 – 42 , 2019 .
- Li , R. , Ren , Y. , Zhao , P. , Wang , J. , Liu , J. , Zhang , Y. , Graphitic carbon nitride (g-C 3 N 4 ) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance . J. Hazard. Mater. , 365 , 606 – 14 , 2019 .
- Khan , M.E. , Han , T.H. , Khan , M.M. , Karim , M.R. , Cho , M.H. , Environmentally sustainable fabrication of Ag@g-C 3 N 4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts . ACS Appl. Nano Mater. , 1 , 2912 – 2 , 2018 .
- Wu , Y. , Zhou , Y. , Xu , H. , Liu , Q. , Li , Y. , Zhang , L. , Highly active, superstable, and biocompatible Ag/polydopamine/g-C 3 N 4 bactericidal photocatalyst: Synthesis, characterization, and mechanism . ACS Sustain. Chem. Eng. , 6 , 14082 – 94 , 2018 .
- Rasool , K. , Helal , M. , Ali , A. , Ren , C.E. , Gogotsi , Y. , Mahmoud , K.A. , Antibacterial activity of Ti 3 C 2 T x MXene . ACS Nano , 10 , 3674 – 84 , 2016 .
- Alimohammadi , F. , Gh , M.S. , Attanayake , N.H. , Thenuwara , A.C. , Gogotsi , Y. , Anasori , B. , Antimicrobial properties of 2D MnO 2 and MoS 2 nanomaterials vertically aligned on graphene materials and Ti 3 C 2 MXene . Langmuir , 34 , 7192 – 200 , 2018 .
- Rasool , K. , Mahmoud , K.A. , Johnson , D.J. , Helal , M. , Berdiyorov , G.R. , Gogotsi , Y. , Efficient antibacterial membrane based on two-dimensional Ti 3 C 2 Tx (MXene) nanosheets . Sci. Rep. , 7 , 1598 – 609 , 2017 .
- Xiong , Z. , Zhang , X. , Zhang , S. , Lei , L. , Ma , W. , Li , D. , Bacterial toxicity of exfoliated black phosphorus nanosheets . Ecotoxicol. Environ. Saf. , 161 , 507 – 14 , 2018 .
- Wu , Q. , Liang , M. , Zhang , S. , Liu , X. , Wang , F. , Development of functional black phosphorus nanosheets with remarkable catalytic and antibacterial performance . Nanoscale , 10 , 10428 – 35 , 2018 .
- Wang , Q.H. , Kalantar-Zadeh , K. , Kis , A. , Coleman , J.N. , Strano , M.S. , Electronics and optoelectronics of two-dimensional transition metal dichalcogenides . Nat. Nanotechnol. , 7 , 11 , 699 – 712 , 2012 .
- Mak , K.F. and Shan , J. , Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides . Nat. Photonics , 10 , 4 , 216 – 226 , 2016 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.J. , Loh , K.P. , Zhang , H. , The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 4 , 263 – 75 , 2013 .
- Kalantar-zadeh , K. , Ou , J.Z. , Daeneke , T. , Strano , M.S. , Pumera , M. , Gras , S.L. , Two-dimensional transition metal dichalcogenides in biosystems . Adv. Funct. Mater. , 25 , 32 , 5086 – 5099 , 2015 .
- Tan , C. and Zhang , H. , Two-dimensional transition metal dichalcogenide nanosheet-based composites . Chem. Soc. Rev. , 44 , 9 , 2713 – 31 , 2015 .
- Zhu , H. , Ni , N. , Govindarajan , S. , Ding , X. , Leong , D.T. , Phototherapy with layered materials derived quantum dots . Nanoscale , 12 , 1 , 43 – 57 , 2020 .
- Zhu , H. , Lai , Z. , Fang , Y. , Zhen , X. , Tan , C. , Qi , X. , Ding , D. , Chen , P. , Zhang , H. , Pu , K. , Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics . Small. , 13 , 16 , 1604139 , 2017 .
- Ding , X. , Peng , F. , Zhou , J. , Gong , W. , Slaven , G. , Loh , K.P. , Lim , C.T. , Leong , D.T. , Defect engineered bioactive transition metals dichalcogenides quantum dots . Nat. Commun. , 10 , 1 , 41 , 2019 .
- Wardman , P. , Reduction potentials of one-electron couples involving free radicals in aqueous solution . J. Phys. Chem. Ref. Data , 18 , 4 , 1637 – 1755 , 1989 .
- Liao , H. and Reitberger , T. , Generation of Free OHaq Radicals by Black Light Illumination of Degussa (Evonik) P25 TiO2 Aqueous Suspensions . Catalysts , 3 , 2 , 418 – 443 , 2013 .
- Liu , T. , Wang , C. , Cui , W. , Gong , H. , Liang , C. , Shi , X. , Li , Z. , Sun , B. , Liu , Z. , Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets . Nanoscale , 6 , 19 , 11219 – 25 , 2014 .
- Cheng , L. , Liu , J. , Gu , X. , Gong , H. , Shi , X. , Liu , T. , Wang , C. , Wang , X. , Liu , G. , Xing , H. , Bu , W. , Sun , B. , Liu , Z. , PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dualmodal CT/photoacoustic imaging guided photothermal therapy . Adv. Mater. , 26 , 12 , 1886 – 93 , 2014 .
- Lei , Z. , Zhu , W. , Xu , S. , Ding , J. , Wan , J. , Wu , P. , Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices . ACS Appl. Mater. Interfaces , 8 , 32 , 20900 – 8 , 2016 .
- Zhang , Y. , Zheng , B. , Zhu , C. , Zhang , X. , Tan , C. , Li , H. , Chen , B. , Yang , J. , Chen , J. , Huang , Y. , Wang , L. , Zhang , H. , Singlelayer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA . Adv. Mater. , 27 , 5 , 935 – 9 , 2015 .
- Yin , W. , Yu , J. , Lv , F. , Yan , L. , Zheng , L.R. , Gu , Z. , Zhao , Y. , Functionalized nano-MoS2 with peroxidase catalytic and nearinfrared photothermal activities for safe and synergetic wound antibacterial applications . ACS Nano , 10 , 12 , 11000 – 11011 , 2016 .
- Gao , Q. , Zhang , X. , Yin , W. , Ma , D. , Xie , C. , Zheng , L. , Dong , X. , Mei , L. , Yu , J. , Wang , C. , Gu , Z. , Zhao , Y. , Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy . Small , 14 , 45 , e1802290 , 2018 .
- Yuan , Z. , Tao , B. , He , Y. , Liu , J. , Lin , C. , Shen , X. , Ding , Y. , Yu , Y. , Mu , C. , Liu , P. , Cai , K. , Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation . Biomaterials , 217 , 119290 , 2019 .
- Lin , Y. , Han , D. , Li , Y. , Tan , L. , Liu , X. , Cui , Z. , Yang , X. , Li , Z. , Liang , Y. , Zhu , S. , Wu , S. , Ag2S@WS2 heterostructure for rapid bacteria-killing using near-infrared light . ACS Sustain. Chem. Eng. , 7 , 17 , 14982 – 14990 , 2019 .
- Zhao , H. , Chen , S. , Quan , X. , Yu , H. , Zhao , H. , Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment . Appl. Catal. B , 194 , 134 – 40 , 2016 .
- Ong , W.J. , Tan , L.L. , Ng , Y.H. , Yong , S.T. , Chai , S.P. , Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. , 116 , 7159 – 329 , 2016 .
- Jiang , J. , Ou-yang , L. , Zhu , L. , Zheng , A. , Zou , J. , Yi , X. , Tang , H. , Dependence of electronic structure of g- C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first- principles calculations . Carbon , 80 , 213 – 221 , 2014 .
- Zhao , H. , Yu , H. , Quan , X. , Chen , S. , Zhang , Y. , Zhao , H. , Wang , H. , Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation . Appl. Catal. B , 152-153 , 46 – 50 , 2014 .
- Bing , W. , Chen , Z. , Sun , H. , Shi , P. , Gao , N. , Ren , J. , Qu , X. , Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles . Nano Res. , 8 , 5 , 1648 – 1658 , 2015 .
- Muñoz-Batista , M.J. , Fontelles-Carceller , O. , Ferrer , M. , Fernandez-García , M. , Kubacka , A. , Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination . Appl. Catal. B , 183 , 86 – 95 , 2016 .
- Li , Y. , Zhang , C. , Shuai , D. , Naraginti , S. , Wang , D. , Zhang , W. , Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: Virucudal performance and mechanism . Water Res. , 106 , 249 – 258 , 2016 .
- Shi , Y. , Hamsen , C. , Jia , X.T. , Kim , K.K. , Reina , A. , Hofmann , M. , Hsu , A.L. , Zhang , K. , Li , H.N. , Juang , Z.Y. , Dresselhaus , M.S. , Li , L.J. , Kong , J. , Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition . Nano Lett. , 10 , 4134 – 4139 , 2010 .
- Gao , G. , Mathkar , A. , Martins , E.P. , Galvao , D.S. , Gao , D. , da Silva Autreto , P.A. , Sun , C. , Cai , L. , Ajayan , P.M. , Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition . J. Mater. Chem. A , 2 , 3148 – 3154 , 2014 .
- Li , Z. , Wu , L. , Wang , H. , Zhou , W. , Liu , H. , Cui , H. , Synergistic antibacterial activity of black phosphorus nanosheets modified with titanium aminobenzenesulfanato complexes . ACS Appl. Nano Mater. , 2 , 1202 – 9 , 2019 .
- Lei , W. , Liu , G. , Zhang , J. , Liu , M. , Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization . Chem. Soc. Rev. , 46 , 3492 – 509 , 2017 .
- Luo , M. , Fan , T. , Zhou , Y. , Zhang , H. , Mei , L. , 2D black phosphorus-based biomedical applications . Adv. Funct. Mater. , 29 , 1808306 , 2019 .
- Choi , J.R. , Yong , K.W. , Choi , J.Y. , Nilghaz , A. , Lin , Y. , Xu , J. , Black phosphorus and its biomedical applications . Theranostics , 8 , 1005 – 26 , 2018 .
- Ouyang , J. , Liu , R. , Chen , W. , Liu , Z. , Xu , Q. , Zeng , K. , A black phosphorus based synergistic antibacterial platform against drug resistant bacteria . J. Mater. Chem. B , 6 , 6302 – 10 , 2018 .
- Mao , C. , Xiang , Y. , Liu , X. , Cui , Z. , Yang , X. , Li , Z. , Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing . ACS Nano , 12 , 1747 – 59 , 2018 .
- Huang , X. , Wei , J. , Zhang , M. , Zhang , X. , Yin , X. , Lu , C. , Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications . ACS Appl. Mater. Interfaces , 10 , 35495 – 502 , 2018 .
- Huang , X.W. , Wei , J.J. , Zhang , M.Y. , Zhang , X.L. , Yin , X.F. , Lu , C.H. , Song , J.B. , Bai , S.M. , Yang , H.H. , Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications . ACS Appl. Mater. Interfaces , 10 , 41 , 35495 – 35502 , 2018 .
- Lv , R. , Yang , D. , Yang , P. , Xu , J. , He , F. , Gai , S. , Li , C. , Dai , Y. , Yang , G. , Lin , J. , Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation . Chem. Mater. , 28 , 13 , 4724 – 4734 , 2016 .
- Chen , W. , Ouyang , J. , Liu , H. , Chen , M. , Zeng , K. , Sheng , J. , Liu , Z. , Han , Y. , Wang , L. , Li , J. , Deng , L. , Liu , Y.N. , Guo , S. , Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer . Adv. Mater. , 29 , 5 , 1603864 , 2017 .
- Shao , J. , Ruan , C. , Xie , H. , Li , Z. , Wang , H. , Chu , P.K. , Yu , X.F. , Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer . Adv. Sci. (Weinh) , 5 , 5 , 1700848 , 2018 .
- Shao , J. , Xie , H. , Huang , H. , Li , Z. , Sun , Z. , Xu , Y. , Xiao , Q. , Yu , X.F. , Zhao , Y. , Zhang , H. , Wang , H. , Chu , P.K. , Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy . Nat. Commun. , 7 , 12967 , 2016 .
- Aksoy , I. , Kucukkececi , H. , Sevgi , F. , Metin , O. , Hatay Patir , I. , Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria . ACS Appl. Mater. Interfaces , 12 , 24 , 26822 – 26831 , 2020 .
- Ghidiu , M. , Lukatskaya , M.R. , Zhao , M.Q. , Gogotsi , Y. , Barsoum , M.W. , Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance . Nature. , 516 , 78 – 81 , 2014 .
- Jastrzębska , A.M. , Karwowska , E. , Wojciechowski , T. , Ziemkowska , W. , Rozmysłowska , A. , Chlubny , L. , Olszyna , A. , J. Mater. Eng. Perform ., 2018 , Ahead of print.
- Rives , V. , Del Arco , M. , Martin , C. , Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review . J. Control. Release , 169 , 1-2 , 28 – 39 , 2013 .
- Ladewig , K. , Xu , Z.P. , Lu , G.Q. , Layered double hydroxide nanoparticles in gene and drug delivery . Exp. Opin. Drug Deliv. , 6 , 9 , 907 – 22 , 2009 .
- Zhao , Y. , Wang , C.J. , Gao , W. , Li , B. , Wang , Q. , Zheng , L. , Wei , M. , Evans , D.G. , Duan , X. , O'Hare , D. , Synthesis and antimicrobial activity of ZnTi-layered double hydroxide nanosheets . J. Mater. Chem. B , 1 , 43 , 5988 – 5994 , 2013 .
- Ma , K. , Li , Y. , Wang , Z. , Chen , Y. , Zhang , X. , Chen , C. , Yu , H. , Huang , J. , Yang , Z. , Wang , X. , Wang , Z. , Core-shell gold nanorod@layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy . ACS Appl. Mater. Interfaces , 11 , 33 , 29630 – 29640 , 2019 .
- Leon Morales , C.F. , Leis , A.P. , Strathmann , M. , Flemming , H.C. , Interactions between laponite and microbial biofilms in porous media: Implications for colloid transport and biofilm stability . Water Res. , 38 , 3614 – 26 , 2004 .
- Das , S.S. , Neelam , H.K. , Singh , S. , Hussain , A. , Faruk , A. , Laponite-based nanomaterials for biomedical applications: A review . Curr. Pharm. Des. , 25 , 424 – 43 , 2019 .
- Zhu , C. , Shen , H. , Liu , H. , Lv , X. , Li , Z. , Yuan , Q. , Solution-processable two-dimensional In2Se3 nanosheets as efficient photothermal agents for elimination of bacteria . Chemistry , 24 , 19060 – 5 , 2018 .
- Ding , W. , Zhu , J. , Wang , Z. , Gao , Y. , Xiao , D. , Gu , Y. , Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials . Nat. Commun. , 8 , 14956 – 64 , 2017 .
- Sun , W. and Wu , F.G. , Two-dimensional materials for antimicrobial applications: Graphene materials and beyond . Chem. Asian J. , 13 , 3378 – 410 , 2018 .
- Miao , H. , Teng , Z. , Wang , C. , Chong , H. , Wang , G. , Recent progress in two-dimensional antimicrobial nanomaterials . Chem. Asian J. , 25 , 929 – 44 , 2019 .
- Zou , X. , Zhang , L. , Wang , Z. , Luo , Y. , Mechanisms of the antimicrobial activities of graphene materials . J. Am. Chem. Soc. , 138 , 2064 – 77 , 2016 .
- Schwechheimer , C. and Kuehn , M.J. , Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions . Nat. Rev. Microbiol. , 13 , 605 – 19 , 2015 .
- Brown , L. , Wolf , J.M. , Prados-Rosales , R. , Casadevall , A. , Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi . Nat. Rev. Microbiol. , 13 , 620 – 30 , 2015 .
- Pham , V.T.H. , Vi Khanh , T. , Quinn , M.D.J. , Notley , S.M. , Guo , Y. , Baulin , V.A. , Al Kobaisi , M. , Crawford , R.J. , Ivanova , E.P. , Graphene induces formation of pores that kill spherical and rod-shaped bacteria . ACS Nano , 9 , 8458 – 8467 , 2015 .
- Tu , Y. , Lv , M. , Xiu , P. , Huynh , T. , Zhang , M. , Castelli , M. , Liu , Z. , Huang , Q. , Fan , C. , Fang , H. , Zhou , R. , Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets . Nat. Nanotechnol. , 8 , 594 – 601 , 2013 .
- Zheng , H. , Ma , R. , Gao , M. , Tian , X. , Li , Y. , Zeng , L. , Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety . Sci. Bull. , 63 , 133 – 42 , 2018 .
- Li , Y.F. , Ouyang , S.H. , Tu , L.F. , Wang , X. , Yuan , W.L. , Wang , G.E. , Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy . Theranostics , 8 , 5713 – 30 , 2018 .
- Li , J. , Wang , G. , Zhu , H. , Zhang , M. , Zheng , X. , Di , Z. , Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer . Sci. Rep. , 4 , 4359 , 2015 .
- Gurunathan , S. , Woong , H.J. , Abdal Daye , A. , Eppakayala , V. , Kim , J. , Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa . Int. J. Nanomedicine , 7 , 5901 – 5914 , 2012 .
- Hui , L. , Huang , J. , Chen , G. , Zhu , Y. , Yang , L. , Antibacterial property of graphene quantum dots (both source material and bacterial shape matter) . ACS Appl. Mater. Interfaces , 8 , 20 – 25 , 2016 .
- Chung , H. , Kim , M.J. , Ko , K. , Kim , J.H. , Kwon , H.A. , Hong , I. , Park , N. , Lee , S.W. , Kim , W. , Effects of graphene oxides on soil enzyme activity and microbial biomass . Sci. Total Environ. , 514 , 307 – 313 , 2015 .
- Das , S. , Singh , S. , Singh , V. , Joung , D. , Dowding , J.M. , Reid , D. , Anderson , J. , Zhai , L. , Khondaker , S.I. , Self , W.T. , Seal , S. , Oxygenated functional group density on graphene oxide: Its effect on cell toxicity . Part. Part. Syst. Charact. , 30 , 148 – 157 , 2013 .
- Luan , B. , Tien , H. , Zhao , L. , Zhou , R. , Potential toxicity of graphene to cell functions via disrupting protein-protein interactions . ACS Nano , 9 , 663 – 669 , 2015 .
- Xu , J. , Yao , K. , Xu , Z. , Nanomaterials with a photothermal effect for antibacterial activities: An overview . Nanoscale , 11 , 8680 – 91 , 2019 .
- Wang , W. , Li , G. , Xia , D. , An , T. , Zhao , H. , Wong , P.K. , Photocatalytic nanomaterials for solar-driven bacterial inactivation: Recent progress and challenges . Environ. Sci. Nano , 4 , 782 – 99 , 2017 .
- Tavares , A. , Carvalho , C.M.B. , Faustino , M.A. , Neves , M.G.P.M.S. , Tomé , J.P.C. , Tomé , A.C. , Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment . Mar. Drugs , 8 , 91 – 105 , 2010 .
- Wegener , M. , Hansen , M.J. , Driessen , A.J.M. , Szymanski , W. , Feringa , B.L. , Photocontrol of antibacterial activity: Shifting from UV to red light activation . J. Am. Chem. Soc. , 139 , 17979 – 86 , 2017 .
- Chou , S.S. , Kaehr , B. , Kim , J. , Foley , B.M. , De , M. , Hopkins , P.E. , Chemically exfoliated MoS2 as near-infrared photothermal agents . Angew. Chem. Int. Ed. , 52 , 4160 – 4 , 2013 .
- Wang , X. , Lv , F. , Li , T. , Han , Y. , Yi , Z. , Liu , M. , Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing . ACS Nano , 11 , 11337 – 49 , 2017 .
- Miao , Z. , Fan , L. , Xie , X. , Ma , Y. , Xue , J. , He , T. , Liquid exfoliation of atomically thin antimony selenide as an efficient two-dimensional antibacterial nanoagent . ACS Appl. Mater. Interfaces , 11 , 26664 – 73 , 2019 .
- Yu , J. , Yin , W. , Zheng , X. , Tian , G. , Zhang , X. , Bao , T. , Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging . Theranostics , 5 , 931 – 45 , 2015 .
- Liu , Y. , Zeng , X. , Hu , X. , Hua , J. , Zhang , X. , Two-dimensional nanomaterials for photocatalytic water disinfection: Recent progress and future challenges . J. Chem. Technol. Biotechnol. , 94 , 22 – 37 , 2019 .
- Liu , C. , Kong , D. , Hsu , P.C. , Yuan , H. , Lee , H.W. , Liu , Y. , Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light . Nat. Nanotechnol. , 11 , 1098 – 105 , 2016 .
- Wu , D. , Wang , B. , Wang , W. , An , T. , Li , G. , Ng , T.W. , Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli . J. Mater. Chem. A , 3 , 15148 – 55 , 2015 .
- De Melo , W.C. , Avci , P. , de Oliveira , M.N. , Gupta , A. , Vecchio , D. , Sadasivam , M. , Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection . Expert Rev. Anti. Infect. Ther. , 11 , 669 – 93 , 2013 .
- Fan , W. , Huang , P. , Chen , X. , Overcoming the Achilles’ heel of photodynamic therapy . Chem. Soc. Rev. , 45 , 6488 – 519 , 2016 .
-
Biel , M.A.
,
Photodynamic therapy of bacterial and fungal biofilm infections
, in:
Photodynamic Therapy: Methods and Protocols
, pp.
175
–
194
,
Humana Press
,
Totowa, NJ
,
2010
.
10.1007/978-1-60761-697-9_13 Google Scholar