Application of Wavefunction-Based Multireference Calculations on Studies of High-Valent Biomimetic Iron Complexes
Haowei Chen
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorPeng Zhang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
University of Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorShengfa Ye
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorHaowei Chen
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorPeng Zhang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
University of Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorShengfa Ye
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorAbstract
This article is to give a brief introduction on how to utilize wavefunction-based multireference methods to predict electronic structures, spectroscopic properties, and reactivities of transition metal complexes. To this end, we choose a series of high-valent iron complexes as examples. Specifically, we first focus on how to choose an appropriate active space, then delineate how to extract electronic-structure information from highly correlated multireference wavefunctions and, finally, elaborate how to establish the correlation of electronic structures with spectroscopic parameters and reactivities.
References
- 1A. Ghosh, J. Inorg. Biochem., 2006, 100, 419.
- 2I. Bertini, ‘ Biological Inorganic Chemistry: Structure and Reactivity’, University Science Books, New York, 2007, p. 319.
- 3J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger and C. Krebs, Biochemistry, 2003, 42, 7497.
- 4T. H. Moss, A. Ehrenberg and A. J. Bearden, Biochemistry, 1969, 8, 4159.
- 5S. M. Barry and G. L. Challis, ACS Catal., 2013, 3, 2362.
- 6J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam and L. Que, Science, 2003, 299, 1037.
- 7J.-U. Rohde, S. Torelli, X. Shan, M. H. Lim, E. J. Klinker, J. Kaizer, K. Chen, W. Nam and L. Que, J. Am. Chem. Soc., 2004, 126, 16750.
- 8A. Decker, J.-U. Rohde, E. J. Klinker, S. D. Wong, L. Que and E. I. Solomon, J. Am. Chem. Soc., 2007, 129, 15983.
- 9A. Chanda, X. Shan, M. Chakrabarti, W. C. Ellis, D. L. Popescu, F. Tiago de Oliveira, D. Wang, L. Que, Jr. T. J. Collins, E. Münck and E. L. Bominaar, Inorg. Chem., 2008, 47, 3669.
- 10T. A. Jackson, J.-U. Rohde, M. S. Seo, C. V. Sastri, R. DeHont, A. Stubna, T. Ohta, T. Kitagawa, E. Münck, W. Nam and L. Que, Jr. J. Am. Chem. Soc., 2008, 130, 12394.
- 11J. England, M. Martinho, E. R. Farquhar, J. R. Frisch, E. L. Bominaar, E. Münck and L. Que, Jr. Angew. Chem. Int. Ed., 2009, 48, 3622.
- 12X. Wu, M. S. Seo, K. M. Davis, Y. M. Lee, J. Chen, K. B. Cho, Y. N. Pushkar and W. Nam, J. Am. Chem. Soc., 2011, 133, 20088.
- 13K. M. Van Heuvelen, A. T. Fiedler, X. Shan, R. F. De Hont, K. K. Meier, E. L. Bominaar, E. Munck and L. Que, Jr. Proc. Natl. Acad. Sci. USA, 2012, 109, 11933.
- 14S. Meyer, I. Klawitter, S. Demeshko, E. Bill and F. Meyer, Angew. Chem. Int. Ed. Eng., 2013, 52, 901.
- 15J. Serrano-Plana, W. N. Oloo, L. Acosta-Rueda, K. K. Meier, B. Verdejo, E. Garcia-Espana, M. G. Basallote, E. Munck, L. Que, Jr. A. Company and M. Costas, J. Am. Chem. Soc., 2015, 137, 15833.
- 16A. N. Biswas, M. Puri, K. K. Meier, W. N. Oloo, G. T. Rohde, E. L. Bominaar, E. Münck and L. Que, Jr. J. Am. Chem. Soc., 2015, 137, 2428.
- 17J. E. M. N. Klein and L. Que Jr, ‘ Biomimetic High-Valent Mononuclear Nonheme Iron-Oxo Chemistry’, John Wiley and Sons, Ltd, Hoboken, NJ, 2016, p. 1.
10.1002/9781119951438.eibc2344 Google Scholar
- 18W. R. Hagen, ‘ Biomolecular EPR Spectroscopy’, CRC Press, Boca Raton, FL, 2008, p. 3.
10.1201/9781420059588.pt1 Google Scholar
- 19P. Gütlich, E. Bill and A. X. Trautwein, ‘ Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications’, Springer, Berlin, Heidelberg, 2016.
- 20G. Bunker, ‘ Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy’, Cambridge University Press, New York, NY, 2010, p. 1.
10.1017/CBO9780511809194 Google Scholar
- 21S. B. Piepho and P. N. Schatz, ‘ Group Theory in Spectroscopy: With Applications to Magnetic Circular Dichroism’, Wiley, New York, NY, 1983, p. 1.
- 22W. Koch and M. C. Holthausen, ‘ A Chemist's Guide to Density Functional Theory’, Wiley, Weinheim, Germany, 2015, p. 1.
- 23F. Neese and E. I. Solomon, Inorg. Chem., 1998, 37, 6568.
- 24F. Neese and E. I. Solomon, Inorg. Chem., 1999, 38, 1847.
- 25D. Ganyushin and F. Neese, J. Chem. Phys., 2008, 128, 114117.
- 26P.-Å. Malmqvist and B. O. Roos, Chem. Phys. Lett., 1989, 155, 189.
- 27K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej and K. Wolinski, J. Phys. Chem., 1990, 94, 5483.
- 28C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J. P. Malrieu, J. Chem. Phys., 2001, 114, 10252.
- 29C. Angeli, R. Cimiraglia and J.-P. Malrieu, J. Chem. Phys., 2002, 117, 9138.
- 30P. E. M. Siegbahn, Int. J. Quantum Chem., 1980, 18, 1229.
- 31H. F. Schaefer, ‘ Methods of Electronic Structure Theory’, Springer US, New York, NY, 2013.
- 32F. A. Evangelista and J. Gauss, J. Chem. Phys., 2011, 134, 224102-1-13.
- 33M. Hanauer and A. Köhn, J. Chem. Phys., 2011, 134, 204111-1-20.
10.1063/1.3592786 Google Scholar
- 34J. Krzystek, J. England, K. Ray, A. Ozarowski, D. Smirnov, L. Que, Jr. and J. Telser, Inorg. Chem., 2008, 47, 3483.
- 35S. Ye, C. Kupper, S. Meyer, E. Andris, R. Navratil, O. Krahe, B. Mondal, M. Atanasov, E. Bill, J. Roithova, F. Meyer and F. Neese, J. Am. Chem. Soc., 2016, 138, 14312.
- 36C. Kupper, B. Mondal, J. Serrano-Plana, I. Klawitter, F. Neese, M. Costas, S. Ye and F. Meyer, J. Am. Chem. Soc., 2017, 139, 8939.
- 37C. A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermüller and K. Wieghardt, Inorg. Chem., 2000, 39, 5306.
- 38N. Aliaga-Alcalde, S. DeBeer George, B. Mienert, E. Bill, K. Wieghardt and F. Neese, Angew. Chem. Int. Ed., 2005, 44, 2908.
- 39O. Krahe, E. Bill and F. Neese, Angew. Chem. Int. Ed., 2014, 53, 8727.
- 40H.-C. Chang, B. Mondal, H. Fang, F. Neese, E. Bill and S. Ye, J. Am. Chem. Soc., 2019, 141, 2421.
- 41B. Mondal, F. Neese, E. Bill and S. Ye, J. Am. Chem. Soc., 2018, 140, 9531.
- 42S. S. Shaik and P. C. Hiberty, ‘ A Chemist's Guide to Valence Bond Theory’, Wiley, Hoboken, NJ, 2007, p. 40.
10.1002/9780470192597.ch3 Google Scholar
- 43M. Radoń and K. Pierloot, J. Phys. Chem. A, 2008, 112, 11824.
- 44F. Weinhold, ‘ Discovering Chemistry With Natural Bond Orbitals’, Wiley, Hoboken, NJ, 2012, p. 1.
10.1002/9781118229101 Google Scholar
- 45I. B. Bersuker, Chem. Rev., 2021, 121, 1463.
- 46R. Fan, J. Serrano-Plana, W. N. Oloo, A. Draksharapu, E. Delgado-Pinar, A. Company, V. Martin-Diaconescu, M. Borrell, J. Lloret-Fillol, E. Garcia-Espana, Y. Guo, E. L. Bominaar, L. Que, Jr. M. Costas and E. Munck, J. Am. Chem. Soc., 2018, 140, 3916.
- 47M. Roemelt and F. Neese, J. Phys. Chem. A, 2013, 117, 3069.
- 48L. Gonzalez, D. Escudero and L. Serrano-Andres, ChemPhysChem, 2012, 13, 28.
- 49E. I. Solomon, E. G. Pavel, K. E. Loeb and C. Campochiaro, Coord. Chem. Rev., 1995, 144, 369.
- 50F. Neese, WIREs Comput. Mol. Sci., 2022, 12, e1606.
- 51S. Ye and F. Neese, Proc. Natl. Acad. Sci., 2011, 108, 1228.
- 52S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 53S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.