Actinide Speciation and Bioavailability in Fresh and Marine Waters
Scott J. Markich
Aquatic Solutions International, Collaroy, NSW, Australia
Search for more papers by this authorScott J. Markich
Aquatic Solutions International, Collaroy, NSW, Australia
Search for more papers by this authorAbstract
The actinides comprise a group of 15 metals (with atomic numbers ranging from 89 to 103) that are all radioactive and occur as cations in natural surface waters. Only the first 10 actinides are covered in this study, as these are the most environmentally relevant, where the dominant oxidation states are as follow: actinium(III), thorium(IV), protactinium(V), uranium(VI), neptunium(V), plutonium(IV) and (V), americium(III), curium(III), berkelium(III), and californium(III). The physicochemical form, or speciation, of an actinide (e.g., free metal ion, or complexes with inorganic or organic ligands) in natural surface waters can be determined using a range of analytical techniques. However, such methods are seldom commercially available and rarely determine a complete distribution of all metal species. A complementary approach, which is more cost effective, time efficient, and predictive, is the application of geochemical speciation modeling, which calculates the percentage distribution of all actinide species based on known or postulated chemical reactions. The general consensus is that geochemical speciation models can provide useful results if applied correctly with an understanding of the differences between simulated and real systems. This is the first study to use an internally consistent equilibrium database within a geochemical model (WHAM) to calculate the speciation of the first 10 actinides across fresh, estuarine, and marine waters that incorporates natural dissolved organic matter (DOM) (i.e., fulvic acid). The speciation of a metal (actinide) largely governs its uptake and/or toxicity (bioavailability) in aquatic organisms. The general consensus is that bioavailability is best predicted by the concentration of the free metal ion (Mz+) and that metals complexed with most inorganic ligands (e.g., carbonate or sulfate) or natural DOM, typically have low bioavailability. There is also evidence to suggest that colloidal thorium is bioavailable to freshwater organisms. The study correlates observed actinide speciation with bioavailability (where available) or utilizes predicted actinide speciation to determine the likely magnitude of bioavailability, as applied to aquatic organisms. This study also addresses the likely effects of global ocean acidification and increased natural DOM concentrations in fresh surface waters on actinide speciation and bioavailability.
References
- 1S. J. Markich, P. L. Brown, G. E. Batley, S. C. Apte and J. L. Stauber, Australas. J. Ecotoxicol., 2001, 7, 109.
- 2P. G. Campbell, in ‘ Metal Speciation and Bioavailability in Aquatic Systems’, eds. A. Tessier and D. R. Turner, John Wiley & Sons, Ltd, Chichester, 1995, p. 45.
- 3P. L. Brown and S. J. Markich, Aquat. Toxicol., 2000, 51, 177.
- 4T. B. Kinraide, Environ. Toxicol. Chem., 2006, 25, 3188.
- 5M. A. Denecke, N. Bryan, S. Kalmykov, K. Morris and F. Quinto, in ‘ Experimental and Theoretical Approaches to Actinide Chemistry’, eds. J. K. Gibson and W. Jong, John Wiley & Sons, Ltd, London, 2018, p. 378.
10.1002/9781119115557.ch8 Google Scholar
- 6L. R. Morss, N. M. Edelstein and J. Fuger, ‘ The Chemistry of the Actinide and Transactinide Elements’, 4th edition, Springer, Dordrecht, 2011.
10.1007/978-94-007-0211-0 Google Scholar
- 7H. Geckeis, J. Lützenkirchen, R. Polly, T. Rabung and M. Schmidt, Chem. Rev., 2013, 113, 1016.
- 8C. Walther and M. A. Denecke, Chem. Rev., 2013, 113, 995.
- 9D. K. Nordstrom and K. M. Campbell, in ‘ Treatise on Geochemistry’, 2nd edition, eds. H. D. Holland and K. K. Turekian, Elsevier, Oxford, 2014, p. 27.
10.1016/B978-0-08-095975-7.00502-7 Google Scholar
- 10M. Di Bonito, S. Lofts and J. E. Groenenberg, in ‘ Environmental Geochemistry: Site Characterization. Data Analysis and Case Histories’, 2nd edition, eds. B. DeVito, H. Belkin and A. Lima, Elsevier, Amsterdam, 2018, p. 237.
- 11S. Lofts, l. Fevrier, N. Horemans, R. Gilbin, C. Bruggeman and H. Vandenhove, J. Environ. Radioact., 2015, 149, 99.
- 12S. J. Markich, ‘ Thermochemical Data (log K) for Environmentally Relevant Elements’, 3rd edition, ASI C1/17, Aquatic Solutions International, Sydney, 2017.
- 13Y. Dudal and G. Gérard, Earth-Sci. Rev., 2004, 66, 199.
- 14R. F. Domingos, A. Gélabert, S. Carreira, A. Cordeiro, Y. Sivry and M. F. Bennedetti, Aquat. Geochem., 2015, 21, 231.
10.1007/s10498-014-9251-x Google Scholar
- 15E. Tipping, S. Lofts and A. Stockdale, Environ. Chem., 2016, 13, 464.
- 16F. Millero, ‘ The Physical Chemistry of Natural Waters’, John Wiley & Sons, Inc, New York, 2000.
- 17G. R. Choppin and L. F. Rao, Radiochim. Acta, 1984, 37, 143.
- 18P. L. Brown and R. N. Sylva, J. Chem. Res., 1987, 1987, 110.
- 19P. L. Brown and C. Ekberg, ‘ Hydrolysis of Metal Ions’, John Wiley & Sons, Ltd, Weinheim, 2016.
10.1002/9783527656189 Google Scholar
- 20C. C. May, P. J. Worsfold and M. J. Keith-Roach, Trends Anal. Chem., 2008, 27, 160.
- 21J. P. Giesy, R. A. Geiger and N. R. Kevern, J. Environ. Radioact., 1986, 4, 39.
10.1016/0265-931X(86)90020-2 Google Scholar
- 22H. Itoh, C. Kimata, H. Miwa, H. Sawatari and H. Haraguchi, Bull. Chem. Soc. Jpn, 1996, 69, 3469.
- 23E. R. Unsworth, P. Jones, J. M. Hill and S. J. Hill, J. Environ. Monit., 2005, 7, 559.
- 24K. O. Buesseler, M. Dai and D. J. Repeta, ‘ Speciation and Structural Characterization of Plutonium and Actinide-Organic Complexes in Surface and Ground Waters’, Woods Hole Oceanographic Institution, Woods Hole, 2000.
- 25C. M. van den Berg, S. H. Khan, P. J. Daly, J. P. Riley and D. R. Turner, Estuar. Coast. Shelf Sci., 1991, 33, 309.
- 26J. Zhao, I. Fasfous, J. D. Murimboh, T. Yapici, P. Chakraborty, S. Boca and C. L. Chakrabarti, Talanta, 2009, 77, 1015.
- 27W. Li, C. Li, J. Zhao and R. J. Cornett, Anal. Chim. Acta, 2007, 592, 106.
- 28A. R. Lucas, S. U. Salmon, A. W. Rate, S. Larson and K. Kilminster, Geochim. Cosmochim. Acta, 2015, 171, 156.
10.1016/j.gca.2015.08.025 Google Scholar
- 29S. C. Turner, G. A. Mills, J. L. Burnett, S. Amos and G. R. Fones, Anal. Chim. Acta, 2015, 854, 78.
10.1016/j.aca.2014.11.023 Google Scholar
- 30J. Drozdzak, M. Leermakers, Y. Gao, V. Phrommavanh and M. Descosters, Environ. Pollut., 2016, 214, 114.
10.1016/j.envpol.2016.04.004 Google Scholar
- 31R. Cusnir, M. Christl, P. Steinmann, F. Bochud and P. Froidevaux, Geochim. Cosmochim. Acta, 2017, 206, 30.
- 32S.J. Markich, Effects of Biological and Physicochemical Variables on the Valve Movement Responses of Freshwater Bivalves to Manganese, Uranium, Cadmium and Copper, PhD Thesis, University of Technology, Sydney, 1998.
- 33M. Maloubier, P. L. Solari, P. Moisy, M. Monfort, C. Den Auwer and C. Moulin, Dalton Trans., 2015, 44, 5417.
- 34M. Meybeck, in ‘ Surface and Ground Water, Weathering and Soils’, ed. J. I. Drever, Elsevier, Oxford, 2003, p. 207.
- 35M. E. Pilson, ‘ An Introduction to the Chemistry of the Sea’, 2nd edition, Cambridge University Press, Cambridge, 2013.
- 36S. J. Markich, ‘ Surface Water Chemistry: A Global Overview’, ASI C1/18, Aquatic Solutions International, Sydney, 2018.
- 37H. Zhang and W. Davison, Environ. Chem., 2015, 12, 85.
- 38I. Billard and G. Geipel, Springer Ser. Fluoresc., 2008, 5, 465.
- 39A. L. Davis and B. H. Clowers, Talanta, 2018, 176, 140.
10.1016/j.talanta.2017.07.090 Google Scholar
- 40T. Takahashi, S. C. Sutherland, D. W. Chipman, J. G. Goddard, C. Ho, T. Newberger, C. Sweeney and D. R. Munro, Mar. Chem., 2014, 164, 95.
- 41E. Tipping, S. Lofts and J. E. Sonke, Environ. Chem., 2011, 8, 225.
- 42A. Stockdale, N. D. Bryan and S. Lofts, J. Environ. Monit., 2011, 13, 2946.
- 43S. Topin and J. Aupais, J. Environ. Radioact., 2016, 153, 237.
- 44C. T. Moermond, J. Tijink, A. P. van Wezel and A. A. Koelmans, Environ. Toxicol. Chem., 2001, 20, 1916.
10.1002/etc.5620200909 Google Scholar
- 45H. Herrmann, J. Nolde, S. Berger and S. Heise, Ecotoxicol. Environ. Saf., 2016, 124, 213.
- 46M. J. Barry and B. J. Meehan, Chemosphere, 2000, 41, 1669.
- 47P. El-Akl, S. Smith and K. J. Wilkinson, Environ. Toxicol. Chem., 2015, 34, 1711.
- 48O. Vukov, D. S. Smith and J. McGeer, Aquat. Toxicol., 2016, 170, 142.
10.1016/j.aquatox.2015.10.016 Google Scholar
- 49M. L. Schwartz, P. C. Curtis and R. C. Playle, Environ. Toxicol. Chem., 2004, 23, 2889.
- 50D. K. De Forest, R. C. Santore, A. C. Ryan, B. G. Church, M. J. Chowdhury and K. V. Brix, Environ. Toxicol. Chem., 2017, 36, 2965.
- 51R. W. Gensemer, J. C. Gondek, P. H. Rodriquez, J. J. Arbidua, W. A. Stubblefield, A. S. Cardwell, R. C. Santore, A. C. Ryan, W. J. Adams and E. Nordheim, Environ. Toxicol. Chem., 2018, 37, 49.
- 52R. B. Naddy, W. A. Stubblefield, R. A. Bell, R. C. Santore and P. R. Paquin, Bull. Environ. Contam. Toxicol., 2018, 100, 69.
10.1007/s00128-017-2260-x Google Scholar
- 53T. N. Tait, C. A. Cooper, J. McGeer, C. M. Wood and D. S. Smith, Environ. Chem., 2016, 13, 496.
- 54K. M. Mostofa, C. Lui, A. Mottaleb, G. Wan, H. Ogawa, D. Vione, T. Yoshioka and F. Wu, in ‘ Photobiogeochemistry of Organic Matter: Principles and Practices in Water Environments’, eds. K. M. Mostofa, T. Yoshioka, A. Mottaleb and D. Vione, Springer-Verlag, Berlin, 2013, p. 1.
- 55H. Zanker and C. Hennig, J. Contam. Hydrol., 2014, 157, 87.
- 56P. H. Santschi, J. W. Murray, M. Baskaren, C. R. Benitez-Nelson, L. D. Guo, C. C. Hung, C. Lamborg, S. B. Moran, U. Passow and M. R. Barmen, Mar. Chem., 2006, 100, 250.
- 57D. Wang, S. Zhou, L. Liu, L. Du, J. Wang, Z. Huang, L. Ma, S. Ding, D. Zhang, R. Wang, Y. Jin and C. Xia, Environ. Sci. Pollut. Res., 2015, 22, 6941.
- 58C. Peng, Y. Ma, Y. Ding, X. He, P. Zhang, T. Lan, W. Wang, Z. Zhang and Z. Zhang, Int. J. Mol. Sci., 2017, 18, 795. DOI: 10.3390/ijms18040795.
10.3390/ijms18040795 Google Scholar
- 59Y. Ma, J. Wang, C. Peng, Y. Ding, X. He, P. Zhang, N. Li, T. Lan, D. Wang, Z. Zhang, F. Sun, H. Liao and Z. Zhang, Ecotoxicol. Environ, Saf., 2016, 134, 226.
- 60C. Y. Chuang, P. H. Santschi, C. V. Xu, Y. Jiang, Y. F. Ho, A. Quigg, L. Guo, P. Hatcher, M. Ayranov and D. Schumann, J. Geophys. Res. Biogeosci., 2015, 120, 1858.
- 61M. A. Trenfield, J. C. Ng, B. N. Noller, S. J. Markich and R. A. van Dam, Environ. Sci. Technol., 2011, 45, 3082.
- 62F. Endrizzi and L. Rao, Chem. Eur. J., 2014, 20, 14499.
- 63J. Y. Lee, M. Vespa, X. Goana, K. Dardenne, J. Rothe, T. Rabung, M. Altmaier and J. I. Yun, Radiochim. Acta, 2017, 105, 171.
- 64S. J. Markich, P. L. Brown, R. A. Jeffree and R. P. Lim, Aquat. Toxicol., 2000, 51, 155.
- 65C. Fortin, L. Dutel and J. Garnier-Laplace, Environ. Toxicol. Chem., 2004, 23, 974.
- 66M. R. van Engelen, E. R. Field, R. Gerlach, B. D. Lee, W. A. Apel and B. M. Peyton, Environ. Toxicol. Chem., 2010, 29, 763.
- 67M. N. Croteau, C. C. Fuller, D. J. Cain, K. M. Campbell and G. Aiken, Environ. Sci. Technol., 2016, 50, 8120.
- 68A. Nakajima, T. Horikoshi and T. Sakagushi, Agric. Biol. Chem., 1979, 43, 625.
- 69S. J. Markich, P. L. Brown and R. A. Jeffree, Radiochim. Acta, 1996, 74, 321.
- 70A. L. Charles, S. J. Markich, J. L. Stauber and L. F. de Filippis, Aquat. Toxicol., 2002, 60, 61.
- 71C. Fortin, F. H. Denison and J. Garnier-Laplace, Environ. Toxicol. Chem., 2007, 26, 242.
- 72S. J. Markich, Sci. Total Environ., 2013, 443, 582.
- 73N. Franklin, J. L. Stauber, S. J. Markich and R. Lim, Aquat. Toxicol., 2000, 48, 275.
- 74F. A. Zeman, R. Gilbin, F. Alonzo, C. Leconte-Pradines, J. Garnier-Laplace and C. Aliaume, Aquat. Toxicol., 2008, 86, 370.
- 75M. Lavoie, S. Sabatier, J. Garnier-Laplace and C. Fortin, Environ. Toxicol. Chem., 2014, 33, 1372.
- 76M. Vogel, A. Günther, A. Rossberg, B. Li, G. Bernhard and J. Raff, Sci. Total Environ., 2010, 409, 384.
- 77S. Brockman, T. Arnold and G. Bernhard, Radiochim. Acta, 2014, 102, 4511.
- 78K. Hirose, J. Nucl. Radiochem. Sci., 2009, 10, R7.
- 79A. B. Kersting, Inorg. Chem., 2013, 52, 3533.
- 80T. Dumas, M. Guigue, P. Moisy, R. Colina-Ruiz, J. De Leon, M. Matara-Aho, P. Solari, M. Monfort, C. Moulin, M. Beccia and C. Den Auwer, ChemistrySelect, 2018, 3, 2021.
- 81M. Maloubier, H. Michel, P. L. Solari, P. Moisy, M. A. Tribalat, F. R. Oberhänsli, M. Y. Bottein, O. P. Thomas, M. Monfort, C. Moulin and C. Den Auwer, Dalton Trans., 2015, 44, 20584.
- 82G. Yang, Q. G. Tan, I. Zhu and K. J. Wilkinson, Environ. Toxicol. Chem., 2014, 33, 2609.
- 83M. Maloubier, D. K. Shuh, S. G. Minasian, J. I. Pacold, P. L. Solari, H. Michel, F. R. Oberhänsli, Y. Bottein, M. Monfort, C. Moulin and C. Den Auwer, Environ. Sci. Technol., 2016, 50, 10730.
10.1021/acs.est.6b01896 Google Scholar
- 84H. Wimmer, J. I. Kim and R. Klenze, Radiochim. Acta, 1992, 58/59, 165.
- 85M. Morgenstern, R. Klenze and J. I. Kim, Radiochim. Acta, 2000, 88, 7.
- 86 World Meteorological Organization and Global Atmosphere Watch, WMO Greenhouse Gas Bulletin, 2017, 13, 1.
- 87P. Williamson, C. Turley and C. Ostle, MCCIP Sci. Rev., 2017, 2017, 1.
- 88A. Marx, J. Dusek, J. Jankovec, M. Sanda, T. Vogel, R. van Gelden, J. Hartmann and J. A. Barth, Rev. Geophys., 2017, 55, 560.
- 89C. T. Hasler, D. Butman, J. D. Jeffrey and C. D. Suski, Ecol. Lett., 2016, 19, 98.
- 90M. Belivermiş, M. Warnau, M. Metian, F. Oberhänsli, J. L. Teyssié and T. Lacoue-Labarthe, ICES J. Mar. Sci., 2016, 73, 753.
10.1093/icesjms/fsv236 Google Scholar
- 91T. Lacoue-Labarthe, S. Martin, F. Oberhänsli, J. L. Teyssié, R. A. Jeffree, J. P. Gattuso and P. Bustamante, J. Exp. Mar. Biol. Ecol., 2012, 413, 45.
- 92N. Dorey, S. Martin, F. Oberhänsli, J. Teyssié, R. Jeffree and T. Lacoue-Labarthe, J. Environ. Radioact., 2018, 190–191, 20.
10.1016/j.jenvrad.2018.04.017 Google Scholar
- 93J. Yin, J. Overpeck, C. Peyser and R. Stouffer, Geophys. Res. Lett., 2018, 45, 1069.
10.1002/2017GL076500 Google Scholar
- 94H. Hillebrand, T. Brey, W. Hagen, K. Metfies, B. Meyer and A. Lewandowska, in ‘ Handbook on Marine Environment Protection: Science, Impacts and Sustainable Management’, eds. M. Salomon and T. Markus, Springer, Dordtrecht, 2018, p. 353.
- 95T. Pagano, M. Bida and J. E. Kenny, Water, 2014, 6, 2862.
- 96A. C. Nydahl, M. B. Wallin and G. A. Weyhenmeyer, Global Biogeochem. Cycles, 2017, 31, 985.
- 97E. Wohl, R. O. Hall, K. B. Lininger, N. A. Sutfin and D. M. Walters, Ecol. Monogr., 2017, 87, 379.
- 98W. Zhuang and L. Yang, Environ. Sci. Pollut. Res., 2018, 25, 4165.
10.1007/s11356-017-1027-6 Google Scholar
- 99R. van Dam, pers. comm.
- 100K. Vorkamp and H. Sanderson, ‘ European Environmental Quality Standards (EQS) Variability Study: Analysis of the Variability between National EQS Values Across Europe for Selected Water Framework Directive River Basin-Specific Pollutants’, Aarhus University and Danish Centre for Environment and Energy, Aarhus, 2016.
- 101 CCME, ‘ Canadian Water Quality Guidelines for the Protection of Aquatic Life: Uranium’, Canadian Council of Ministers of the Environment, Winnipeg, 2011.
- 102K. Beaugelin-Seiler, O. Simon, R. Gilpin, J. Garnier-Laplace and L. Févier, in ‘ Uranium—Past and Future Challenges’, eds. B. J. Merkel and A. Arab, Springer, Cham, 2015, p. 55.
- 103R. van Herwijnen and E. M. Verbruggen, ‘ Water Quality Standards for Uranium: Proposal for New Standards According to the Water Framework Directive’, National Institute for Public Health and the Environment, Bilthoven, 2014.
- 104G. Merrington, A. Peters and C. E. Schlekat, Environ. Toxicol. Chem., 2016, 35, 257.
- 105K. Väänänen, M. Leppänen, X. Chen and J. Akkanen, Ecotoxicol. Environ. Saf., 2018, 147, 430.
10.1016/j.ecoenv.2017.08.064 Google Scholar
- 106R. A. van Dam, M. A. Trenfield, S. J. Markich, A. J. Harford, C. L. Humphrey, A. C. Hogan and J. L. Stauber, Environ. Toxicol. Chem., 2012, 31, 2606.
- 107R. A. van Dam, A. C. Hogan and A. J. Harford, Integr. Environ. Asess. Manag., 2017, 13, 765.
- 108P. G. Campbell and C. Fortin, in ‘ Encyclopedia of Aquatic Ecotoxicology’, eds. J. F. Férard and C. Blaise, Springer, Dordrecht, 2013, p. 237.
- 109H. Rudel, C. Muniz, H. Garelick, N. G. Kandile, B. W. Miller, L. P. Munoz, W. J. Peijnenburg, D. Purchase, Y. Shevah, P. van Sprang, M. Vivjer and J. P. Vink, Environ. Sci. Pollut. Res., 2015, 22, 7405.
- 110H. Reinardy, J. L. Teyssié, R. A. Jeffree, D. Copplestone, T. B. Henry and A. N. Jha, Sci. Total Environ., 2011, 409, 3771.
10.1016/j.scitotenv.2011.06.057 Google Scholar
- 111T. Mathews and N. S. Fisher, Sci. Total Environ., 2009, 407, 5156.
- 112M. Metian, M. Warnau, J. L. Teyssié and P. Bustamante, J. Environ. Radioact., 2011, 102, 543.
10.1016/j.jenvrad.2011.02.008 Google Scholar
- 113J. Dutton and N. S. Fisher, Aquat. Biol., 2010, 10, 211.
- 114T. Mathews and N. S. Fisher, Mar. Ecol. Prog. Ser., 2008, 367, 23.
- 115L. D. Kraemer and D. Evans, Aquat. Toxicol., 2012, 124–125, 163.
10.1016/j.aquatox.2012.08.012 Google Scholar
- 116S. E. Crawford, S. Lofts and K. Liber, Environ. Toxicol. Chem., 2018, 37, 1146.
- 117T. Yankovich, N. A. Beresford, S. Fesenko, J. Fesenko, M. Phaneuf, E. Dagher, I. Outola, P. Andersson, K. Thiessen, J. Ryan, M. D. Wood, A. Bollhöfer, C. L. Barnett and D. Copplestone, J. Environ. Radioact., 2013, 126, 299.
- 118 IAEA, Handbook of Parameter Values for the Prediction of Radionuclide Transfer to Wildlife, Technical Report Series no. 479. International Atomic Energy Agency, Vienna, 2014.
- 119J. E. Brown, B. Alfonso, R. Avila, N. A. Beresford, D. Copplestone and A. Hosseini, J. Environ. Radioact., 2016, 153, 141.
- 120G. G. Pyle and F. V. Clulow, J. Environ. Radioact., 1998, 40, 59.
10.1016/S0265-931X(97)00063-5 Google Scholar
- 121M. Luckey, ‘ Membrane Structural Biology: With Biochemical and Biophysical Foundations’, Cambridge University Press, New York, 2014.
- 122L. E. Williams, J. K. Pittman and J. L. Hall, Biochim. Biophys. Acta, 2000, 1465, 104.
- 123M. P. Johansen, E. Ruedig, K. Tagami, S. Uchida, K. Higley and N. A. Beresford, Environ. Sci. Technol., 2015, 49, 1277.
- 124B. Yang, Y. Ha and J. Jin, Chemosphere, 2015, 135, 363.