Computational Methods: Heteropolyoxoanions
Abstract
Possibly no other class of organic or inorganic compounds displays more versatility than polyoxometalates (POMs) (or polyoxoanions) with respect to electronic and molecular structures, properties, and applications. POMs attract the attention of scientists from many fields, such as catalysis, materials science, and medicine. More recently, POMs have also attracted the interest of computational chemists. This article describes some of the most relevant electronic properties for several of the most representative heteropolyoxoanions, such as the so-called Keggin [XM12O40]n−, Dawson [X2M18O62]m−, and Preyssler [XP5W30O110]q− anions. Density functional theory (DFT) methods have proven to be useful for the rationalization of many properties of POMs. In this article we illustrate some of them, often using the simple language of molecular orbitals.
References
- 1
M. T. Pope,
Heteropoly and Isopoly Oxometalates,
Springer-Verlag,
Berlin,
1983.
10.1007/978-3-662-12004-0 Google Scholar
- 2 C. L. Hill, Chem. Rev., 1998, 98, 1.
- 3
J. J. Berzelius,
Poggendorfs Ann. Phys. Chem.,
1826,
6,
369.
10.1002/andp.18260820402 Google Scholar
- 4 C. Marignac, Ann. Chim., 1862, 25, 362.
- 5 L. C. Pauling, J. Am. Chem. Soc., 1929, 51, 2868.
- 6 J. F. Keggin, Nature, 1933, 131, 908.
- 7 D.-L. Long, E. Burkholder, and L. Cronin, Chem. Soc. Rev., 2007, 36, 105.
- 8
T. Yamase and
M. T. Pope eds,
Polyoxometalate Chemistry for Nanocomposite Design,
Kluwer Academic,
New York,
2002.
10.1007/b105365 Google Scholar
- 9 A. Müller and C. Serain, Acc. Chem. Res., 2000, 33, 2.
- 10
A. Müller,
E. Beckmann,
H. Bögge,
M. Schmidtmann, and
A. Dress,
Angew. Chem. Int. Ed.,
2002,
41,
1162.
10.1002/1521-3773(20020402)41:7<1162::AID-ANIE1162>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 11 D. E. Katsoulis, Chem. Rev., 1998, 98, 359.
- 12 E. R. Davidson, Chem. Rev., 2000, 100, 351.
- 13 H. Tateka, S. Katsuki, K. Eguchi, T. Seiyama, and N. Yamazoe, J. Phys. Chem., 1986, 90, 2959.
- 14 K. Eguchi, T. Seiyama, N. Yamazoe, S. Katsuki, and H. Taketa, J. Catal., 1988, 111, 336.
- 15 T. L. Chen, J. Ji, S. X. Xiao, T. X. Cai, and G. S. Yan, Int. J. Quantum Chem., 1992, 44, 1015.
- 16 M.-M. Rohmer, R. Ernenwein, M. Ulmschneider, R. Wiest, and M. Bénard, Int. J. Quantum Chem., 1991, 40, 723.
- 17 J. Y. Kempf, M.-M. Rohmer, J. M. Poblet, C. Bo, and M. Bénard, J. Am. Chem. Soc., 1992, 114, 1136.
- 18 M.-M. Rohmer and M. Bénard, J. Am. Chem. Soc., 1994, 116, 6959.
- 19 J. M. Poblet, X. López, and C. Bo, Chem. Soc. Rev., 2003, 32, 297.
- 20 J. P. Blaudeau, M.-M. Rohmer, M. Bénard, and N.-E. Ghermani, C. R. Acad. Sci. Paris, 1998, 1, 319.
- 21 M.-M. Rohmer, M. Bénard, J.-P. Blaudeau, J. M. Maestre, and J. M. Poblet, Coord. Chem. Rev., 1998, 178–180, 1019.
- 22 K. Wassermann, M. H. Dickman, and M. T. Pope, Angew. Chem. Int. Ed., 1997, 36, 1445.
- 23 A. Müller, P. Kögerler, and C. Kuhlmann, Chem. Commun., 1999, 1347.
- 24 U. Kortz, F. Hussain, and M. Reicke, Angew. Chem. Int. Ed., 2005, 44, 3773.
- 25 G. Liu, T. Liu, S. S. Mal, and U. Kortz, J. Am. Chem. Soc., 2006, 128, 10103.
- 26 G.-S. Kim, H. Zeng, W. A. Neiwert, J. J. Cowan, D. VanDerveer, C. L. Hill, and I. A. Weinstock, Inorg. Chem., 2003, 42, 5537.
- 27 R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B, 1969, 25, 925.
- 28 I. Lindqvist, Ark. Kemi., 1952, 5, 247.
- 29 H. T. Evans Jr, Prespect. Struct. Chem., 1971, 4, 1.
- 30 H. R. Allcock, E. C. Bissell, and E. T. Shawl, Inorg. Chem., 1973, 12, 2963.
- 31 H. R. Allcock, E. T. Shawl, and E. C. Bissell, J. Am. Chem. Soc., 1972, 94, 8603.
- 32 J. Fuchs, W. Freiwald, and H. Hartl, Acta Crystallogr., Sect. B, 1978, 34, 1764.
- 33 B. Dawson, Acta Crystallogr., 1953, 6, 113.
- 34 H. D'Amour, Acta Crystallogr., Sect. C, 1976, 32, 729.
- 35 C. Preyssler, Bull. Soc. Chim. Fr., 1970, 30.
- 36 M. H. Alizadeh, S. P. Harmalker, Y. Jeannin, J. Martin-Frère, and M. T. Pope, J. Am. Chem. Soc., 1985, 107, 2662.
- 37 F. Jensen, Introduction to Computational Chemsitry, Wiley-VCH, Chichester, 1999.
- 38 J. M. Maestre, X. López, C. Bo, N. Casañ-Pastor, and J. M. Poblet, J. Am. Chem. Soc., 2001, 123, 3749.
- 39 J. A. Fernández, X. López, C. Bo, C. De Graaf, E. J. Baerends, and J. M. Poblet, J. Am. Chem. Soc., 2007, 129, 12244.
- 40 X. López, C. Bo, and J. M. Poblet, J. Am. Chem. Soc., 2002, 124, 12574.
- 41 M. T. Pope and G. M. Varga, Inorg. Chem., 1966, 5, 1249.
- 42 J. J. Altenau, M. T. Pope, R. A. Prados, and H. So, Inorg. Chem., 1975, 14, 417.
- 43 C. J. Clark and D. Hall, Acta Crystallogr., Sect. B, 1976, 32, 1454.
- 44 V. W. Day and W. G. Klemperer, Science, 1985, 228, 533.
- 45 A. Müller, Nature, 1991, 352, 115.
- 46 M. T. Pope, Nature, 1992, 355, 27.
- 47 J. A. Jansen, D. J. Singh, and S.-H. Wang, Chem. Mater., 1994, 6, 146.
- 48 X. López, J. M. Maestre, C. Bo, and J. M. Poblet, J. Am. Chem. Soc., 2001, 123, 9571.
- 49 L. C. W. Baker and J. S. Figgis, J. Am. Chem. Soc., 1970, 92, 3794.
- 50 C. Marignac, Ann. Chim. Phys., 1864, 3, 1.
- 51 A. Tézé, J. Canny, L. Gurban, R. Thouvenot, and G. Hervé, Inorg. Chem., 1996, 35, 1001.
- 52 X. López and J. M. Poblet, Inorg. Chem., 2004, 43, 6863.
- 53 D. L. Kepert, Inorg. Chem., 1969, 8, 1556.
- 54 I. A. Weinstock, J. J. Cowan, E. M. G. Barbuzzi, H. Zeng, and C. L. Hill, J. Am. Chem. Soc., 1999, 121, 4608.
- 55 A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans., 1993, 2, 799.
- 56 J. Andzelm, C. Kölmel, and A. Klamt, J. Chem. Phys., 1995, 103, 9312.
- 57 A. Klamt, J. Chem. Phys., 1995, 99, 2224.
- 58 S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys., 1981, 55, 117.
- 59 S. Miertus and J. Tomasi, Chem. Phys., 1982, 65, 239.
- 60 M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett., 1996, 255, 327.
- 61 J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. Theochem, 1999, 464, 211.
- 62 M.-H. Chiang, M. R. Antonio, and L. Soderholm, Dalton Trans., 2004, 3562.
- 63 X. López, J. A. Fernández, S. Romo, J. F. Paul, L. Kazansky, and J. M. Poblet, J. Comput. Chem., 2004, 25, 1542.
- 64 X. López, J. A. Fernández, and J. M. Poblet, Dalton Trans., 2006, 1162.
- 65 W. P. Anderson, J. K. Burdett, and P. T. Czech, J. Am. Chem. Soc., 1994, 116, 8808.
- 66 C. Sanchez, J. Livage, J. P. Launay, M. Fournier, and Y. Jeannin, J. Am. Chem. Soc., 1982, 104, 3194.
- 67 M. Kozik, N. Casan-Pastor, C. F. Hammer, and L. C. W. Baker, J. Am. Chem. Soc., 1988, 110, 7697.
- 68 N. Suaud, A. Gaita-Ariño, J. M. Clemente-Juan, and E. Coronado, Chem. Eur. J., 2004, 10, 4041.
- 69 J. J. Clemente-Juan, E. Coronado, A. Gaita-Ariño, and N. Suaud, J. Phys. Chem. A, 2007, 111, 9969.
- 70 M. M. Mossoba, C. J. O'Connor, M. T. Pope, E. Sinn, G. Hervé, and A. Tézé, J. Am. Chem. Soc., 1980, 102, 6864.
- 71 E. Cadot, M. Fournier, A. Tézé, and G. Hervé, Inorg. Chem., 1996, 35, 282.
- 72 Q. Chen and C. L. Hill, Inorg. Chem., 1996, 35, 2403.
- 73 J. M. Maestre, J. M. Poblet, C. Bo, N. Casañ-Pastor, and P. Gómez -Romero, Inorg. Chem., 1998, 37, 3444.
- 74 Y. Xu, H.-G. Zhu, H. Cai, and X.-Z. You, Chem. Commun., 1999, 787.
- 75 X. López, C. de Graaf, J. M. Maestre, M. Bénard, M.-M. Rohmer, C. Bo, and J. M. Poblet, J. Chem. Theory Comput., 2005, 1, 856.
- 76 H. R. Allcock, E. C. Bissell, and E. T. Shawl, J. Am. Chem. Soc., 1972, 94, 8603.
- 77 R. Strandberg, Acta Chem. Scand. A, 1975, 29, 350.
- 78 H. D'Amour, Acta Crystallogr., Sect. B, 1976, 32, 729.
- 79 J. F. Garvey and M. T. Pope, Inorg. Chem., 1978, 17, 1115.
- 80 P. Souchay, R. Contant, and J. M. Fruchart, C.R. Hebd. Seances Acad. Sci., Ser. C, 1967, 264, 976.
- 81 R. Contant and J. M. Fruchart, Rev. Chim. Miner., 1974, 11, 123.
- 82 L. Yan, X. López, J. J. Carbó, R. Sniatynsky, D. C. Duncan, and J. M. Poblet, J. Am. Chem. Soc., 2008, 130, 8223.
- 83 R. Englman, The Jahn-Teller Effect in Molecules and Crystals, Wiley-Interscience, London, 1972.
- 84 K.-C. Kim, M. T. Pope, G. J. Gama, and M. Dickman, J. Am. Chem. Soc., 1999, 121, 11164.
- 85 J. Autschbach, Coord. Chem. Rev., 2007, 251, 1796.
- 86 A. Rodríguez-Fortea, P. Alemany, and T. Ziegler, J. Phys. Chem. A, 1999, 103, 8288.
- 87 M. Hada, H. Kaneko, and H. Nakatsuji, Chem. Phys. Lett., 1996, 261, 7.
- 88 A. Bagno and M. Bonchio, Chem. Phys. Lett., 2000, 317, 12.
- 89 J. Gracia, J. M. Poblet, J. Autschbach, and L. P. Kazansky, Eur. J. Inorg. Chem., 2006, 1139.
- 90 J. Gracia, J. M. Poblet, J. A. Fernandez, J. Autschbach, and L. P. Kazansky, Eur. J. Inorg. Chem., 2006, 1149.
- 91 E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597.
- 92 E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys., 1994, 101, 9783.
- 93 E. van Lenthe, A. E. Ehlers, and E. J. Baerends, J. Chem. Phys., 1999, 110, 8943.
- 94 A. Bagno, M. Bonchio, and J. Autschbach, Chem. Eur. J., 2006, 12, 8460.
- 95 A. Bagno and M. Bonchio, Angew. Chem. Int. Ed., 2005, 44, 2023.
- 96 A. J. Bridgeman, Chem. Eur. J., 2004, 10, 2935.
- 97 Y. Nakagawa and N. Mizuno, Inorg. Chem., 2007, 46, 1727.
- 98 R. Prabhakar, K. Morokuma, C. L. Hill, and D. G. Musaev, Inorg. Chem., 2006, 45, 5703.
- 99 E. Herat, D. Kumar, R. Neumann, and S. Shaik, Inorg. Chem., 2006, 45, 8655.
- 100 A. M. Khenkin, D. Kumar, S. Shaik, and R. Neumann, J. Am. Chem. Soc., 2006, 128, 15451.
- 101 A. Müller, M. Koop, H. Bögge, M. Schmidtmann, F. Peters, and P. Kögerler, Chem. Commun., 1999, 1885.