Noble Gases: Inorganic Chemistry
Based in part on the article Noble Gases: Inorganic Chemistry by Boris Žemva which appeared in the Encyclopedia of Inorganic Chemistry, First Edition.
Abstract
The noble gas (Ng) elements have a rich reaction chemistry despite having a filled valence shell that would indicate otherwise. Halide compounds, usually with fluorine, and various oxides are common. There is also a growing class of carbon and nitrogen derivatives. A wide range of neutral and cationic noble gas compounds can be formed as long as the added elements, or combinations of elements, possess sufficient electron affinity. The range of compounds, along with characterization data and brief bonding descriptions will be presented for each element. Many of the compounds serve as starting materials for other derivatives, including the rapidly growing field of noble gas containing transition metal complexes. For example, there is now a broad range of salts containing transition metals. The article will conclude with a brief overview of the many unusual and disparate applications being found for these elements.
Further Reading
- I. H. Krouse and P. G. Wenthold, Inorg. Chem., 2003, 42, 4293.
- J. F. Lehmann, H. P. A. Mercier, and G. J. Schrobilgen, Coord. Chem. Rev., 2002, 233–234, 1.
References
- 3
Lord Rayleigh (
J. W. Strutt) and
W. Ramsay,
Proc. R. Soc.,
1895,
57,
265.
10.1098/rspl.1894.0149 Google Scholar
- 4 M. W. Travers, A Life of Sir William Ramsay, Arnold, London, 1956.
- 5 G. A. Cook, in Argon, Helium and the Rare Gases, ed. G. A. Cook, Interscience, New York, 1961, Vols. I and II.
- 6 P. Antoniotti, P. Facchini, and F. Grandinetti, Int. J. Mass Spectrom., 2003, 228, 415.
- 7 M. Gerken and G. J. Schrobilgen, Coord. Chem. Rev., 2000, 197, 335.
- 8 H. H. Claassen, The Noble Gases, Heath, Boston, 1966.
- 9 J. H. Holloway, Noble Gas Chemistry, Methuen, London, 1968.
- 10 N. Bartlett and F. O. Sladky, in Comprehensive Inorganic Chemistry, eds. J. C. Bailar and A. F. Trotman-Dickenson, Pergamon, Oxford, 1973, Vol. 1.
- 11 D. M. Yost and A. L. Kaye, J. Am. Chem. Soc., 1933, 55, 3890.
- 12 N. Bartlett, Proc. Chem. Soc., 1962, 218.
- 13
H. H. Hyman ed.,
Noble Gas Compounds,
University of Chicago Press,
Chicago, IL,
1963.
10.1126/science.141.3575.61 Google Scholar
- 14 H. H. Hyman, in Physical Chemistry. An Advanced Treatise, eds. H. Eyring, D. Henderson, and W. Yost, Academic Press, New York, 1970, Vol. 5, Chap. 11, p. 589.
- 15 F. O. Sladky, in MTP International Review of Science, Inorganic Chemistry, Series One, ed. V. Gutmann, Butterworths, London, 1972, Vol. 3, p. 1.
- 16 D. T. Hawkins, W. E. Falconer, and N. Bartlett, Noble Gas Compounds, A Bibliography 1962–1976, IFI/Plenum, New York, 1978.
- 17 K. Seppelt and D. Lentz, Prog. Inorg. Chem., 1982, 29, 167.
- 18 H. Selig and J. H. Holloway, Top. Curr. Chem., 1984, 124.
- 19 M. Gerken, P. Hazendonka, J. Nieboera, and G. J. Schrobilgen, J. Fluorine Chem., 2004, 125, 1163.
- 20
K. O. Christe,
Angew. Chem., Int. Ed. Engl.,
2001,
40,
1419.
10.1002/1521-3773(20010417)40:8<1419::AID-ANIE1419>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 21 R. Hoppe, W. Dähne, H. Mattauch, and K. M. Rödder, Angew. Chem., Int. Ed. Engl., 1962, 1, 599.
- 22 P. A. Mayhewa and L. D. Boylea, J. Fluorine Chem., 1998, 87, 97.
- 23 M. Tamura, Y. Matsukawa, H. Quan, J. Mizukado, and A. Sekiya, J. Fluorine Chem., 2004, 125, 705.
- 24 T. Hirashige, R. Hagiwara, and Y. Ito, J. Fluorine Chem., 2000, 106, 205.
- 25 H. H. Claassen, H. Selig, and J. G. Malm, J. Am. Chem. Soc., 1962, 84, 3593.
- 26 B. Weinstock, E. E. Weaver, and C. P. Knop, Inorg. Chem., 1966, 5, 2189.
- 27 N. Bartlett and F. O. Sladky, J. Am. Chem. Soc., 1968, 90, 5316.
- 28 J. Slivnik, B. S. Brcic, B. Volavsek, J. Marsel, V. Vrscaj, A. Smalc, B. Frlec, and A. Zemljič, Croat. Chem. Acta, 1962, 34, 253.
- 29 F. Schreiner, D. W. Osborne, J. G. Malm, and G. N. McDonald, J. Chem. Phys., 1969, 51, 4838.
- 30 R. D. Burbank and G. R. Jones, Science, 1970, 168, 248.
- 31 L. Kriachtchev, M. Pettersson, J. Lundell, H. Tanskanen, T. Kiviniemi, N. Runeberg, and M. Rasanen, J. Am. Chem. Soc., 2003, 125, 1454.
- 32 E. H. Appelman and J. G. Malm, J. Am. Chem. Soc., 1964, 86, 2141.
- 33 H. Selig, H. H. Claassen, C. L. Chernick, J. G. Malm, and J. L. Huston, Science, 1964, 143, 1322.
- 34 R. J. Gillespie and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1977, 595.
- 35 D. F. Smith, Science, 1963, 140, 899.
- 36 J. L. Huston, J. Phys. Chem., 1967, 71, 3339.
- 37 J. L. Huston, J. Am. Chem. Soc., 1971, 93, 5255.
- 38 J. L. Huston, Inorg. Nucl. Chem. Lett., 1968, 4, 29.
- 39 J. L. Huston, Inorg. Chem., 1982, 21, 685.
- 40 J. F. Liebman and C. A. Deakyneb, J. Fluorine Chem., 2003, 121, 1.
- 41 G. J. Schrobilgen, Synth. Fluorine Chem., 1992, 1.
- 42 B. Žemva, Croat. Chem. Acta, 1988, 61, 163.
- 43 N. Bartlett, B. Žemva, and L. Graham, J. Fluorine Chem., 1976, 7, 301.
- 44 J. H. Holloway and G. J. Schrobilgen, Inorg. Chem., 1980, 19, 2632.
- 45 N. Bartlett and M. Wechsberg, Z. Anorg. Allg. Chem., 1971, 385, 5.
- 46 J. Berkowitz, W. A. Chupka, P. M. Guyon, J. H. Holloway, and R. Spohr, J. Phys. Chem., 1971, 75, 1461.
- 47 A. V. Tsvetkov, M. F. Bobrov, and V. G. Tsirelson, J. Mol. Struct. (THEOCHEM), 2003, 624, 145.
- 48 K. Lutar, A. Jesih, I. Leban, B. Zemva, and N. Bartlett, Inorg. Chem., 1989, 28, 3467.
- 49 C. J. Adams and N. Bartlett, Isr. J. Chem., 1978, 17, 114.
- 50 K. O. Christe, C. C. Curtis, and R. D. Wilson, Top. Curr. Chem., 1984, 124, 159.
- 51 D. E. McKee, C. J. Adams, and N. Bartlett, Inorg. Chem., 1973, 12, 1722.
- 52 R. J. Gillespie, B. Landa, and G. J. Schrobilgen, Inorg. Chem., 1976, 15, 1256.
- 53 G. J. Schrobilgen, D. Martin-Rovet, P. Charpin, and M. Lance, J. Chem. Soc., Chem. Commun., 1980, 894.
- 54 D. D. DesMarteau, R. D. LeBlond, S. F. Hossain, and D. Nothe, J. Am. Chem. Soc., 1981, 103, 7734.
- 55 A. A. A. Emara and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1987, 1644.
- 56 A. A. A. Emara and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1988, 257.
- 57 V. K. Brel, N. Sh. Pirkuliev, and N. S. Zefirov, Russ. Chem. Rev., 2001, 70, 231.
- 58 H. J. Frohn and V. V. Bardin, Organometallics, 2001, 20, 4750.
- 59 H. J. Frohn and S. Jakobs, J. Chem. Soc., Chem. Commun., 1989, 625.
- 60 H. J. Frohn and M. Theissen, Chem. Phys. Lett., 2004, 393, 448.
- 61 H. J. Frohn, A. Klose, and G. Henkel, Angew. Chem., Int. Ed. Engl., 1993, 32, 99.
- 62 A. Cunje, V. I. Baranov, Y. Ling, A. C. Hopkinson, and D. K. Bohme, J. Phys. Chem. A, 2001, 105, 11073.
- 63 H. Meinert, Z. Chem., 1966, 6, 71.
- 64 L. Y. Nelson and G. C. Pimentel, Inorg. Chem., 1967, 6, 1758.
- 65 L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell, and M. Rasanen, Nature, 2000, 406, 874.
- 66
M. Pettersson,
J. Lundell, and
M. Rasanen,
Eur. J. Inorg. Chem.,
1999,
729.
10.1002/(SICI)1099-0682(199905)1999:5<729::AID-EJIC729>3.0.CO;2-M CAS Web of Science® Google Scholar
- 67 J. Lundell, L. Kriachtchev, M. Pettersson, and M. Rasanen, J. Low Temp. Phys., 2000, 26, 680.
- 68 S. Y. Yen, C. H. Mou, and W. P. Hu, Chem. Phys. Lett., 2004, 383, 606.
- 69 J. J. Turner and G. C. Pimentel, Science, 1963, 140, 974.
- 70 A. Smalc, K. Lutar, and B. Zemva, Inorg. Synth., 1992, 29, 11.
- 71 K. Lutar, A. Jesih, and B. Žemva, Polyhedron, 1988, 7, 1217.
- 72 J. C. P. Sanders and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1989, 1576.
- 73 G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1988, 1506.
- 74 L. Stein, Radiochim. Acta, 1983, 32, 163.
- 75 R. J. Gillespie and R. S. Nyholm, Rev., Chem. Soc., 1957, 11, 339.
- 76 G. C. Pimentel, J. Chem. Phys., 1951, 19, 446.
- 77 R. J. Gillespie, Chem. Soc. Rev., 1992, 21, 59.
- 78 D. C. Grills, X. Z. Sun, G. I. Childs, and M. W. George, J. Phys. Chem. A, 2000, 104, 4300.
- 79 J. M. Thomas, N. R. Walker, S. A. Cooke, and M. C. L. Gerry, J. Am. Chem. Soc., 2004, 126, 1235.
- 80 C. C. Lovallo and M. Klobukowski, Chem. Phys. Lett., 2003, 368, 589.
- 81 B. Liang, L. Andrews, J. Li, and B. E. Bursten, Inorg. Chem., 2004, 43, 882.
- 82 S. Seidel and K. Seppelt, Science, 2000, 290, 117.
- 83 H. P. A. Mercier, M. D. Moran, G. J. Schrobilgen, C. Steinberg, and R. J. Suontamo, J. Am. Chem. Soc., 2004, 126, 5533.
- 84
C. J. Jameson,
Multinuclear NMR,
Plenum Press,
New York,
1987, p.
463.
10.1007/978-1-4613-1783-8_18 Google Scholar
- 85 J. Reisse, New J. Chem., 1986, 10, 665.
- 86 C. Dybowski and N. Bansal, Annu. Rev. Phys. Chem., 1991, 42, 433.
- 87 J. Jokisaari, Prog. Nucl. Magn. Reson. Spectrosc., 1994, 26, 1.
- 88 D. Raftery and B. F. Chmelka, in NMR Basis Principles and Progress. Solid-State NMR I: Methods, Springer-Verlag, Berlin, 1994, Vol. 30, p. 111.
- 89 C. Petzelta, P. Blomb, W. Schmehlb, J. Mullera, and W. J. Koxa, Life Sci., 2003, 72, 1909.
- 90 P. H. Tonner, K. Bangert, and J. Scholz, Baillieres Best Pract. Res. Clin. An., 2001, 15, 491.
- 91 F. Peeters, U. Beyerle, W. Aeschbach-Hertig, J. Holocher, M. S. Brennwald, and R. Kipper, Geochim. Cosmochim. Acta, 2002, 67, 587.
- 92 R. A. Ragettlia, E. H. Hebedab, P. Signera, and R. Wielecra, Earth Planet. Sci. Lett., 1994, 128, 653.
- 93 D. G. Whyte, T. C. Jernigan, D. A. Humphreys, A. W. Hyatt, C. J. Lasnier, P. B. Parks, T. E. Evans, P. L. Taylor, A. G. Kellman, D. S. Gray, and E. M. Hollmann, J. Nucl. Mater., 2003, 313–316, 1239.