Valorization of By-Products Produced During the Extraction and Purification of Biofuels
Subodh Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorTinku Casper D'Silva
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorDushyant Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorAdya Isha
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSameer Ahmad Khan
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorRam Chandra
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorAnushree Malik
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorVirendra Kumar Vijay
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSubodh Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorTinku Casper D'Silva
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorDushyant Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorAdya Isha
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSameer Ahmad Khan
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorRam Chandra
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorAnushree Malik
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorVirendra Kumar Vijay
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorLalit Prasad
Search for more papers by this authorSubhalaxmi Pradhan
Search for more papers by this authorSummary
Biofuel production from renewable organic feedstocks is emerging as a sustainable solution for increasing energy consumption, declining fossil fuel reserves, and deteriorating environmental health. Different thermochemical and biochemical routes utilize the different organic feedstocks depending upon the suitability of that feedstock for biofuel production via a particular route. Byproducts produced during the extraction of biofuels (biodiesel, bioethanol, and biogas) are the primary concern in the way of the waste to wealth approach. Discarding the byproducts in the open environment may again hamper the idea of sustainable development. On the other hand, utilizing the byproducts to produce value-added (biofuels and chemicals) products may boost the whole process in the perspective of a circular economy and clean environment. This chapter discusses the recent studies exploring various approaches of utilizing the by-products of biodiesel production, bioethanol, and biogas fermentation.
References
- S. Kumar , P. Gandhi , M. Yadav , K. Paritosh , N. Pareek , and V. Vivekanand , “ Weak alkaline treatment of wheat and pearl millet straw for enhanced biogas production and its economic analysis ,” Renew. Energy , vol. 139 , pp. 753 – 764 , 2019 .
-
A. Isha
,
S. Kumar
,
B. Jha
,
P. M. V. Subbarao
,
R. Chandra
, and
V. K. Vijay
, “
Development of stabilization methods using a pilot scale anaerobic digester for seasonal variations in kitchen wastes for improved methane production with zero breakdowns
,”
Clean. Eng. Technol.
, vol.
1
, p.
100015
,
2020
.
10.1016/j.clet.2020.100015 Google Scholar
- S. Kumar , K. Paritosh , N. Pareek , A. Chawade , and V. Vivekanand , “ De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: An overview ,” Renew. Sustain. Energy Rev. , vol. 90 , pp. 160 – 170 , 2018 .
- L. M. González-González , D. F. Correa , S. Ryan , P. D. Jensen , S. Pratt , and P. M. Schenk , “ Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling ,” Renew. Sustain. Energy Rev. , vol. 82 , no. May 2016, pp. 1137 – 1148 , 2018 .
- M. H. Jazmín Edith , L. Octavio , M. H. Edna Madai , H. Esperanza , and S. C. Nicolás Óscar , “ Coupling energy-production processes: The use of residues from bioethanol production to improve the anaerobic digestion of corn stover ,” Biomass and Bioenergy , vol. 128 , p. 105322 , 2019 .
- R. Ganesan et al ., “ A review on prospective production of biofuel from microalgae ,” Biotechnol. Reports , vol. 27 , p. e00509 , 2020 .
- M. W. Azeem , M. A. Hanif , J. N. Al-Sabahi , A. A. Khan , S. Naz , and A. Ijaz , “ Production of biodiesel from low priced, renewable and abundant date seed oil ,” Renew. Energy , vol. 86 , pp. 124 – 132 , 2016 .
- Z. Helwani , M. R. Othman , N. Aziz , W. J. N. Fernando , and J. Kim , “ Technologies for production of biodiesel focusing on green catalytic techniques: A review ,” Fuel Process. Technol. , vol. 90 , no. 12 , pp. 1502 – 1514 , 2009 .
-
N. Kolesárová
,
M. Hutan
,
I. Bodík
, and
V. Špalková
, “
Utilization of biodiesel by-products for biogas production
,”
J. Biomed. Biotechnol.
, vol.
2011
, p.
15
,
2011
.
10.1155/2011/126798 Google Scholar
- K. Jacobson , R. Gopinath , L. C. Meher , and A. K. Dalai , “ Solid acid catalyzed biodiesel production from waste cooking oil ,” Appl. Catal. B Environ. , vol. 85 , no. 1–2 , pp. 86 – 91 , 2008 .
- B. X. Peng , Q. Shu , J. F. Wang , G. R. Wang , D. Z. Wang , and M. H. Han , “ Biodiesel production from waste oil feedstocks by solid acid catalysis ,” Process Saf. Environ. Prot. , vol. 86 , no. 6 , pp. 441 – 447 , 2008 .
- K. Bencheikh et al ., “ Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel– diesel–propanol blends ,” Sustain. Energy Technol. Assessments , vol. 35 , pp. 321 – 334 , 2019 .
- A. E. Abomohra , W. Jin , R. Tu , and S. Han , “ Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives ,” Renew. Sustain. Energy Rev. , vol. 64 , pp. 596 – 606 , 2016 .
- M. Mohamed Musthafa , “ Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends ,” Appl. Therm. Eng. , vol. 96 , pp. 607 – 612 , 2016 .
- S. Bellou , M. N. Baeshen , A. M. Elazzazy , D. Aggeli , F. Sayegh , and G. Aggelis , “ Microalgal lipids biochemistry and biotechnological perspectives ,” Biotechnol. Adv. , vol. 32 , no. 8 , pp. 1476 – 1493 , 2014 .
- A. E. F. Abomohra , M. El-Sheekh , and D. Hanelt , “ Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel ,” Biomass and Bioenergy , vol. 64 , pp. 237 – 244 , 2014 .
- A. Rywińska , W. Rymowicz , B. Zarowska , and M. Wojtatowicz , “ Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation ,” Food Technol. Biotechnol. , vol. 47 , no. 1 , pp. 1 – 6 , 2009 .
- J. Á. Siles López , M. de los Á. Martín Santos , A. F. Chica Pérez , and A. Martín Martín , “ Anaerobic digestion of glycerol derived from biodiesel manufacturing ,” Bioresour. Technol. , vol. 100 , no. 23 , pp. 5609 – 5615 , 2009 .
- M. B. Viana , A. V. Freitas , R. C. Leitão , G. A. S. Pinto , and S. T. Santaella , “ Anaerobic digestion of crude glycerol: a review ,” Environ. Technol. Rev. , vol. 1 , no. 1 , pp. 81 – 92 , 2012 .
- L. Bournay , D. Casanave , B. Delfort , G. Hillion , and J. A. Chodorge , “ New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants ,” Catal. Today , vol. 106 , no. 1–4 , pp. 190 – 192 , 2005 .
- C. Santibáñez , M. T. Varnero , and M. Bustamante , “ Residual glycerol from biodiesel Manufacturing, waste or potential source of Bioenergy: A review ,” Chil. J. Agric. Res. , vol. 71 , no. 3 , pp. 469 – 475 , 2011 .
- A. Singhabhandhu and T. Tezuka , “ A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feed-stock ,” Energy , vol. 35 , no. 6 , pp. 2493 – 2504 , 2010 .
- Y. Yang , K. Tsukahara , and S. Sawayama , “ Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions ,” Process Biochem. , vol. 43 , no. 4 , pp. 362 – 367 , 2008 .
- A. Kumar and S. Sharma , “ Potential non-edible oil resources as biodiesel feedstock: An Indian perspective ,” Renew. Sustain. Energy Rev. , vol. 15 , no. 4 , pp. 1791 – 1800 , 2011 .
- L. Sunil , P. Appaiah , P. K. Prasanth Kumar , and A. G. Gopala Krishna , “ Preparation of food supplements from oilseed cakes ,” J. Food Sci. Technol. , vol. 52 , no. 5 , pp. 2998 – 3005 , 2015 .
- S. Sangwan , D. V. Rao , and R. A. Sharma , “ A Review on Pongamia Pinnata (L.) Pierre: A Great Versatile Leguminous Plant ,” Nat. Sci. , vol. 8 , no. 11 , pp. 130 – 139 , 2010 .
- M. Radhakumari , A. Ball , S. K. Bhargava , and B. Satyavathi , “ Optimization of glucose formation in karanja biomass hydrolysis using Taguchi robust method ,” Bioresour. Technol. , vol. 166 , pp. 534 – 540 , 2014 .
- R. Chandra , V. K. Vijay , and P. M. V Subbarao , “ A Study on Biogas Generation from Non-edible Oil Seed Cakes : Potential and Prospects in India ,” in The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006),” 2006 , pp. 1 – 5 .
- R. Chandra , V. K. Vijay , P. M. V. Subbarao , and T. K. Khura , “ Production of methane from anaerobic digestion of jatropha and pongamia oil cakes ,” Appl. Energy , vol. 93 , pp. 148 – 159 , 2012 .
- S. Prateek , R. Gopal , S. Mayur , and D. Shilpkar , “ Biomethanation potential of Jatropha (Jatropha curcas) cake along with buffalo dung ,” African J. Agric. Res. , vol. 4 , no. 10 , pp. 991 – 995 , 2009 .
- T. Schmidt , “ Anaerobic digestion of Jatropha curcas L. press cake and effects of an iron-additive ,” Waste Manag. Res. , vol. 29 , no. 11 , pp. 1171 – 1176 , 2011 .
- H. Raheman and S. Mondal , “ Biogas production potential of jatropha seed cake ,” Biomass and Bioenergy , vol. 37 , pp. 25 – 30 , Feb. 2012 .
- N. Sinbuathong , P. Sirirote , B. Sillapacharoenkul , J. Munakata-Marr , and S. Chulalaksananukul , “ Biogas production from two-stage anaerobic digestion of Jatropha curcas seed cake ,” Energy Sources, Part A Recover. Util. Environ. Eff. , vol. 34 , no. 22 , pp. 2048 – 2056 , 2012 .
- K. Sen , S. Mahalingam , and B. Sen , “ Rapid and high yield biogas production from Jatropha seed cake by co-digestion with bagasse and addition of Fe2+ ,” Environ. Technol. (United Kingdom) , vol. 34 , no. 22 , pp. 2989 – 2994 , 2013 .
- S. J. Jabłoński , M. Kułażyński , I. Sikora , and M. Łukaszewicz , “ The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake ,” J. Environ. Manage. , vol. 203 , pp. 714 – 719 , Dec. 2017 .
- D. Barik and S. Murugan , “ Assessment of sustainable biogas production from de-oiled seed cake of karanja-an organic industrial waste from biodiesel industries ,” Fuel , vol. 148 , pp. 25 – 31 , May 2015 .
- H. Bateni , F. Bateni , and K. Karimi , “ Effects of Oil Extraction on Ethanol and Biogas Production from Eruca sativa Seed Cake ,” Waste and Biomass Valorization , vol. 8 , no. 6 , pp. 1897 – 1905 , 2017 .
- N. V. Deshpande , N. W. Kale , and S. J. Deshmukh , “ A study on biogas generation from Mahua (Madhuca indica) and Hingan (Balanites aegyaptiaca) oil seedcake ,” Energy Sustain. Dev. , vol. 16 , no. 3 , pp. 363 – 367 , 2012 .
- R. Singh and S. K. Mandal , “ The utilization of non-edible oil cake along with cow dung for methane-enriched biogas production using mixed inoculum ,” Energy Sources, Part A Recover. Util. Environ. Eff. , vol. 33 , no. 5 , pp. 449 – 458 , 2011 .
- A. Serrano , J. A. Siles , A. F. Chica , and M. A. Martin , “ Improvement of mesophilic anaerobic co-digestion of agri-food waste by addition of glycerol ,” J. Environ. Manage. , vol. 140 , pp. 76 – 82 , 2014 .
- M. S. Fountoulakis , I. Petousi , and T. Manios , “ Co-digestion of sewage sludge with glycerol to boost biogas production ,” Waste Manag. , vol. 30 , no. 10 , pp. 1849 – 1853 , 2010 .
- P. D. Jensen , S. Astals , Y. Lu , M. Devadas , and D. J. Batstone , “ Anaerobic codi-gestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability ,” Water Res. , vol. 67 , pp. 355 – 366 , 2014 .
- I. R. F. S. Alves , C. F. Mahler , L. B. Oliveira , M. M. Reis , and J. P. Bassin , “ Assessing the use of crude glycerol from biodiesel production as an alternative to boost methane generation by anaerobic co-digestion of sewage sludge ,” Biomass and Bioenergy , vol. 143 , p. 105831 , 2020 .
- T. R. W. Meier , P. A. Cremonez , T. C. Maniglia , S. C. Sampaio , J. G. Teleken , and E. A. da Silva , “ Production of biohydrogen by an anaerobic digestion process using the residual glycerol from biodiesel production as additive to cassava wastewater ,” J. Clean. Prod. , vol. 258 , p. 120833 , 2020 .
- A. C. Paulo et al ., “ Comparison between biodegradable polymers from cassava starch and glycerol as additives to biogas production ,” Semin. Agrar. , vol. 37 , no. 4 , pp. 1827 – 1843 , 2016 .
- M. Rivero , R. Solera , and M. Perez , “ Anaerobic mesophilic co-digestion of sewage sludge with glycerol: Enhanced biohydrogen production ,” Int. J. Hydrogen Energy , vol. 39 , no. 6 , pp. 2481 – 2488 , 2014 .
- S. Nartker , M. Ammerman , J. Aurandt , M. Stogsdil , O. Hayden , and C. Antle , “ Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry ,” Waste Manag. , vol. 34 , no. 12 , pp. 2567 – 2571 , 2014 .
- E. Athanasoulia , P. Melidis , and A. Aivasidis , “ Co-digestion of sewage sludge and crude glycerol from biodiesel production ,” Renew. Energy , vol. 62 , pp. 73 – 78 , 2014 .
- M. A. Martín , R. Fernández , A. Serrano , and J. A. Siles , “ Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing ,” Waste Manag. , vol. 33 , no. 7 , pp. 1633 – 1639 , 2013 .
- S. Astals , V. Nolla-Ardèvol , and J. Mata-Alvarez , “ Thermophilic co-digestion of pig manure and crude glycerol: Process performance and digestate stability ,” J. Biotechnol. , vol. 166 , no. 3 , pp. 97 – 104 , 2013 .
- S. Astals , V. Nolla-Ardèvol , and J. Mata-Alvarez , “ Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate ,” Bioresour. Technol. , vol. 110 , pp. 63 – 70 , 2012 .
- J. Kaur , A. K. Sarma , M. K. Jha , and P. Gera , “ Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues ,” Biotechnol. Reports , vol. 27 , p. e00487 , 2020 .
- F. Yang , M. A. Hanna , and R. Sun , “ Value-added uses for crude glycerol--A byproduct of biodiesel production ,” Biotechnol. Biofuels , vol. 5 , no. 13 , pp. 1 – 13 , 2012 .
- X. Luo , X. Ge , S. Cui , and Y. Li , “ Value-added processing of crude glycerol into chemicals and polymers ,” Bioresour. Technol. , vol. 215 , pp. 144 – 154 , 2016 .
- A. A. Hong et al ., “ Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid ,” J. Chem. Technol. Biotechnol. , vol. 84 , no. 10 , pp. 1576 – 1581 , 2009 .
- P. K. Dikshit , S. K. Padhi , and V. S. Moholkar , “ Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production ,” Bioresour. Technol. , vol. 244 , pp. 362 – 370 , 2017 .
- V. K. Garlapati , U. Shankar , and A. Budhiraja , “ Bioconversion technologies of crude glycerol to value added industrial products ,” Biotechnol. Reports , vol. 9 , pp. 9 – 14 , 2016 .
- M. Anitha , S. K. Kamarudin , and N. T. Kofli , “ The potential of glycerol as a value-added commodity ,” Chem. Eng. J. , vol. 295 , pp. 119 – 130 , 2016 .
- N. S. M. N. M. Din , Z. Idris , Y. S. Kian , and H. A. Hassan , “ Preparation of polyglycerol from palm-biodiesel crude glycerin ,” J. Oil Palm Res. , vol. 25 , no. 3 , pp. 289 – 297 , 2013 .
- V. C. Eze and A. P. Harvey , “ Continuous reactive coupling of glycerol and acetone – A strategy for triglyceride transesterification and in-situ valorisation of glycerol by-product ,” Chem. Eng. J. , vol. 347 , pp. 41 – 51 , 2018 .
- M. Srinivas , R. Sree , G. Raveendra , C. R. Kumar , P. S. S. Prasad , and N. Lingaiah , “ Selective etherification of glycerol with tert-butanol over 12-tungstophosphoric acid catalysts supported on Y-zeolite ,” Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. , vol. 53 , pp. 524 – 529 , 2014 .
- K. Wang , M. C. Hawley , and S. J. DeAthos , “ Conversion of glycerol to 1,3-propanediol via selective dehydroxylation ,” Ind. Eng. Chem. Res. , vol. 42 , pp. 2913 – 2923 , 2003 .
- Y. Zong et al ., “ Highly efficient acetalization and ketalization catalyzed by cobaloxime under solvent-free condition ,” Catalysts , vol. 8 , pp. 1 – 10 , 2018 .
- M. Olga Guerrero-Pérez , J. M. Rosas , J. Bedia , J. Rodríguez-Mirasol , and T. Cordero , “ Recent inventions in glycerol transformations and processing ,” Recent Patents Chem. Eng. , vol. 2 , pp. 1 – 11 , 2009 .
- Z. I. Ishak , N. A. Sairi , Y. Alias , M. K. T. Aroua , and R. Yusoff , “ Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst ,” Chem. Eng. J. , vol. 297 , pp. 128 – 138 , 2016 .
- P. Sudarsanam , R. Zhong , S. Van Den Bosch , S. M. Coman , V. I. Parvulescu , and B. F. Sels , “ Functionalised heterogeneous catalysts for sustainable biomass valorisation ,” Chem. Soc. Rev. , vol. 47 , pp. 8349 – 8402 , 2018 .
- M. R. Monteiro , C. L. Kugelmeier , R. S. Pinheiro , M. O. Batalha , and A. da Silva César , “ Glycerol from biodiesel production: Technological paths for sustainability ,” Renew. Sustain. Energy Rev. , vol. 88 , pp. 109 – 122 , 2018 .
- H. Zhang et al ., “ Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity ,” ACS Catal. , vol. 5 , no. 4 , pp. 2548 – 2558 , 2015 .
-
N. R. Rarokar
,
S. Menghani
,
D. Kerzare
, and
P. B. Khedekar
, “
Progress in Synthesis of Monoglycerides for Use in Food and Pharmaceuticals
,”
J. Exp. Food Chem.
, vol.
3
, pp.
1
–
6
,
2017
.
10.4172/2472-0542.1000128 Google Scholar
- S. S. Hashemi , S. Mirmohamadsadeghi , and K. Karimi , “ Biorefinery development based on whole safflower plant ,” Renew. Energy , vol. 152 , pp. 399 – 408 , 2020 .
- A. Gupta , R. Chaudhary , and S. Sharma , “ Potential applications of mahua (Madhuca indica) biomass ,” Waste and Biomass Valorization , vol. 3 , no. 2 , pp. 175 – 189 , 2012 .
- A. Gupta , A. Kumar , S. Sharma , and V. K. Vijay , “ Comparative evaluation of raw and detoxified mahua seed cake for biogas production ,” Appl. Energy , vol. 102 , pp. 1514 – 1521 , 2013 .
- H. Bateni and K. Karimi , “ Biorefining of Eruca sativa plant for efficient biofuel production ,” RSC Adv. , vol. 6 , no. 41 , pp. 34492 – 34500 , 2016 .
- B. S. Moraes et al ., “ Anaerobic digestion of vinasse from sugarcane biore-fineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? ,” Appl. Energy , vol. 113 , pp. 825 – 835 , 2014 .
- B. S. Moraes , J. M. Triolo , V. P. Lecona , M. Zaiat , and S. G. Sommer , “ Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse ,” Bioresour. Technol. , vol. 190 , pp. 227 – 234 , 2015 .
- Z. Tian , G. R. Mohan , L. Ingram , and P. Pullammanappallil , “ Anaerobic digestion for treatment of stillage from cellulosic bioethanol production ,” Bioresour. Technol. , vol. 144 , pp. 387 – 395 , 2013 .
- M. Westerholm , M. Hansson , and A. Schnürer , “ Improved biogas production from whole stillage by co-digestion with cattle manure ,” Bioresour. Technol. , vol. 114 , pp. 314 – 319 , 2012 .
- Y. Liu et al ., “ Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF ,” Energy , vol. 90 , pp. 1199 – 1205 , 2015 .
-
S. Kumar
,
T. C. D'Silva
,
R. Chandra
,
A. Malik
,
V. K. Vijay
, and
A. Misra
, “
Strategies for boosting biomethane production from rice straw: A systematic review
,”
Bioresour. Technol. Reports
, vol.
15
, no.
September
, p.
100813
,
2021
.
10.1016/j.biteb.2021.100813 Google Scholar
-
R. Chandra
et al
., “
Potentials and Challenges of Biogas Upgradation as Liquid Biomethane
,” in
Biogas Production
,
Springer
,
Cham
,
2020
.
10.1007/978-3-030-58827-4_14 Google Scholar
- R. Kapoor et al ., “ Advances in biogas valorization and utilization systems: A comprehensive review ,” J. Clean. Prod. , vol. 273 , p. 123052 , 2020 .
- K. Hoyer , C. Hulteberg , M. Svensson , J. Jenberg , and Ø. NØrregård , Biogas Upgrading – Technical Review . 2016 .
- T. C. D'Silva et al ., “ Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review ,” Renew. Sustain. Energy Rev. , vol. 151 , p. 111536 , Nov. 2021 .
- M. Usman et al ., “ Current status of biogas upgrading for direct biomethane use: A review ,” Renew. Sustain. Energy Rev. , vol. 149 , no. May , p. 111343 , 2021 .
- S. K. Prajapati , P. Kaushik , A. Malik , and V. K. Vijay , “ Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges ,” Biotechnol. Adv. , vol. 31 , no. 8 , pp. 1408 – 1425 , 2013 .
- T. Mdlambuzi , P. Muchaonyerwa , M. Tsubo , and M. E. Moshia , “ Nitrogen fertiliser value of biogas slurry and cattle manure for maize (Zea mays L.) production ,” Heliyon , vol. 7 , no. 5 , p. e07077 , 2021 .
- Y. Tang , L. Luo , A. Carswell , T. Misselbrook , J. Shen , and J. Han , “ Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation ,” Sci. Total Environ. , vol. 757 , p. 143786 , 2021 .
- M. A. Rahaman , Q. Zhang , Y. Shi , X. Zhan , and G. Li , “ Biogas slurry application could potentially reduce N2O emissions and increase crop yield ,” Sci. Total Environ. , vol. 778 , p. 146269 , 2021 .
-
S. Kumar
,
A. Isha
,
R. Chandra
,
A. Malik
, and
V. K. Vijay
, “
Algal Biomass: A Promising Source for Future Bioenergy Production
,” in
Bioenergy Engineering
,
1st ed.
,
CRC Press
,
2021
, pp.
131
–
152
.
10.1201/9781003230878-7 Google Scholar
- L. Zhu , C. Yan , and Z. Li , “ Bioresource Technology Microalgal cultivation with biogas slurry for biofuel production ,” Bioresour. Technol. , vol. 220 , pp. 629 – 636 , 2016 .
- S. K. Prajapati , P. Kumar , A. Malik , and V. K. Vijay , “ Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: A closed loop bioenergy generation process ,” Bioresour. Technol. , vol. 158 , pp. 174 – 180 , 2014 .
- P. Choudhary , S. K. Prajapati , P. Kumar , A. Malik , and K. K. Pant , “ Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications ,” Bioresour. Technol. , vol. 224 , pp. 276 – 284 , 2017 .