Types of Biosensors and their Importance in Cardiovascular Applications
S. Irem Kaya
Search for more papers by this authorLeyla Karadurmuş
Search for more papers by this authorAhmet Cetinkaya
Search for more papers by this authorGoksu Ozcelikay
Search for more papers by this authorSibel A. Ozkan
Search for more papers by this authorS. Irem Kaya
Search for more papers by this authorLeyla Karadurmuş
Search for more papers by this authorAhmet Cetinkaya
Search for more papers by this authorGoksu Ozcelikay
Search for more papers by this authorSibel A. Ozkan
Search for more papers by this authorAbstract
Cardiovascular disease (CVD) is a general nomenclature given to the group that includes diseases of the heart or blood vessels and describes any disease that affects the circulatory system. Biosensors can play a significant role in the early diagnosis of CVD as an alternative to time-consuming and expensive laboratory analysis. This chapter focuses on recent developments in biosensors used to detect cardiovascular biomarkers. An ideal cardiovascular biomarker should be highly specific with definite reference limits in order to provide valuable information for clinical assessment. The application of novel detection biosensors, such as electrochemical biosensors, piezoelectric biosensors, thermometric biosensors, and optical biosensors, is in the developmental stages, and there is the potential for rapid growth. The discovery of new potential biomarkers for CVDs along with current ones has increased the importance of fully validated cardiac biomarker biosensors and has led to new approaches for CVDs-based research.
References
- Olin , B.R. and Pharm , D. ( 2018 ) Hypertension : The Silent Killer : Updated JNC-8 Guideline Recommendations .
- WHO ( 2017 ) Cardiovascular Diseases: The Solution . https://www.who.int/nmh/publications/fact_sheet_cardiovascular_en.pdf .
- Schettler , G. and Brisse , B. ( 1980 ). Cardiovascular diseases . Munchener Medizinische Wochenschrift 122 ( Suppl. 1 ): 6 – 9 .
- Liu , M.B. ( 2014 ). Cardiovascular diseases . Chinese Medical Journal 127 : 6 – 7 .
- Leonard , E.A. and Marshall , R.J. ( 2018 ). Cardiovascular Disease in Women . Primary Care: Clinics in Office Practice 45 : 131 – 141 .
- Boraita , A. , Adamuz , C. , Alcocer Ayuga , M. , Carro , A. , Díaz González , L. , Heredia , J.R. , Madaria , Z. , Masiá , M.D. , Rossi , M. , Sánchez Testal , M. , Trias de Bes , J. , Azcárate , P. , Barriales , R. , Benito , B. , Calvo-Iglesias , F. , Fuertes Moure , Á. , de la Guía , F. , Martínez , A. , Martínez Alday , J. , Moñivas , V. , Peiró Molina , E. , Vera , T.R. , de la Rosa , A. , Avanzas , P. , Congost , G.B. , Boraita , A. , Bueno , H. , Calvo , D. , Campuzano , R. , Delgado , V. , Dos , L. , Ferreira-González , I. , Gómez Doblas , J.J. , Pascual Figal , D. , Sambola Ayala , A. , Viana Tejedor , A. , Ferreiro , J.L. , and Alfonso , F. ( 2021 ). Comments on the 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease . Rev. Española Cardiol. (English Ed. 74 ( 6 ): 488 – 493 .
- Riccardi , G. , Vitale , M. , and Vaccaro , O. ( 2020 ). Are Europeans moving towards dietary habits more suitable for reducing cardiovascular disease risk? Nutrition, Metabolism & Cardiovascular Diseases 30 ( 11 ): 1857 – 1860 .
- Zampelas , A. and Magriplis , E. ( 2020 ). Dietary patterns and risk of cardiovascular diseases: A review of the evidence . The Proceedings of the Nutrition Society 79 ( 1 ): 68 – 75 .
- Keung , V. , Lo , K. , Cheung , C. , Tam , W. , and Lee , A. ( 2019 ). Changes in dietary habits and prevalence of cardiovascular risk factors among school students in Macao, China . Obesity Research & Clinical Practice 13 ( 6 ): 541 – 547 .
- Balakumar , P. , Maung-U , K. , and Jagadeesh , G. ( 2016 ). Prevalence and prevention of cardiovascular disease and diabetes mellitus . Pharmacological Research : The Official Journal of the Italian Pharmacological Society 113 : 600 – 609 .
- Reamy , B.V. , Williams , P.M. , and Kuckel , D.P. ( 2018 ). Prevention of Cardiovascular Disease . Primary Care 45 ( 1 ): 25 – 44 .
- Qureshi , A. , Gurbuz , Y. , and Niazi , J.H. ( 2012 ). Biosensors for cardiac biomarkers detection: A review . Sensors and Actuators, B Chemicals 171–172 : 62 – 76 .
- Yang , Z. and Min Zhou , D. ( 2006 ). Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction . Clinical Biochemistry 39 ( 8 ): 771 – 780 .
- Satoh , K. and Shimokawa , H. ( 2018 ). Recent Advances in the Development of Cardiovascular Biomarkers . Arteriosclerosis, Thrombosis, and Vascular Biology 38 ( 5 ): e61 – e70 .
- Gualandro , D.M. , Twerenbold , R. , Boeddinghaus , J. , Nestelberger , T. , Puelacher , C. , and Müller , C. ( 2019 ). Biomarkers in cardiovascular medicine: Towards precision medicine . Swiss Medical Weekly 149 : w20125 .
- Simpson , W.G. ( 2019 ). Biomarker variability and cardiovascular disease residual risk . Current Opinion in Cardiology 34 ( 4 ): 413 – 417 .
- Upadhyay , R.K. ( 2015 ). Emerging risk biomarkers in cardiovascular diseases and disorders . Journal of Lipids 2015 : 1 – 50 .
-
Derosa , G.
and
Maffioli , P.
(
2015
).
Testing Pharmacological Profiles with Biomarkers Relevant to Cardiovascular Profiles
. In eds:
V. Patel
,
Preedy V.
,
Biomarkers in Cardiovascular Disease
.
Dordrecht
:
Springer,
1
–
24
.
10.1007/978-94-007-7741-5_27-1 Google Scholar
- Savonnet , M. , Rolland , T. , Cubizolles , M. , Roupioz , Y. , and Buhot , A. ( 2020 ). Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies . Journal of Pharmaceutical and Biomedical Analysis 194 : 113777 .
- Dolati , S. , Soleymani , J. , Kazem Shakouri , S. , and Mobed , A. ( 2020 ). The trends in nanomaterial-based biosensors for detecting critical biomarkers in stroke . Clinica Chimica Acta 514 (December 2020): 107 – 121 .
- Bakirhan , N.K. , Ozcelikay , G. , and Ozkan , S.A. ( 2018 ). Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors . Journal of Pharmaceutical and Biomedical Analysis 159 : 406 – 424 .
- Dhir , S. and Dhir , A. ( 2020 ). Cardiovascular risk assessment for noncardiac surgery: Are we ready for biomarkers? Journal of Cardiothoracic and Vascular Anesthesia 34 ( 7 ): 1914 – 1924 .
- Negahdary , M. ( 2020 ). Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review . Biosensors & Bioelectronics 152 (January): 112018 .
- Dhingra , R. and Vasan , R.S. ( 2017 ). Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers . Trends in Cardiovascular Medicine 27 ( 2 ): 123 – 133 .
- Boonkaew , S. , Jang , I. , Noviana , E. , Siangproh , W. , Chailapakul , O. , and Henry , C.S. ( 2021 ). Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers . Sensors and Actuators, B Chemicals 330 (September 2020): 129336 .
-
Ghantous , C.M.
,
Kamareddine , L.
,
Farhat , R.
,
Zouein , F.A.
,
Mondello , S.
,
Kobeissy , F.
, and
Zeidan , A.
(
2020
).
Advances in cardiovascular biomarker discovery
.
Biomedicines
8
(
12
):
1
–
19
.
10.3390/biomedicines8120552 Google Scholar
- Forman , D.E. , de Lemos , J.A. , Shaw , L.J. , Reuben , D.B. , Lyubarova , R. , Peterson , E.D. , Spertus , J.A. , Zieman , S. , Salive , M.E. , and Rich , M.W. ( 2020 ). Cardiovascular biomarkers and imaging in older adults: JACC Council perspectives . Journal of the American College of Cardiology 76 ( 13 ): 1577 – 1594 .
- Wang , T.J. ( 2011 ). Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction . Circulation 123 ( 5 ): 551 – 565 .
- Hoeger , C.W. and Hayek , S.S. ( 2019 ). Role of cardiovascular biomarkers in the risk stratification, monitoring, and management of patients with cancer . Cardiology Clinics 37 ( 4 ): 505 – 523 .
- Ouyang , M. , Tu , D. , Tong , L. , Sarwar , M. , Bhimaraj , A. , Li , C. , Coté , G.L. , and Di Carlo , D. ( 2021 ). A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care . Biosensors & Bioelectronics 171 (September 2020).
- Negahdary , M. ( 2020 ). Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review . Biosensors & Bioelectronics 152 (November 2019): 112018 .
- Di Stefano , V. , Zaccagnini , G. , Capogrossi , M.C. , and Martelli , F. ( 2011 ). MicroRNAs as peripheral blood biomarkers of cardiovascular disease . Vascular Pharmacology 55 ( 4 ): 111 – 118 .
- Ekroos , K. , Lavrynenko , O. , Titz , B. , Pater , C. , Hoeng , J. , and Ivanov , N.V. ( 2020 ). Lipid-based biomarkers for CVD, COPD, and aging – A translational perspective . Progress in Lipid Research 78 (February): 101030 .
- Lattuca , B. , Sy , V. , Nguyen , L.S. , Bernard , M. , Zeitouni , M. , Overtchouk , P. , Yan , Y. , Hammoudi , N. , Ceccaldi , A. , Collet , J.P. , Kerneis , M. , Diallo , A. , Montalescot , G. , and Silvain , J. ( 2019 ). Copeptin as a prognostic biomarker in acute myocardial infarction . International Journal of Cardiology 274 : 337 – 341 .
- Holm , J. , Szabó , Z. , Alehagen , U. , Lindahl , T.L. , and Cederholm , I. ( 2018 ). Copeptin release in cardiac surgery – A new biomarker to identify risk patients? Journal of Cardiothoracic and Vascular Anesthesia 32 ( 1 ): 245 – 250 .
-
Qazi , S.
and
Raza , K.
(
2020
).
Smart Biosensors for an Efficient Point of Care (Poc) Health Management
.
Elsevier Inc
.
10.1016/B978-0-12-820781-9.00004-8 Google Scholar
- Sohrabi , H. , Kholafazad Kordasht , H. , Pashazadeh-Panahi , P. , Nezhad-Mokhtari , P. , Hashemzaei , M. , Majidi , M.R. , Mosafer , J. , Oroojalian , F. , Mokhtarzadeh , A. , and De La Guardia , M. ( 2020 ). Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker . Microchemical Journal 158 (April): 105287 .
-
Lakshmipriya , T.
and
Gopinath , S.C.B.
(
2019
).
An Introduction to Biosensors and Biomolecules
.
Elsevier Inc
.
10.1016/B978-0-12-813900-4.00001-4 Google Scholar
- Malhotra , B.D. and Chaubey , A. ( 2003 ). Biosensors for clinical diagnostics industry . Sensors and Actuators, B Chemicals 91 ( 1–3 ): 117 – 127 .
-
Veloso , A.J.
,
Cheng , X.R.
, and
Kerman , K.
(
2012
).
Electrochemical Biosensors for Medical Applications
.
Elsevier Masson SAS
.
10.1533/9780857097187.1.3 Google Scholar
-
Srivastava , K.R.
,
Awasthi , S.
,
Mishra , P.K.
, and
Srivastava , P.K.
(
2020
).
Biosensors/Molecular Tools for Detection of Waterborne Pathogens
.
Elsevier
.
10.1016/B978-0-12-818783-8.00013-X Google Scholar
- Malhotra , B.D. and Ali , M.A. ( 2018 ). Nanomaterials in biosensors . Nanomaterials for Biosensors 1 – 74 .
-
Tan , S.N.
,
Wang , W.
, and
Ge , L.
(
2011
).
Biosensors based on sol-gel-derived materials
.
Comprehensive Biomaterials
3
:
471
–
489
.
10.1016/B978-0-08-055294-1.00118-5 Google Scholar
-
Rebelo , R.
,
Barbosa , A.I.
,
Kundu , S.C.
,
Reis , R.L.
, and
Correlo , V.M.
(
2020
).
Biodetection and Sensing for Cancer Diagnostics
. In eds:
Subhas C. Kundu
,
Rui L. Reis
,
Materials Today: Biomaterials for 3D Tumor Modeling
.
Elsevier
,
643
–
660
.
10.1016/B978-0-12-818128-7.00026-5 Google Scholar
- Skládal , P. ( 2016 ). Piezoelectric biosensors . TrAC - Trends in Analytical Chemistry 79 : 127 – 133 .
- Lechuga , L.M. ( 2005 ). Optical biosensors . Comprehensive Analytical Chemistry 44 : 209 – 250 .
- R. Kobun (ed.). ( 2021 ). Nanotechnology-based optical biosensors for food applications . Advanced Food Analysis Tools . Elsevier, 147 – 165 .
- Rezabakhsh , A. , Rahbarghazi , R. , and Fathi , F. ( 2020 ). Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; an effective step in early and accurate diagnosis . Biosensors & Bioelectronics 167 ( August ): 112511 .
- Parlak , O. , Curto , V.F. , Ojeda , E. , Basabe-Desmonts , L. , Benito-Lopez , F. , and Salleo , A. ( 2019 ). Wearable biosensors and sample handling strategies . In eds: Parlak O., Salleo A., Turner A., Materials Today: Wearable Bioelectronics . Elsevier, 65 – 88 .
-
Córcoles , E.P.
and
Boutelle , M.G.
(
2013
).
Implantable biosensors
, In:
Biosensors and Invasive Monitoring in Clinical Applications: SpringerBriefs in Applied Sciences and Technology
.
Heidelberg
:
Springer
,
21
–
41
.
10.1007/978-3-319-00360-3_5 Google Scholar
- Reid , R.C. and Mahbub , I. ( 2020 ). Wearable self-powered biosensors . Current Opinion in Electrochemistry 19 : 55 – 62 .
-
Zhang , J.X.J.
and
Hoshino , K.
(
2014
).
Implantable Sensors
.
Molecular Sensors and Nanodevices
. Elsevier,
415
–
465
.
10.1016/B978-1-4557-7631-3.00007-7 Google Scholar
-
Zhu , X.
,
Liu , W.
,
Shuang , S.
,
Nair , M.
, and
Li , C.Z.
(
2017
).
Intelligent tattoos, patches, and other wearable biosensors
. In ed: Narayan R.J.,
Medical Biosensors for Point of Care (POC) Applications
. Woodhead Publishing,
133
–
150
.
10.1016/B978-0-08-100072-4.00006-X Google Scholar
- Chekin , F. , Vasilescu , A. , Jijie , R. , Singh , S.K. , Kurungot , S. , Iancu , M. , Badea , G. , Boukherroub , R. , and Szunerits , S. ( 2018 ). Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode . Sensors and Actuators, B Chemicals 262 : 180 – 187 .
- Kumar , S. , Kumar , S. , Augustine , S. , and Malhotra , B.D. ( 2017 ). Protein functionalized nanostructured zirconia based electrochemical immunosensor for cardiac troponin i detection . Journal of Materials Research and Technology 32 ( 15 ): 2966 – 2972 .
- Kazemi , S.H.K. , Ghodsi , E. , Abdollahi , S. , and Nadri , S. ( 2016 ). Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin I . Materials Science and Engineering C 69 : 447 – 452 .
- Jo , H. , Gu , H. , Jeon , W. , Youn , H. , Her , J. , Kim , S.K. , Lee , J. , Shin , J.H. , and Ban , C. ( 2015 ). Electrochemical aptasensor of cardiac troponin i for the early diagnosis of acute myocardial infarction . Analytical Chemistry 87 ( 19 ): 9869 – 9875 .
- Tuteja , S.K. , Kukkar , M. , Suri , C.R. , Paul , A.K. , and Deep , A. ( 2015 ). One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI . Biosensors & Bioelectronics 66 : 129 – 135 .
- Singal , S. , Srivastava , A.K. , Dhakate , S. , and Biradar , A.M. , Rajesh . ( 2015 ). Electroactive graphene-multi-walled carbon nanotube hybrid supported impedimetric immunosensor for the detection of human cardiac troponin-I . RSC Advances 5 ( 92 ): 74994 – 75003 .
- Chi , H. , Han , Q. , Chi , T. , Xing , B. , Ma , N. , Wu , D. , and Wei , Q. ( 2019 ). Manganese doped CdS sensitized graphene/Cu 2 MoS 4 composite for the photoelectrochemical immunoassay of cardiac troponin I . Biosensors & Bioelectronics 132 (December 2018): 1 – 7 .
- Rezaei , B. , Shoushtari , A.M. , Rabiee , M. , Uzun , L. , Mak , W.C. , and Turner , A.P.F. ( 2018 ). An electrochemical immunosensor for cardiac Troponin I using electrospun carboxylated multi-walled carbon nanotube-whiskered nanofibres . Talanta 182 (October 2017): 178 – 186 .
- Yan , H. , Tang , X. , Zhu , X. , Zeng , Y. , Lu , X. , Yin , Z. , Lu , Y. , Yang , Y. , and Li , L. ( 2018 ). Sandwich-type electrochemical immunosensor for highly sensitive determination of cardiac troponin I using carboxyl-terminated ionic liquid and helical carbon nanotube composite as platform and ferrocenecarboxylic acid as signal label . Sensors and Actuators, B Chemicals 277 (July): 234 – 240 .
- Negahdary , M. , Behjati-Ardakani , M. , Sattarahmady , N. , Yadegari , H. , and Heli , H. ( 2017 ). Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction . Sensors and Actuators, B Chemicals 252 : 62 – 71 .
- Negahdary , M. and Heli , H. ( 2019 ). An electrochemical troponin I peptisensor using a triangular icicle-like gold nanostructure . Biochemical Engineering Journal 151 (April): 107326 .
- Lopa , N.S. , Rahman , M.M. , Ahmed , F. , Ryu , T. , Sutradhar , S.C. , Lei , J. , Kim , J. , Kim , D.H. , Lee , Y.H. , and Kim , W. ( 2019 ). Simple, low-cost, sensitive and label-free aptasensor for the detection of cardiac troponin I based on a gold nanoparticles modified titanium foil . Biosensors & Bioelectronics 126 (November 2018): 381 – 388 .
- Lee , T. , Lee , Y. , Park , S.Y. , Hong , K. , Kim , Y. , Park , C. , Chung , Y.H. , Lee , M.H. , and Min , J. ( 2019 ). Fabrication of electrochemical biosensor composed of multi-functional DNA structure/Au nanospike on micro-gap/PCB system for detecting troponin I in human serum . Colloids Surfaces B Biointerfaces 175 (December 2018): 343 – 350 .
- Grabowska , I. , Sharma , N. , Vasilescu , A. , Iancu , M. , Badea , G. , Boukherroub , R. , Ogale , S. , and Szunerits , S. ( 2018 ). Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers . ACS Omega 3 ( 9 ): 12010 – 12018 .
- Sandil , D. , Srivastava , S. , Malhotra , B.D. , Sharma , S.C. , and Puri , N.K. ( 2018 ). Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker . Journal of Alloys and Compounds 763 : 102 – 110 .
- Shen , Q. , Liu , M. , Lü , Y. , Zhang , D. , Cheng , Z. , Liu , Y. , Gao , H. , and Jin , Z. ( 2019 ). Label-free electrochemical immunosensor based on a functionalized ionic liquid and helical carbon nanotubes for the determination of cardiac troponin I . ACS Omega 4 ( 7 ): 11888 – 11892 .
- Chen , Y. , Mei , L.P. , Feng , J.J. , Yuan , P.X. , Luo , X. , and Wang , A.J. ( 2019 ). Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I . Biosensors & Bioelectronics 145 (July): 111638 .
- Singh , N. , Rai , P. , Ali , M.A. , Kumar , R. , Sharma , A. , Malhotra , B.D. , and John , R. ( 2019 ). A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin i . Journal of Materials Chemistry B 7 ( 24 ): 3826 – 3839 .
- Ma , Y. , Shen , X.L. , Wang , H.S. , Tao , J. , Huang , J.Z. , Zeng , Q. , and Wang , L.S. ( 2017 ). MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I . Analytical Biochemistry 520 : 9 – 15 .
- Yola , M.L. and Atar , N. ( 2019 ). Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer . Biosensors & Bioelectronics 126 (November 2018): 418 – 424 .
- Sun , D. , Luo , Z. , Lu , J. , Zhang , S. , Che , T. , Chen , Z. , and Zhang , L. ( 2019 ). Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure . Biosensors & Bioelectronics 134 (March): 49 – 56 .
- Sun , D. , Lin , X. , Lu , J. , Wei , P. , Luo , Z. , Lu , X. , Chen , Z. , and Zhang , L. ( 2019 ). DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme . Biosensors & Bioelectronics 142 (May): 111578 .
- Qin , X. , Dong , Y. , Wang , M. , Zhu , Z. , Li , M. , Chen , X. , Yang , D. , and Shao , Y. ( 2018 ). C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins . Science China Chemistry 61 ( 4 ): 476 – 482 .
- Zhang , T. , Ma , N. , Ali , A. , Wei , Q. , Wu , D. , and Ren , X. ( 2018 ). Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification . Biosensors & Bioelectronics 119 (July): 176 – 181 .
- Qian , X. , Zhou , X. , Ran , X. , Ni , H. , Li , Z. , Qu , Q. , Li , J. , Du , G. , and Yang , L. ( 2019 ). Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO 2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I . Biosensors & Bioelectronics 130 (November 2018): 214 – 224 .
- Lv , H. , Li , Y. , Zhang , X. , Li , X. , Xu , Z. , Chen , L. , Li , D. , and Dong , Y. ( 2019 ). Thionin functionalized signal amplification label derived dual-mode electrochemical immunoassay for sensitive detection of cardiac troponin I . Biosensors & Bioelectronics 133 (March): 72 – 78 .
- Gupta , R.K. , Pandya , R. , Sieffert , T. , Meyyappan , M. , and Koehne , J.E. ( 2016 ). Multiplexed electrochemical immunosensor for label-free detection of cardiac markers using a carbon nanofiber array chip . Journal of Electroanalytical Chemistry 773 : 53 – 62 .
- Zhou , F. , Lu , M. , Wang , W. , Bian , Z.P. , Zhang , J.R. , and Zhu , J.J. ( 2010 ). Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: A proof of principle . Clinical Chemistry 56 ( 11 ): 1701 – 1707 .
- Feng , L.N. , Bian , Z.P. , Peng , J. , Jiang , F. , Yang , G.H. , Zhu , Y.D. , Yang , D. , Jiang , L.P. , and Zhu , J.J. ( 2012 ). Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres . Analytical Chemistry 84 ( 18 ): 7810 – 7815 .
-
Negahdary , M.
,
Behjati-Ardakani , M.
, and
Heli , H.
(
2019
).
An electrochemical troponin T aptasensor based on the use of a macroporous gold nanostructure
.
Microchimica Acta
186
(
6
).
10.1007/s00604-019-3472-z Google Scholar
- Zanato , N. , Talamini , L. , Zapp , E. , Brondani , D. , and Vieira , I.C. ( 2017 ). Label-free Electrochemical Immunosensor for Cardiac Troponin T Based on Exfoliated Graphite Nanoplatelets Decorated with Gold Nanoparticles . Electroanalysis 29 ( 7 ): 1820 – 1827 .
- Karimi , M. , Rabiee , M. , Tahriri , M. , Salarian , R. , and Tayebi , L. ( 2019 ). A graphene based–biomimetic molecularly imprinted polyaniline sensor for ultrasensitive detection of human cardiac troponin T (cTnT) . Synthetic Metals 256 (July): 116136 .
-
Freitas , T.A.
,
Mattos , A.B.
,
Silva , B.V.M.
, and
Dutra , R.F.
(
2014
).
amino-functionalization of carbon nanotubes by using a factorial design: Human cardiac troponin T immunosensing application
.
BioMed Research International
2014
.
10.1155/2014/929786 Google Scholar
- Kaur , G. , Tomar , M. , and Gupta , V. ( 2017 ). Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection . Analytical and Bioanalytical Chemistry 409 ( 8 ): 1995 – 2005 .
- Martín , M. , Salazar , P. , Álvarez , R. , Palmero , A. , López-Santos , C. , González-Mora , J.L. , and González-Elipe , A.R. ( 2017 ). Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition . Sensors and Actuators, B Chemicals 240 : 37 – 45 .
- Shrestha , B.K. , Ahmad , R. , Shrestha , S. , Park , C.H. , and Kim , C.S. ( 2017 ). In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application . Biosensors & Bioelectronics 94 (March): 686 – 693 .
- Dervisevic , M. , Çevik , E. , Şenel , M. , Nergiz , C. , and Abasiyanik , M.F. ( 2016 ). Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers . Journal of Electroanalytical Chemistry 776 : 18 – 24 .
- Komathi , S. , Muthuchamy , N. , Lee , K.P. , and Gopalan , A.I. ( 2016 ). Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks . Biosensors & Bioelectronics 84 : 64 – 71 .
- Lata , K. , Dhull , V. , and Hooda , V. ( 2016 ). Fabrication and optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs based silver electrode for determining total cholesterol in Serum . Biochemistry Research International 2016 .
- Nandini , S. , Nalini , S. , Reddy , M.B.M. , Suresh , G.S. , Melo , J.S. , Niranjana , P. , Sanetuntikul , J. , and Shanmugam , S. ( 2016 ). Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing . Bioelectrochemistry 110 : 79 – 90 .
- Tang , S. , Zhao , Q. , and Tu , Y. ( 2016 ). A sensitive electrochemiluminescent cholesterol biosensor based on Au/hollowed-TiO2 nano-composite pre-functionalized electrode . Sensors and Actuators, B Chemicals 237 : 416 – 422 .
- Tlʇ , G.A. , Zeybek , D.K. , and Pekyardlmcl , S. ( 2016 ). Fabrication of amperometric cholesterol biosensor based on SnO2nanoparticles and Nafion-modified carbon paste electrode . Chemical Papers 70 ( 4 ): i – xi .
- Xu , Z.H. , Cheng , X.D. , Tan , J.H. , and Gan , X. ( 2016 ). Fabrication of multiwalled carbon nanotube–polyaniline/platinum nanocomposite films toward improved performance for a cholesterol amperometric biosensor . Biotechnology and Applied Biochemistry 63 ( 6 ): 757 – 764 .
- Li , Z. , Xie , C. , Wang , J. , Meng , A. , and Zhang , F. ( 2015 ). Direct electrochemistry of cholesterol oxidase immobilized on chitosan-graphene and cholesterol sensing . Sensors and Actuators, B Chemicals 208 : 505 – 511 .
- Sekretaryova , A.N. , Beni , V. , Eriksson , M. , Karyakin , A.A. , Turner , A.P.F. , and Vagin , M.Y. ( 2014 ). Cholesterol self-powered biosensor . Analytical Chemistry 86 ( 19 ): 9540 – 9547 .
- Rahman , M.M. , Li , X.B. , Kim , J. , Lim , B.O. , Ahammad , A.J.S. , and Lee , J.J. ( 2014 ). A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film . Sensors and Actuators, B Chemicals 202 : 536 – 542 .
- Dey , R.S. and Raj , C.R. ( 2014 ). Enzyme-integrated cholesterol biosensing scaffold based on in situ synthesized reduced graphene oxide and dendritic Pd nanostructure . Biosensors & Bioelectronics 62 : 357 – 364 .
- Ruecha , N. , Rangkupan , R. , Rodthongkum , N. , and Chailapakul , O. ( 2014 ). Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite . Biosensors & Bioelectronics 52 : 13 – 19 .
- Wu , X. , Chai , Y. , Yuan , R. , Zhong , X. , and Zhang , J. ( 2014 ). Synthesis of multiwall carbon nanotubes-graphene oxide-thionine-Au nanocomposites for electrochemiluminescence detection of cholesterol . Electrochimica Acta 129 : 441 – 449 .
- Dey , R.S. and Raj , C.R. ( 2013 ). Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform . ACS Applied Materials & Interfaces 5 ( 11 ): 4791 – 4798 .
- Zhu , L. , Xu , L. , Tan , L. , Tan , H. , Yang , S. , and Yao , S. ( 2013 ). Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing . Talanta 106 : 192 – 199 .
- Tan , X. , Zhang , L. , Deng , X. , Miao , L. , Li , H. , and Zheng , G. ( 2017 ). Redox active molybdophosphate produced by Cu3(PO4)2 nanospheres for enhancing enzyme-free electrochemical immunoassay of C-reactive protein . New Journal of Chemistry 41 ( 20 ): 11867 – 11871 .
- Wang , J. , Guo , J. , Zhang , J. , Zhang , W. , and Zhang , Y. ( 2017 ). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes . Biosensors & Bioelectronics 95 (March): 100 – 105 .
- Lemos , A.J.G. , Balvedi , R.P.A. , Rodovalho , V.R. , Resende , L.O. , Castro , A.C.H. , Cuadros-Orellana , S. , Madurro , J.M. , and Brito-Madurro , A.G. ( 2017 ). Immunosensor assembled on polymeric nanostructures for clinical diagnosis of C-reactive protein . Microchemical Journal 133 : 572 – 576 .
- Zhang , X. , Hu , R. , Zhang , K. , Bai , R. , Li , D. , and Yang , Y. ( 2016 ). An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer . Analytical Methods : Advancing Methods and Applications 8 ( 32 ): 6202 – 6207 .
- Yagati , A.K. , Pyun , J.C. , Min , J. , and Cho , S. ( 2016 ). Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor . Bioelectrochemistry 107 : 37 – 44 .
- Kokkinos , C. , Prodromidis , M. , Economou , A. , Petrou , P. , and Kakabakos , S. ( 2015 ). Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum . Analytica Chimica Acta 886 : 29 – 36 .
- Yuan , G. , Yu , C. , Xia , C. , Gao , L. , Xu , W. , Li , W. , and He , J. ( 2015 ). A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels . Biosensors & Bioelectronics 72 : 237 – 246 .
- Gupta , R.K. , Periyakaruppan , A. , Meyyappan , M. , and Koehne , J.E. ( 2014 ). Label-free detection of C-reactive protein using a carbon nanofiber based biosensor . Biosensors & Bioelectronics 59 : 112 – 119 .
- Esteban-Fernández De Ávila , B. , Escamilla-Gómez , V. , Campuzano , S. , Pedrero , M. , Salvador , J.P. , Marco , M.P. , and Pingarrón , J.M. ( 2013 ). Ultrasensitive amperometric magnetoimmunosensor for human C-reactive protein quantification in serum . Sensors and Actuators, B Chemicals 188 : 212 – 220 .
- Bryan , T. , Luo , X. , Bueno , P.R. , and Davis , J.J. ( 2013 ). An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood . Biosensors & Bioelectronics 39 ( 1 ): 94 – 98 .
- Ibupoto , Z.H. , Jamal , N. , Khun , K. , and Willander , M. ( 2012 ). Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein . Sensors and Actuators, B Chemicals 166–167 : 809 – 814 .
- Li , Y. , Tian , L. , Liu , L. , Khan , M.S. , Zhao , G. , Fan , D. , Cao , W. , and Wei , Q. ( 2018 ). Dual-responsive electrochemical immunosensor for detection of insulin based on dual-functional zinc silicate spheres-palladium nanoparticles . Talanta 179 (October 2017): 420 – 425 .
-
Amouzadeh Tabrizi , M.
,
Shamsipur , M.
,
Saber , R.
,
Sarkar , S.
, and
Besharati , M.
(
2018
).
An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate
.
Microchimica Acta
185
(
1
):
6
–
12
.
10.1007/s00604-017-2570-z Google Scholar
- Ensafi , A.A. , Khoddami , E. , and Rezaei , B. ( 2017 ). Aptamer@Au-o-phenylenediamine modified pencil graphite electrode: A new selective electrochemical impedance biosensor for the determination of insulin . Colloids Surfaces B Biointerfaces 159 : 47 – 53 .
- Ma , H. , Li , X. , Yan , T. , Li , Y. , Liu , H. , Zhang , Y. , Wu , D. , Du , B. , and Wei , Q. ( 2016 ). Sensitive insulin detection based on electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+ and Au Nanoparticle-Doped β-Cyclodextrin-Pb (II) Metal-Organic Framework . ACS Applied Materials & Interfaces 8 ( 16 ): 10121 – 10127 .
- Li , T. , Liu , Z. , Wang , L. , and Guo , Y. ( 2016 ). Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin . RSC Advances 6 ( 36 ): 30732 – 30738 .
- Singh , V. and Krishnan , S. ( 2015 ). Voltammetric immunosensor assembled on carbon-pyrenyl nanostructures for clinical diagnosis of type of diabetes . Analytical Chemistry 87 ( 5 ): 2648 – 2654 .
- Tertiş , M. , Ciui , B. , Suciu , M. , Săndulescu , R. , and Cristea , C. ( 2017 ). Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection . Electrochimica Acta 258 : 1208 – 1218 .
- Sánchez-Tirado , E. , Salvo , C. , González-Cortés , A. , Yáñez-Sedeño , P. , Langa , F. , and Pingarrón , J.M. ( 2017 ). Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double–walled carbon nanotubes . Analytica Chimica Acta 959 : 66 – 73 .
- Torrente-Rodríguez , R.M. , Campuzano , S. , Ruiz-Valdepeñas Montiel , V. , Gamella , M. , and Pingarrón , J.M. ( 2016 ). Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva . Biosensors & Bioelectronics 77 : 543 – 548 .
- Sharma , R. , Deacon , S.E. , Nowak , D. , George , S.E. , Szymonik , M.P. , Tang , A.A.S. , Tomlinson , D.C. , Davies , A.G. , McPherson , M.J. , and Wälti , C. ( 2016 ). Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity . Biosensors & Bioelectronics 80 : 607 – 613 .
- Wang , G. , He , X. , Chen , L. , Zhu , Y. , and Zhang , X. ( 2014 ). Ultrasensitive IL-6 electrochemical immunosensor based on Au nanoparticles-graphene-silica biointerface . Colloids Surfaces B Biointerfaces 116 : 714 – 719 .
- Lou , Y. , He , T. , Jiang , F. , Shi , J.J. , and Zhu , J.J. ( 2014 ). A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels . Talanta 122 : 135 – 139 .
- Liu , P.Z. , Hu , X.W. , Mao , C.J. , Niu , H.L. , Song , J.M. , Jin , B.K. , and Zhang , S.Y. ( 2013 ). Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/CdSe quantum dots nanocomposites for ultrasensitive determination of human interleukin-6 . Electrochimica Acta 113 : 176 – 180 .
- Tang , C.K. , Vaze , A. , and Rusling , J.F. ( 2012 ). Fabrication of immunosensor microwell arrays from gold compact discs for detection of cancer biomarker proteins . Lab on a Chip 12 ( 2 ): 281 – 286 .
- Rodriguez-Silva , A.A. , Movil-Cabrera , O. , Oliveira Dos Anjos , C.T. , and Staser , J.A. ( 2016 ). Supercapacitor-based biosensor for low density lipoprotein detection . Journal of the Electrochemical Society 163 ( 6 ): B256 – B263 .
- Ali , M.A. , Singh , C. , Mondal , K. , Srivastava , S. , Sharma , A. , and Malhotra , B.D. ( 2016 ). Mesoporous few-layer graphene platform for affinity biosensing application . ACS Applied Materials & Interfaces 8 ( 12 ): 7646 – 7656 .
- Ali , M.A. , Srivastava , S. , Agrawal , V.V. , Willander , M. , John , R. , and Malhotra , B.D. ( 2016 ). A biofunctionalized quantum dot-nickel oxide nanorod based smart platform for lipid detection . Journal of Materials Chemistry B 4 ( 15 ): 2706 – 2714 .
- Kaur , G. , Tomar , M. , and Gupta , V. ( 2016 ). Realization of a label-free electrochemical immunosensor for detection of low density lipoprotein using NiO thin film . Biosensors & Bioelectronics 80 : 294 – 299 .
- Ali , M.A. , Solanki , P.R. , Srivastava , S. , Singh , S. , Agrawal , V.V. , John , R. , and Malhotra , B.D. ( 2015 ). Protein functionalized carbon nanotubes-based smart lab-on-a-chip . ACS Applied Materials & Interfaces 7 ( 10 ): 5837 – 5846 .
- Ali , M.A. , Singh , N. , Srivastava , S. , Agrawal , V.V. , John , R. , Onoda , M. , and Malhotra , B.D. ( 2014 ). Chitosan-modified carbon nanotubes-based platform for low-density lipoprotein detection . Appl. Biochem. Biotechnol. 174 ( 3 ): 926 – 935 .
- Ali , M.A. , Kamil Reza , K. , Srivastava , S. , Agrawal , V.V. , John , R. , and Malhotra , B.D. ( 2014 ). Lipid-lipid interactions in aminated reduced graphene oxide interface for biosensing application . Langmuir 30 ( 14 ): 4192 – 4201 .
- Pur , M.R.K. , Hosseini , M. , Faridbod , F. , and Ganjali , M.R. ( 2017 ). Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction . Microchimica Acta 184 ( 9 ): 3529 – 3537 .
- Ren , X. , Zhang , Y. , Sun , Y. , and Gao , L. ( 2017 ). Development of electrochemical impedance immunosensor for sensitive determination of myoglobin . International Journal of Electrochemical Science 12 ( 8 ): 7765 – 7776 .
- Sun , L. , Li , W. , Wang , M. , Ding , W. , and Ji , Y. ( 2017 ). Development of an electrochemical impedance immunosensor for myoglobin determination . International Journal of Electrochemical Science 12 ( 7 ): 6170 – 6179 .
-
Zhang , G.
,
Liu , Z.
,
Wang , L.
, and
Guo , Y.
(
2016
).
Electrochemical aptasensor for myoglobin-specific recognition based on porphyrin functionalized graphene-conjugated gold nanocomposites
.
Sensors (Switzerland)
16
(
11
).
10.3390/s16111803 Google Scholar
- Taghdisi , S.M. , Danesh , N.M. , Ramezani , M. , Emrani , A.S. , and Abnous , K. ( 2016 ). A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin . Biosensors & Bioelectronics 80 : 532 – 537 .
- Singh , S. , Tuteja , S.K. , Sillu , D. , Deep , A. , and Suri , C.R. ( 2016 ). Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin . Microchimica Acta 183 ( 5 ): 1729 – 1738 .
- Khan , R. , Pal , M. , Kuzikov , A.V. , Bulko , T. , Suprun , E.V. , and Shumyantseva , V.V. ( 2016 ). Impedimetric immunosensor for detection of cardiovascular disorder risk biomarker . Materials Science and Engineering C 68 : 52 – 58 .
- Sun , C. , Wang , D. , Geng , Z. , Gao , L. , Zhang , M. , Bian , H. , Liu , F. , Zhu , Y. , Wu , H. , and Xu , W. ( 2015 ). One-step green synthesis of a polypyrrole-Au nanocomposite and its application in myoglobin aptasensor . Analytical Methods : Advancing Methods and Applications 7 ( 12 ): 5262 – 5268 .
- Mishra , S.K. , Srivastava , A.K. , and Kumar , D. , Rajesh . ( 2014 ). Bio-functionalized Pt nanoparticles based electrochemical impedance immunosensor for human cardiac myoglobin . RSC Advances 4 ( 41 ): 21267 – 21276 .
- Yagati , A.K. , Lee , M.H. , and Min , J. ( 2018 ). Electrochemical immunosensor for highly sensitive and quantitative detection of tumor necrosis factor-α in human serum . Bioelectrochemistry 122 : 93 – 102 .
- Aydın , E.B. , Aydın , M. , and Sezgintürk , M.K. ( 2017 ). A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples . Biosensors & Bioelectronics 97 (June): 169 – 176 .
- Miao , P. , Yang , D. , Chen , X. , Guo , Z. , and Tang , Y. ( 2017 ). Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles . Microchimica Acta 184 ( 10 ): 3901 – 3907 .
- Arya , S.K. and Estrela , P. ( 2017 ). Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum . Methods 116 : 125 – 131 .
- Jiang , C. , Alam , M.T. , Silva , S.M. , Taufik , S. , Fan , S. , and Gooding , J.J. ( 2016 ). Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood . ACS Sensors 1 ( 12 ): 1432 – 1438 .
- Yagati , A.K. , Lee , G.Y. , Ha , S. , Chang , K.A. , Pyun , J.C. , and Cho , S. ( 2016 ). Impedimetric tumor necrosis factor-α sensor based on a reduced graphene oxide nanoparticle-modified electrode array . Journal of Nanoscience and Nanotechnology 16 ( 11 ): 11921 – 11927 .
- Mazloum-Ardakani , M. and Hosseinzadeh , L. ( 2015 ). Highly-sensitive label-free immunosensor for tumor necrosis factor α based on Ag@Pt core-shell nanoparticles supported on MWCNTs as an efficient electrocatalyst nanocomposite . RSC Advances 5 ( 87 ): 70781 – 70786 .
- Mazloum-Ardakani , M. , Hosseinzadeh , L. , and Khoshroo , A. ( 2015 ). Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid . Journal of Electroanalytical Chemistry 757 : 58 – 64 .
- Mazloum-Ardakani , M. , Hosseinzadeh , L. , and Khoshroo , A. ( 2015 ). Ultrasensitive electrochemical immunosensor for detection of tumor necrosis factor-α based on functionalized MWCNT-Gold nanoparticle/ionic liquid nanocomposite . Electroanalysis 27 ( 11 ): 2518 – 2526 .
- Kongsuphol , P. , Ng , H.H. , Pursey , J.P. , Arya , S.K. , Wong , C.C. , Stulz , E. , and Park , M.K. ( 2014 ). EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum . Biosensors & Bioelectronics 61 : 274 – 279 .
- Mazloum-Ardakani , M. , Hosseinzadeh , L. , and Taleat , Z. ( 2014 ). Two kinds of electrochemical immunoassays for the tumor necrosis factor α in human serum using screen-printed graphite electrodes modified with poly(anthranilic acid) . Microchimica Acta 181 ( 9–10 ): 917 – 924 .
- Hou , Y. , Li , T. , Huang , H. , Quan , H. , Miao , X. , and Yang , M. ( 2013 ). Electrochemical immunosensor for the detection of tumor necrosis factor α based on hydrogel prepared from ferrocene modified amino acid . Sensors and Actuators, B Chemicals 182 : 605 – 609 .
- Mondal , K. , Ali , M.A. , Singh , C. , Sumana , G. , Malhotra , B.D. , and Sharma , A. ( 2017 ). Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection . Sensors and Actuators, B Chemicals 246 : 202 – 214 .
- Narwal , V. and Pundir , C.S. ( 2017 ). An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode . Enzyme and Microbial Technology 100 : 11 – 16 .
- Zhu , M. , Yang , Z. , Cheng , Y. , Sun , Y. , Xing , J. , Wei , J. , Sun , J. , Liu , H. , and Song , X. ( 2017 ). Development of triglyceride biosensor based on the polydopamine-gold nanocomposite . International Journal of Electrochemical Science 12 ( 7 ): 6863 – 6873 .
- Pundir , C.S. and Aggarwal , V. ( 2017 ). Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase . Analytical Biochemistry 517 : 56 – 63 .
- Bhardwaj , S.K. , Yadav , P. , Ghosh , S. , Basu , T. , and Mahapatro , A.K. ( 2016 ). Biosensing test-bed using electrochemically deposited reduced graphene oxide . ACS Applied Materials & Interfaces 8 ( 37 ): 24350 – 24360 .
- Solanki , S. , Pandey , C.M. , Soni , A. , Sumana , G. , and Biradar , A.M. ( 2016 ). An amperometric bienzymatic biosensor for the triglyceride tributyrin using an indium tin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia . Microchimica Acta 183 ( 1 ): 167 – 176 .
- Singh , C. , Ali , M.A. , and Sumana , G. ( 2016 ). Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection . ACS Sustainable Chemistry & Engineering 4 ( 3 ): 871 – 880 .
- Yücel , A. , Özcan , H.M. , and Saʇiroʇlu , A. ( 2016 ). A new multienzyme-type biosensor for triglyceride determination . Prep. Biochem. Biotechnol. 46 ( 1 ): 78 – 84 .
- Zhang , W. , Tang , Y. , Liu , J. , Ma , Y. , Jiang , L. , Huang , W. , Huo , F.W. , and Tian , D. ( 2014 ). An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite . Journal of Materials Chemistry B 2 ( 48 ): 8490 – 8495 .
- Bravin , C. and Amendola , V. ( 2020 ). Wide range detection of C-Reactive protein with a homogeneous immunofluorimetric assay based on cooperative fluorescence quenching assisted by gold nanoparticles . Biosensors & Bioelectronics 169 (June): 112591 .
- Zheng , L. , Li , M. , Li , F. , and Zhang , M. ( 2018 ). Paper-based chemiluminescence enzyme-linked immunosorbent assay enhanced by biotin-streptavidin system for high-sensitivity C-reactive protein detection . Analytical Biochemistry 559 (August): 86 – 90 .
- Çimen , D. , Bereli , N. , Günaydın , S. , and Denizli , A. ( 2020 ). Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody . Talanta 219 (June): 121259 .
- Osman , B. , Uzun , L. , Beşirli , N. , and Denizli , A. ( 2013 ). Microcontact imprinted surface plasmon resonance sensor for myoglobin detection . Materials Science and Engineering C 33 ( 7 ): 3609 – 3614 .