Future Techniques and Perspectives on Implanted and Wearable Heart Failure Detection Devices
Muhammad E. H. Chowdhury
Search for more papers by this authorAmith Khandaker
Search for more papers by this authorYazan Qiblawey
Search for more papers by this authorFahmida Haque
Search for more papers by this authorMaymouna Ezeddin
Search for more papers by this authorTawsifur Rahman
Search for more papers by this authorNabil Ibtehaz
Search for more papers by this authorKhandaker Reajul Islam
Search for more papers by this authorMuhammad E. H. Chowdhury
Search for more papers by this authorAmith Khandaker
Search for more papers by this authorYazan Qiblawey
Search for more papers by this authorFahmida Haque
Search for more papers by this authorMaymouna Ezeddin
Search for more papers by this authorTawsifur Rahman
Search for more papers by this authorNabil Ibtehaz
Search for more papers by this authorKhandaker Reajul Islam
Search for more papers by this authorAbstract
This chapter discusses the applications and challenges of implantable devices for heart failure (HF) monitoring, as well as their prospects and limitations, and lists some of the data sets recently collected from wearable devices. Implantable devices are extensively used to monitor patients with cardiovascular diseases. Patients with a history of HF are monitored within the clinic or hospital and remotely using implantable cardiac devices. Wearable devices typically, however, focus on predicting HF or cardiac arrhythmia with the help of clinicians. There is a limited number of devices available that can be used to automatically detect a clinical abnormality of the patient reliably without human intervention. The chapter addresses the application of machine learning for detecting HF using wearable devices and its prospects. Machine learning approaches can also be utilized to identify HF patients at high risk for additional comorbidities or in remote HF monitoring systems to improve HF clinical outcomes.
References
- Singhal , A. and Cowie , M.R. ( 2020 ). The role of wearables in heart failure . Current Heart Failure Reports 17 : 125 – 132 .
- Maggioni , A.P. , Dahlström , U. , Filippatos , G. , Chioncel , O. , Leiro , M.C. , Drozdz , J. , et al. ( 2013 ). EURObservational Research Programme: Regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot) . European Journal of Heart Failure 15 ( 7 ): 808 – 817 .
- Ioana Dumitru , M.M.B. ( 2021 ). Heart Failure Treatment & Management [Online]. Available https://emedicine.medscape.com/article/163062-treatment . [February 20, 2020].
- Drew , D.A. , Nguyen , L.H. , Steves , C.J. , Menni , C. , Freydin , M. , Varsavsky , T. , et al. ( 2020 ). Rapid implementation of mobile technology for real-time epidemiology of COVID-19 . Science 368 ( 6497 ): 1362 – 1367 .
- Bogu , G.K. and Snyder , M.P. ( 2021 ). Deep learning-based detection of COVID-19 using wearables data . medRxiv .
- Seshadri , D.R. , Davies , E.V. , Harlow , E.R. , Hsu , J.J. , Knighton , S.C. , Walker , T.A. , et al. ( 2020 ). Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments . Frontiers in Digital Health 2 : 8 .
- Khan , H. , Kushwah , K. , Singh , S. , Urkude , H. , Maurya , M.R. , and Sadasivuni , K.K. ( 2021 ). Smart technologies driven approaches to tackle COVID-19 pandemic: A review . 3 Biotech 11 ( 2 ): 1 – 22 .
- Radin , J.M. , Wineinger , N.E. , Topol , E.J. , and Steinhubl , S.R. ( 2020 ). Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based study . The Lancet Digital Health 2 ( 2 ): e85 – e93 .
- Whitelaw , S. , Mamas , M.A. , Topol , E. , and Van Spall , H.G. ( 2020 ). Applications of digital technology in COVID-19 pandemic planning and response . The Lancet Digital Health .
- Mishra , T. , Wang , M. , Metwally , A.A. , Bogu , G.K. , Brooks , A.W. , Bahmani , A. , et al. ( 2020 ). Pre-symptomatic detection of COVID-19 from smartwatch data . Nature Biomedical Engineering 4 ( 12 ): 1208 – 1220 .
-
Shah , M.
,
Zimmer , R.
,
Kollefrath , M.
, and
Khandwalla , R.
(
2020
).
Digital technologies in heart failure management
.
Current Cardiovascular Risk Reports
14
(
8
):
9
.
10.1007/s12170-020-00643-7 Google Scholar
- Jeffrey , K. and Parsonnet , V. ( 1998 ). Cardiac pacing, 1960–1985: A quarter century of medical and industrial innovation . Circulation 97 ( 19 ): 1978 – 1991 .
- Thorup , C. , Hansen , J. , Grønkjær , M. , Andreasen , J.J. , Nielsen , G. , Sørensen , E.E. , et al. ( 2016 ). Cardiac patients' walking activity determined by a step counter in cardiac telerehabilitation: Data from the intervention arm of a randomized controlled trial . Journal of Medical Internet Research 18 ( 4 ): e69 – e69 .
- DeVore , A.D. , Wosik , J. , and Hernandez , A.F. ( 2019 ). The future of wearables in heart failure patients . JACC. Heart Failure 7 ( 11 ): 922 – 932 . 2019/11/01/.
- Athilingam , P. , Labrador , M.A. , Remo , E.F.J. , Mack , L. , San Juan , A.B. , and Elliott , A.F. ( 2016 ). Features and usability assessment of a patient-centered mobile application (HeartMapp) for self-management of heart failure . Applied Nursing Research 32 : 156 – 163 .
-
Wu , J.
,
Roy , J.
, and
Stewart , W.F.
(
2010
).
Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches
.
Medical Care
48
(
6
).
10.1097/MLR.0b013e3181de9e17 Google Scholar
- Awan , S. , Sohel , F. , Sanfilippo , F. , Bennamoun , M. , and Dwivedi , G. ( 2017 ). Machine learning in heart failure: Ready for prime time . Current Opinion in Cardiology 33 : 1 . 11/01 .
- Austin , P.C. , Tu , J.V. , Ho , J.E. , Levy , D. , and Lee , D.S. ( 2013 ). Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes . Journal of Clinical Epidemiology 66 ( 4 ): 398 – 407 .
- Kang , Y. , McHugh , M.D. , Chittams , J. , and Bowles , K.H. ( 2016 ). Utilizing home healthcare electronic health records for telehomecare patients with heart failure: A decision tree approach to detect associations with rehospitalizations . Computers, Informatics, Nursing: CIN 34 ( 4 ): 175 – 182 .
- Wilkins , E. , Wilson , L. , Wickramasinghe , K. , Bhatnagar , P. , Leal , J. , Luengo-Fernandez , R. , et al. ( 2017 ). European cardiovascular disease statistics 2017 . Brussels : European Heart Network . https://ehnheart.org/images/CVD-statistics-report-August-2017.pdf
- Benjamin , E.J. , Blaha , M.J. , Chiuve , S.E. , Cushman , M. , Das , S.R. , Deo , R. , et al . ( 2017 ). Heart disease and stroke statistics—2017 update: A report from the American Heart Association . Circulation 135 ( 10 ): e146 – e603 .
- Volterrani , M. , Spoletini , I. , Angermann , C. , Rosano , G. , and Coats , A.J. ( 2019 ). Implantable devices for heart failure monitoring: The CardioMEMS™ system . European Heart Journal Supplements 21 ( Suppl. M ): M50 – M53 .
- Iellamo , F. , Sposato , B. , and Volterrani , M. ( 2020 ). Telemonitoring for the management of patients with heart failure . Cardiac Failure Review 6 .
-
Shah , M.
,
Zimmer , R.
,
Kollefrath , M.
, and
Khandwalla , R.
(
2020
).
Digital technologies in heart failure management
.
Current Cardiovascular Risk Reports
14
(
8
):
1
–
8
.
10.1007/s12170-020-00643-7 Google Scholar
- ( 2021 ). Cardiomems Implantation [Online] . Available https://www.azheartarrhythmia.com/contents/ep-procedures/cardiomems-implantation . [February 15, 2020].
- Nelson , B.D. , Karipott , S.S. , Wang , Y. , and Ong , K.G. ( 2020 ). Wireless technologies for implantable devices . Sensors 20 ( 16 ): 4604 .
- Ristow , B. , Ali , S. , Ren , X. , Whooley , M.A. , and Schiller , N.B. ( 2007 ). Elevated pulmonary artery pressure by Doppler echocardiography predicts hospitalization for heart failure and mortality in ambulatory stable coronary artery disease: The Heart and Soul Study . Journal of the American College of Cardiology 49 ( 1 ): 43 – 49 .
- Ibtehaz , N. and Rahman , M.S. ( 2020 ). PPG2ABP: Translating photoplethysmogram (ppg) signals to arterial blood pressure (ABP) waveforms using fully convolutional neural networks . arXiv Preprint arXiv:2005.01669 .
- Chowdhury , M.H. , Shuzan , M.N.I. , Chowdhury , M.E. , Mahbub , Z.B. , Uddin , M.M. , Khandakar , A. , et al. ( 2020 ). Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques . Sensors 20 ( 11 ): 3127 .
- Kadish , A. and Mehra , M. ( 2005 ). Heart failure devices: Implantable cardioverter-defibrillators and biventricular pacing therapy . Circulation 111 ( 24 ): 3327 – 3335 .
- ( 2021 ). Pacemaker Insertion [Online] . Available https://www.spectrumhealthlakeland.org/population-health/health-library/Content/92/P07980 . [Accessed on: 05th May].
- Lal , D.B. ( 2016 ). Pacemaker, ICD & CRT Implantation [Online] . Available https://www.drlaldaga.com/Pacemaker.html . [February 23, 2020].
- Troughton , R.W. , Ritzema , J. , Eigler , N.L. , Melton , I.C. , Krum , H. , Adamson , P.B. , et al. ( 2011 ). Direct left atrial pressure monitoring in severe heart failure: Long-term sensor performance . Journal of Cardiovascular Translational Research 4 ( 1 ): 3 – 13 .
- Mccarthy , J. ( 2019 ). One in Five U.S. Adults Use Health Apps, Wearable Trackers [Online] . Available https://news.gallup.com/poll/269096/one-five-adults-health-apps-wearable-trackers.aspx . [February 18, 2020]
-
Chowdhury , M.E.
,
Khandakar , A.
,
Qiblawey , Y.
,
Reaz , M.B.I.
,
Islam , M.T.
, and
Touati , F.
(
2020
).
Machine learning in wearable biomedical systems
. In:
Sports Science and Human Health-Different Approaches
,
IntechOpen Book Series
doi:
10.5772/intechopen.93228
.
10.5772/intechopen.93228 Google Scholar
- DeVore , A.D. , Wosik , J. , and Hernandez , A.F. ( 2019 ). The future of wearables in heart failure patients . JACC. Heart Failure 7 ( 11 ): 922 – 932 .
-
Chowdhury , M.E.
,
Rahman , T.
,
Khandakar , A.
,
Al-Madeed , S.
,
Zughaier , S.M.
,
Doi , S.A.
, et al. (
2021
).
An early warning tool for predicting mortality risk of COVID-19 patients using machine learning
.
Cognitive Computation
Apr
1
–
16
doi:
10.1007/s12559-020-09812-7
.
10.1007/s12559?020?09812?7 Google Scholar
- Sean . ( 2018 ). The Top 10 Best Heart Rate Monitors in the Market . The Wire Realm. [Online]. Available https://www.wirerealm.com/guides/top-10-best-heart-rate-monitors . [February 20, 2020]
- Baril , J.-F. , Bromberg , S. , Moayedi , Y. , Taati , B. , Manlhiot , C. , Ross , H.J. , et al. ( 2019 ). Use of free-living step count monitoring for heart failure functional classification: Validation study . JMIR Cardio 3 ( 1 ): e12122 .
- Loprinzi , P.D. ( 2016 ). The effects of free-living physical activity on mortality after congestive heart failure diagnosis . International Journal of Cardiology 203 : 598 – 599 .
- Izawa , K.P. , Watanabe , S. , Oka , K. , Hiraki , K. , Morio , Y. , Kasahara , Y. , et al. ( 2013 ). Usefulness of step counts to predict mortality in Japanese patients with heart failure . The American Journal of Cardiology 111 ( 12 ): 1767 – 1771 .
- Kannel , W. , Wilson , P. , and Blair , S. ( 1985 ). Epidemiological assessment of the role of physical activity and fitness in development of cardiovascular disease . American Heart Journal 109 ( 4 ): 876 – 885 .
- King , A.C. , Jeffery , R.W. , Fridinger , F. , Dusenbury , L. , Provence , S. , Hedlund , S.A. , et al. ( 1995 ). Environmental and policy approaches to cardiovascular disease prevention through physical activity: Issues and opportunities . Health Education Quarterly 22 ( 4 ): 499 – 511 .
- ( 2020 ). Blood Pressure Anytime, Anywhere [Online] . Available https://omronhealthcare.com/products/heartguide-wearable-blood-pressure-monitor-bp8000m . [accessed on: May 5, 2020].
- Miller , J.C. , Skoll , D. , and Saxon , L.A. ( 2021 ). Home monitoring of cardiac devices in the era of COVID-19 . Current Cardiology Reports 23 ( 1 ): 1 – 9 .
- Chan , P.H. , Wong , C.K. , Poh , Y.C. , Pun , L. , Leung , W.W.C. , Wong , Y.F. , et al. ( 2016 ). Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting . Journal of the American Heart Association 5 ( 7 ): e003428 .
- Vardas , P. , Cowie , M. , Dagres , N. , Asvestas , D. , Tzeis , S. , Vardas , E.P. , et al. ( 2020 ). The electrocardiogram endeavour: From the Holter single-lead recordings to multilead wearable devices supported by computational machine learning algorithms . EP Europace 22 ( 1 ): 19 – 23 .
- Ip , J.E. ( 2019 ). Wearable devices for cardiac rhythm diagnosis and management . JAMA 321 ( 4 ): 337 – 338 .
- Dagher , L. , Shi , H. , Zhao , Y. , and Marrouche , N.F. ( 2020 ). Wearables in cardiology: Here to stay . Heart Rhythm: The Official Journal of the Heart Rhythm Society 17 ( 5 ): 889 – 895 .
- Boehmer , J.P. , Hariharan , R. , Devecchi , F.G. , Smith , A.L. , Molon , G. , Capucci , A. , et al. ( 2017 ). A multisensor algorithm predicts heart failure events in patients with implanted devices: Results from the MultiSENSE study . JACC. Heart Failure 5 ( 3 ): 216 – 225 .
- Fallahzadeh , R. , Pedram , M. , and Ghasemzadeh , H. ( 2016 ). SmartSock: A wearable platform for context-aware assessment of ankle edema. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . 6302 – 6306 .
- Cadmus-Bertram , L. , Gangnon , R. , Wirkus , E.J. , Thraen-Borowski , K.M. , and Gorzelitz-Liebhauser , J. ( 2017 ). Accuracy of heart rate monitoring by some wrist-worn activity trackers . Annals of Internal Medicine 167 ( 8 ): 607 – 608 .
- Moayedi , Y. , Abdulmajeed , R. , Posada , J.D. , Foroutan , F. , Alba , A.C. , Cafazzo , J. , et al. ( 2017 ). Assessing the use of wrist-worn devices in patients with heart failure: Feasibility study . JMIR Cardio 1 ( 2 ): e8 .
- Bayoumy , K. , Gaber , M. , Elshafeey , A. , Mhaimeed , O. , Dineen , E.H. , Marvel , F.A. , et al. ( 2021 ). Smart wearable devices in cardiovascular care: Where we are and how to move forward . Nature Reviews: Cardiology 18 , 581 – 599 .
- ( 2021 ). Know why you feel how you feel [Online] . Available https://ouraring.com . [February 20, 2020]
- LeBoeuf , S. ( 2016 ). Five challenges of optical heart rate monitoring . Available: https://www.fierceelectronics.com/components/five-challenges-optical-heart-rate-monitoring . [February 18, 2020].
- Shuzan , M.N.I. , Chowdhury , M.H. , Chowdhury , M.E. , Uddin , M.M. , Khandakar , A. , Mahbub , Z.B. , et al. ( 2021 ). A novel non-invasive estimation of respiration rate from photoplethysmograph signal using machine learning model . arXiv Preprint arXiv:2102.09483 .
- Makrides , G. , Zinsser , B. , Phinikarides , A. , Schubert , M. , and Georghiou , G.E. ( 2012 ). Temperature and thermal annealing effects on different photovoltaic technologies . Renewable Energy 43 : 407 – 417 .
- Zheng , J. , Zhang , J. , Danioko , S. , Yao , H. , Guo , H. , and Rakovski , C. ( 2020 ). A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients . Scientific Data 7 ( 1 ): 1 – 8 .
- Wagner , P. , Strodthoff , N. , Bousseljot , R.-D. , Kreiseler , D. , Lunze , F.I. , Samek , W. , et al. ( 2020 ). PTB-XL, a large publicly available electrocardiography dataset . Scientific Data 7 ( 1 ): 1 – 15 .
- Khan , A.H. , Hussain , M. , and Malik , M.K. ( 2021 ). ECG images dataset of cardiac and COVID-19 patients . Data in Brief 34 : 106762 .
- Hershman , S.G. , Bot , B.M. , Shcherbina , A. , Doerr , M. , Moayedi , Y. , Pavlovic , A. , et al. ( 2019 ). Physical activity, sleep and cardiovascular health data for 50,000 individuals from the MyHeart counts study . Scientific Data 6 ( 1 ): 1 – 10 .
- Cook , D.J. , Thompson , J.E. , Prinsen , S.K. , Dearani , J.A. , and Deschamps , C. ( 2013 ). Functional recovery in the elderly after major surgery: Assessment of mobility recovery using wireless technology . The Annals of Thoracic Surgery 96 ( 3 ): 1057 – 1061 .
- Thorup , C. , Hansen , J. , Grønkjær , M. , Andreasen , J.J. , Nielsen , G. , Sørensen , E.E. , et al. ( 2016 ). Cardiac patients' walking activity determined by a step counter in cardiac telerehabilitation: Data from the intervention arm of a randomized controlled trial . Journal of Medical Internet Research 18 ( 4 ): e69 .
- Redfield , M.M. , Anstrom , K.J. , Levine , J.A. , Koepp , G.A. , Borlaug , B.A. , Chen , H.H. , et al. ( 2015 ). Isosorbide mononitrate in heart failure with preserved ejection fraction . New England Journal of Medicine 373 ( 24 ): 2314 – 2324 .
- Dontje , M.L. , van der Wal , M.H. , Stolk , R.P. , Brügemann , J. , Jaarsma , T. , Wijtvliet , P.E. , et al. ( 2014 ). Daily physical activity in stable heart failure patients . Journal of Cardiovascular Nursing 29 ( 3 ): 218 – 226 .
- Chan , N.-Y. and Choy , C.-C. ( 2017 ). Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram . Heart 103 ( 1 ): 24 – 31 .
- Amir , O. , Ben-Gal , T. , Weinstein , J.M. , Schliamser , J. , Burkhoff , D. , Abbo , A. , et al. ( 2017 ). Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations . International Journal of Cardiology 240 : 279 – 284 .
-
Bensimhon , D.
,
McLean , D.
,
Chase , P.
,
Wood , D.
,
Garman , V.
, and
Curran , L.
(
2017
).
Readiness for discharge of heart failure patients based on ReDS lung fluid measurement
.
Journal of Cardiac Failure
23
(
8
):
S66
.
10.1016/j.cardfail.2017.07.186 Google Scholar
- Inan , O.T. , Baran Pouyan , M. , Javaid , A.Q. , Dowling , S. , Etemadi , M. , Dorier , A. , et al. ( 2018 ). Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients . Circulation: Heart Failure 11 ( 1 ): e004313 .
- Elian , A. , Sada , N. , Elfadel , I. , Saeed , M. , and Shabra , A. ( 2016 ). A preliminary evaluation of continuous, shoe-integrated weight measurements for heart failure patients. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . 4768 – 4771 .
- Chowdhury , M.E. , Alzoubi , K. , Khandakar , A. , Khallifa , R. , Abouhasera , R. , Koubaa , S. , et al. ( 2019 ). Wearable real-time heart attack detection and warning system to reduce road accidents . Sensors 19 ( 12 ): 2780 .
- Chowdhury , M.E. , Khandakar , A. , Alzoubi , K. , Mansoor , S. , Tahir , A.M. , Reaz , M.B.I. , et al. ( 2019 ). Real-time smart-digital stethoscope system for heart diseases monitoring . Sensors 19 ( 12 ): 2781 .
- Bazoukis , G. , Stavrakis , S. , Zhou , J. , Bollepalli , S.C. , Tse , G. , Zhang , Q. , et al. ( 2021 ). Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review . Heart Failure Reviews 26 ( 1 ): 23 – 34 .
- Eisen , H.J. ( 2019 ). Left ventricular assist devices (LVADS): History, clinical application and complications . Korean Circulation Journal 49 ( 7 ): 568 .
- Tison , G.H. , Sanchez , J.M. , Ballinger , B. , Singh , A. , Olgin , J.E. , Pletcher , M.J. , et al. ( 2018 ). Passive detection of atrial fibrillation using a commercially available smartwatch . JAMA Cardiology 3 ( 5 ): 409 – 416 .
- Kotanidis , C.P. and Antoniades , C. ( 2020 ). Selfies in cardiovascular medicine: Welcome to a new era of medical diagnostics . European Heart Journal 41 ( 46 ): 4412 – 4414 .
- Lin , S. , Li , Z. , Fu , B. , Chen , S. , Li , X. , Wang , Y. , et al. ( 2020 ). Feasibility of using deep learning to detect coronary artery disease based on facial photo . European Heart Journal 41 ( 46 ): 4400 – 4411 .