Estimation and Analysis of Prediction Rate of Pre-Trained Deep Learning Network in Classification of Brain Tumor MRI Images
Krishnamoorthy Raghavan Narasu
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorAnima Nanda
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorD. Marshiana
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorBestley Joe
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorVinoth Kumar
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorKrishnamoorthy Raghavan Narasu
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorAnima Nanda
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorD. Marshiana
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorBestley Joe
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorVinoth Kumar
Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorR.J. Hemalatha
Search for more papers by this authorD. Balaganesh
Search for more papers by this authorAnand Paul
Search for more papers by this authorSummary
Early detection and classification of brain tumors is very important in clinical practice. In recent decades, deep learning has gained more interest in various fields like image classification, self-driven cars, natural language processing, and healthcare applications. It solves the complex problems in more effective and efficient manner. It is a subset of layers which comprises of convolutional neural network, activation function, and decision-making layers. In this article, AlexNet, GoogleNet, and ResNet101 networks are used to classify the MRI images into four classes, e.g., normal, glioma, meningioma, and pituitary tumors, which have been carried out.
Dataset consists of 120 MRI images with four different classes. The pre-trained networks are used to classify the class in three different ways. In the first case, 10 sample images are considered and its prediction rate and training and validation time are recorded. Similar in the second and third methods, 20 and 30 images are used to evaluate the metrics. The result concluded that, for more images, processing time is increased, yielding better accuracy. The highest accuracy of 91 is achieved by the ResNet101 network with the processing time of 6 minutes. Researchers can still reduce this processing time and increase the accuracy rate by incorporating the image augmentation techniques to the raw MRI images.
References
- Dontchos , B.N. , Yala , A. , Barzilay , R. , Xiang , J. , Lehman , C.D. , External Validation of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice . Acad. Radiol. , 27 , 157 – 310 , Feb 2020 .
- Bahl , M. , Barzilay , R. , Yedidia , A.B. et al ., High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision . Radiology , 286 , 3 , 810 – 818 , 2017 .
- Kohli , M. , Prevedello , L.M. , Filice , R.W et al., Implementing machine learning in radiology practice and research . AJR Am. J. Roentgenol. , 208 , 754 – 760 , 2017 .
- Lakhani , P. and Sundaram , B. , Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks . Radiology , 284 , 574 – 582 , 2017 .
- Geras , K. , Wolfson , S. , Shen , Y. et al. High-resolution breast cancer screening with multi-view deep convolutional neural networks, arXivorg, 2017, 6 Cornell University, November 2017 . Epub. .
- Kallenberg , M. et al., Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring . IEEE Trans. Med. Imag. , 35 , 1322 – 1331 , 2016 .
- Wu , N. , Geras Krzystof , J. , Shen , Y. et al., Library CU (Ed.), arXiv.org , Cornell University , 2020 .
- Lehman , C.D. , Yala , A. , Schuster , T. et al., Mammographic breast density assessment using deep learning: clinical implementation . Radiology , 290 , 1 , 52 – 58 , 2018 .
- Sert , E. , Ozyurt , F. , Dogantekin , A. , A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and Convolutional Neural Network . Med. Hypotheses , 133 , 109413 , December 2019 .
- Yuhong , L. , Fucang , J. , Jing , Q. , Brain tumor segmentation from multimodal magnetic resonance images via sparse representation . Artif. Intell. Med. , 73 , 1 – 13 , 2016 .
- Zhang , J. , Ma , K. , Er , M. , Chong , V. , Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine . Workshop on advanced image technology , pp. 207 – 11 , 2004 .
- Selvapandian , A. and Manivannan , K. , Fusion based Glioma brain tumor detection and segmentation using ANFIS classification . Comput. Methods Programs Biomed. , 166 , 33 – 8 , 2018 .
- Swati , Z.N.K. , Zhao , Q. , Kabir , M. , Ali , F. , Ali , Z. , Ahmed , S. et al ., Brain tumor classification for MR images using transfer learning and fine-tuning . Comput. Med. Imaging Graph. , 75 , 34 – 44 , 2019 .
- Tustison , N. , Shrinidhi , K.L. , Wintermark , M. , Durst , C.R. , Kandel , B.M. , Gee , J.C. et al., Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsr . Neuroinformatics , 13 , 209 – 25 , 2015 .
- Rehman , Z.U. , Naqvi , S.S. , Khan , T.M. , Khan , M.A. , Bashir , T. , Fully automated multi-parametric brain tumour segmentation using superpixel based classification . Expert. Syst. Appl. , 118 , 598 – 613 , 2019 .
- Letteboer , M.M.J. , Niessen , W.J. , Willems , P.W.A. , Dam , E.B. , Viergever , M.A. , Interactive multi-scale watershed segmentation of tumors in MR brain images . Proceedings of interactive medical image visualization and analysis , pp. 11 – 6 , 2001 .
- Deepak , S. and Ameer , P.M. , Brain tumor classification using deep CNN features via transfer learning . Comput. Biol. Med. , 111 , 103345 , 2019 .
- Geethu , M. and Subashini , M.M. , MRI based medical image analysis: Survey on brain tumor grade classification . Biomed. Signal Process. Control , 39 , 139161 , January 2018 .
- Krishnamoorthy , N.R. , Suriyakala , C.D. , Subramaniom , M. , Ramadevi , R. , Marshiana , D. , Kumaran , S. , Modelling of dolphin clicks and its performance analysis compared with adaptive equalizer in ocean environment . Biomed. Res. J. , 29 , 12 , 2454 – 2458 , 2018 .
- Zhang , Y. , Dong , Z. , Wu , L. , Wang , S. , A hybrid method for MRI brain image classification . Expert Syst. Appl. , 38 , 10049 – 10053 , 2011 .
- Gaikwad , S.B. and Joshi , M.S. , Brain tumor classification using principal component analysis and probabilistic neural network . Int. J. Comput. Appl. , 120 , 5 – 9 , 2015 .
- Pereira , S. , Pinto , A. , Alves , V. , Silva , C.A. , Brain tumor segmentation using convolutional neural networks in MRI images . IEEE Trans. Med. Imaging , 35 , 1240 – 1251 , 2016 .
- Pan , Y. , Huang , W. , Lin , Z. , Zhu , W , Zhou , J. , Wong , J. , Ding , Z. , Brain tumor grading based on neural networks and convolutional neural networks . Eng. Med. Biol. Soc (EMBC) , 2015 37th Annu. Int. Conf. IEEE, pp. 699–702, 2015.
- Abd-Ellah , M.K. , Awad , A.I. , Khalaf , A.A.M. , Hamed , H.F.A. , A review on brain tumor diagnosis from MR images: Practical implications, key achievements, and lessons learned . Magn. Reson. Imaging , 61 , 300 – 318 , September 2019 .
- Abd-Ellah , M.K. , Awad , A.I. , Khalaf , A.A.M. , Hamed , H.F.A. , Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks . EURASIP J. Image Video Process , 97 , 1 , 1 – 10 , 2018 .
-
Mohsen , H.
,
El-Dahshan , E.S.A.
,
El-Horbaty , E.S.M.
,
Salem , A.B.M.
,
Classification using deep learning neural networks for brain tumors
.
Future Comput. Inf. J.
,
3
,
68
–
71
,
2018
.
10.1016/j.fcij.2017.12.001 Google Scholar
- Mittal , M. , Goyal , L.M. , Kaur , S. , Kaur , I. , Verma , A. , Hemanth , D.J. , Deep learning based enhanced tumor segmentation approach for MR brain images . Appl. soft computing , 78 , 346 – 354 , May 2019 .
- Vrooman , H.A. , Cocosco , C.A. , Lijn , F.V.D. , Stokking , R. , Ikram , M.A. , Vernooij , M.W. et al., Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification . NeuroImage , 37 , 1 , 71 – 81 , 2007 .
-
Ayachi , R.
and
Amor , N.B.
,
Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty
.
Lecture Notes Comput. Sci.
,
5590
,
2009
,
736
–
747
.
10.1007/978-3-642-02906-6_63 Google Scholar
- Logeswari , T and Karnan , M ., An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map . Int. J. Comput. 'Theory Eng. , 2 , 4 , 1793 – 8201 , 2010 .
- Kharrat , A. , Gasmi , K. , Messaoud , M.B. , Benamrane , N. , Abid , M. , A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine . Leonardo J. Sci. , 9 , 17 , 71 – 82 , 2010 .
- O'Byrne , M. , Pakrashi , V. , Schoefs , F. , Ghosh , B. , Semantic Segmentation of Underwater Imagery Using Deep Networks Trained on Synthetic Imagery . Underw. Imaging , 6 , 3, 4 august 2018.
- Krishnamoorthy , N.R. and Suriyakala , C.D. , Performance of Underwater Acoustic Channel using modified TCM OFDM coding techniques . Indian J. Geo Mar. Sci. , 46 , 3 , 629 – 637 , 2017 .
- Long , J. , Shelhamer , E. , Darrell , T. , Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 3431–3440, 7–12 June 2015.
- Szegedy , C. , Liu, W, Jia, Y., Sermanet, P, Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , Boston, MA, USA, pp. 1–9, 7–12 June 2015.
- Krizhevsky , A. , Sutskever , I. , Hinton , G.E. , Imagenet classification with deep convolutional neural networks , in: Advances in Neural Information Processing Systems , pp. 1097 – 1105 , The MIT Press , Cambridge, MA, USA , 2012 .
- Simonyan , K. and Zisserman , A. , Very deep convolutional networks for largescale image recognition . arXiv 2014, arXiv:1409.1556.
- Krishnamoorthy , N.R. and Suriyakala , C.D. , Optimal Step Size and Performance Analysis of Adaptive Equalizer in Underwater Acoustic Channel. Engg Journals Publications, Int . J. Eng. Technol. , 7 , 5 , 1952 – 1956 , 2015 .
- Sajjad , M. , Khan , S. , Muhammad , K. , Wu , W , Ullah , A. , Baik , S.W. , Multigrade brain tumor classification using deep CNN with extensive data augmentation . J. Comput. Sci. , 30 , 174 – 182 , January 2019 .
- Badshah , A.M. , Rahim , N. , Ullah , N. , Ahmad , J. , Muhammad , K. , Lee , M.Y. et al., Deep features-based speech emotion recognition for smart affective services . Multimed. Tools Appl. , 1–19 , 2017 .
- Muhammad , K. , Ahmad , J. , Baik , S.W. , Early fire detection using convolutional neural networks during surveillance for effective disaster management . Neurocomputing , 288 , 30 – 42 , 2018 .
- Sajjad , M. , Khan , S. , Hussain , T. , Muhammad , K. , Sangaiah , A.K. , Castiglione , A. et al ., CNN-based anti-spoofing two-tier multi-factor authentication system . Pattern Recognit. Lett. , 1–9 , 2018 .
- Ahmad , J. , Muhammad , K. , Lloret , J. , Baik , S.W. , Efficient conversion of deep features to compact binary codes using fourier decomposition for multimedia Big data . IEEE Trans. Ind. Inf. , 14 , 3205 – 3215 , 2018 .