Ethylene and Phytohormone Crosstalk in Plant Defense Against Abiotic Stress
Nimisha Amist
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
Search for more papers by this authorN.B. Singh
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
Search for more papers by this authorNimisha Amist
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
Search for more papers by this authorN.B. Singh
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
Search for more papers by this authorDurgesh Kumar Tripathi
Amity University Uttar Pradesh, Noida, India
Search for more papers by this authorSummary
Plants experience many biotic and abiotic stresses with diverse modes of attack throughout their lifetime. Plant hormones such as ethylene, jasmonate, abscisic acid, auxin, brassinosteroid, gibberellic acid, etc., organize efficient defense responses by triggering the expression of defense genes. Recent research findings have assisted in illuminating the elaborate signaling networks and complicated crosstalk among hormone signaling pathways. In this chapter, we review the function of the major plant hormones in regulating abiotic and biotic stress responses with a particular focus on the importance of crosstalk between hormones in creating a complicated and proficient stress response. The elaborate network of crosstalk between the signaling intermediates is just beginning to be understood. Hence, determining additional information about crosstalk mechanisms among various hormones in stress responses will be a significant topic in the field of abiotic stress research.
References
- Achard , P. , Cheng , H. , De Grauwe , L. et al. ( 2006 ). Integration of plant responses to environmentally activated phytohormonal signals . Sci. 311 : 91 – 94 .
- Achard , P. and Genschik , P. ( 2009 ). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins . J. Exp. Bot. 60 : 1085 – 1092 .
- Achard , P. , Gong , F. , Cheminant , S. et al. ( 2008a ). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism . Plant. Cell. 20 : 2117 – 2129 .
- Achard , P. , Renou , J.P. , Berthomé , R. et al. ( 2008b ). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species . Curr. Biol. 18 : 656 – 660 .
- Agarwal , P.K. , Agarwal , P. , Reddy , M.K. , and Sopory , S.K. ( 2006 ). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants . Plant. Cell. Rep. 25 : 1263 – 1274 .
- Alonso , J.M. , Hirayama , T. , Roman , G. et al. ( 1999 ). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis . Sci. 284 : 2148 – 2152 .
-
Alvey , L.
and
Boulton , M.I.
(
2008
).
DELLA proteins in signalling
. In:
eLS
(ed.
M. Maccarrone
).
Chichester
:
Wiley
.
10.1002/9780470015902.a0020096 Google Scholar
- Arc , E. , Sechet , J. , Corbineau , F. et al. ( 2013b ). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination . Front. Plant. Sci. 4 : 1 – 19 .
- Arc , E. , Sechet , J. , Corbineau , F. et al. ( 2013a ). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination . Front. Plant. Sci. 4 : 63 .
- Arraes , F.B.M. , Beneventi , M.A. , de Sa , M.E.L. et al. ( 2015 ). Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance . BMC Plant Biol. 15 : 213 .
- Bailey-Serres , J. and Voesenek , L.A.C.J. ( 2010 ). Life in the balance: a signaling network controlling survival of flooding . Curr. Opin. Plant Biol. 13 : 489 – 494 .
- Bari , R. and Jones , J.D. ( 2009 ). Role of plant hormones in plant defence responses . Plant. Mol. Biol. 69 ( 4 ): 473 – 488 .
- Bingham , F.T. , Pereyea , F.J. , and Jarrell , W.M. ( 1986 ). Metal toxicity to agricultural crops . Met. Ions Biol. Syst. 20 : 119 – 156 .
- Blumwald , E. ( 2000 ). Sodium transport and salt tolerance in plants . Curr. Opin. Cell Biol. 12 : 431 – 434 .
- Bradford , K.J. ( 2008 ). Shang fa Yang: Pioneer in plant ethylene biochemistry . Plant. Sci. 175 : 2 – 7 .
- Cao , S. , Chen , Z. , Liu , G. et al. ( 2009 ). The Arabidopsis Ethylene-Insensitive 2 gene is required for lead resistance . Plant Physiol. Biochem . 47 : 308 – 312 .
- Carrió-Seguí , A. , Garcia-Molina , A. , Sanz , A. , and Peñarrubia , L. ( 2015 ). Defective copper transport in the copt5 mutant affects cadmium tolerance . Plant. Cell. Physiol. 56 : 442 – 454 .
- Clark , K.L. , Larsen , P.B. , Wang , X. , and Chang , C. ( 1998 ). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors . Proc. Natl. Acad. Sci. U. S. A. 95 : 5401 – 5406 .
- Davies , W.J. and Zhang , J. ( 1991 ). Root signals and the regulation of growth and development of plants in drying soil . Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 42 : 55 – 76 .
- Deikman , J. ( 1997 ). Molecular mechanisms of ethylene regulation of gene transcription . Physiol. Plant. 100 : 561 – 566 .
- Dodd , I.C. ( 2005 ). Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta . Plant. Soil. 274 : 251 – 270 .
- Dolferus , R. ( 2014 ). To grow or not to grow: a stressful decision for plants . Plant. Sci. 229 : 247 – 261 .
- Dugardeyn , J. and Van Der Straeten , D. ( 2008 ). Ethylene: fine-tuning plant growth and development by stimulation and inhibition of elongation . Plant. Sci. 175 : 59 – 70 .
- Ecker , J.R. ( 1995 ). The ethylene signal transduction pathway in plants . Sci. 268 : 667 – 675 .
- Enyedi , A.J. , Yalpani , N. , Silverman , P. , and Raskin , I. ( 1992 ). Signal molecules in systemic plant resistance to pathogens and pests . Cell 70 : 879 – 886 .
-
Fraire-Velázquez , S.
,
Rodríguez-Guerra , R.
, and
Sánchez-Calderón , L.
(
2011
).
Abiotic and biotic stress response cross-talk in plants
. In:
Abiotic Stress Response in Plants—Physiological, Biochemical and Genetic Perspectives
.
London
:
InTech
.
10.5772/23217 Google Scholar
- Fujita , M. , Fujita , Y. , Noutoshi , Y. et al. ( 2006 ). Crostalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks . Curr. Opin. Plant Biol. 9 : 436 – 442 .
-
Gamalero , E.
and
Glick , B.R.
(
2012
).
Ethylene and abiotic stress tolerance in plants
. In:
Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change
(ed.
P. Ahmed
and
M.N.V. Prasad
),
395
–
412
.
New York
:
Springer
.
10.1007/978-1-4614-0815-4_18 Google Scholar
- Ghassemian , M. , Nambara , E. , Cutler , S. et al. ( 2000 ). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis . Plant. Cell. 12 : 1117 – 1126 .
- Golldack , D. , Li , C. , Mohan , H. , and Probst , N. ( 2014 ). Tolerance to drought and salt stress in plants: unraveling the signaling networks . Front. Plant. Sci. 5 : 151 .
- Grbic , V. and Bleecker , A.B. ( 1995 ). Ethylene regulates the timing of leaf senescence in Arabidopsis . Plant. J. 8 : 595 – 602 .
- Hall , M.A. and Smith , A.R. ( 1995 ). Ethylene and the responses of plants to stress . Bulg. J. Plant. Physiol. 21 : 71 – 79 .
- Hansen , H. and Grossmann , K. ( 2000 ). Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition . Plant Physiol. 124 : 1437 – 1448 .
-
Harrison , M.A.
(
2012
).
Crostalk between phytohormone signaling pathways under both optimal and stressful environmental conditions
. In:
Phytohormones and Abiotic Stress Tolerance in Plants
,
49
–
76
.
Berlin
:
Springer
.
10.1007/978-3-642-25829-9_2 Google Scholar
- Hussain , A. , Black , C.R. , Taylor , I.B. , and Roberts , J.A. ( 2000 ). Does an antagonistic relationship between ABA and ethylene mediate shoot growth when tomato (Lycopersicon esculentum Mill.) plants encounter compacted soil? Plant Cell Environ 23 : 1217 – 1226 .
- Jing , H.C. , Schippers , J.H. , Hille , J. , and Dijkwel , P.P. ( 2005 ). Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis . J. Exp. Bot. 56 : 2915 – 2923 .
- Johnson , P.R. and Ecker , J.R. ( 1998 ). The ethylene gas signal transduction pathway: a molecular perspective . Ann. Rev. Genet. 32 : 227 – 254 .
- Ju , C. and Chang , C. ( 2015 ). Mechanistic insights in ethylene perception and signal transduction . Plant Physiol. 169 : 85 – 95 .
- Ju , C. , Yoon , G.M. , Shemansky , J.M. et al. ( 2012 ). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signalling from the ER membrane to the nucleus in Arabidopsis . Proc. Natl. Acad. Sci. U. S. A. 109 : 19486 – 19491 .
- Kalantari , K.M. , Smith , A.R. , and Hall , M.A. ( 2000 ). The effect of water stress on 1 (malonylamino) cyclopropane-1- carboxylic acid concentration in plant tissues . Plant. Growth. Regul. 31 : 183 – 193 .
- Kazan , K. ( 2015 ). Diverse roles of jasmonates and ethylene in abiotic stress tolerance . Trends Plant Sci. 20 : 219 – 229 .
- Kende , H. ( 1993 ). Ethylene biosynthesis . Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 44 : 283 – 307 .
- Khan , M.I.R. , Nazir , F. , Asgher , M. et al. ( 2015 ). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat . J. Plant Physiol. 173 : 9 – 18 .
-
Khan , N.A.
and
Khan , M.I.R.
(
2014
).
The ethylene: from senescence hormone to key player in plant metabolism
.
J. Plant. Biochem. Physiol.
2
:
1
–
2
.
10.4172/2329-9029.1000e124 Google Scholar
- Kieber , J.J. , Rothenberg , M. , Roman , G. et al. ( 1993 ). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis , encodes a member of the raf family of protein kinases . Cell. 72 : 427 – 441 .
-
Klay , I.
,
Pirrello , J.
,
Riahi , L.
et al. (
2014
).
Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato
.
Sci. World. J.
2014
:
167681
.
10.1155/2014/167681 Google Scholar
- Kohli , A. , Sreenivasulu , N. , Lakshmanan , P. , and Kumar , P.P. ( 2013 ). The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses . Plant. Cell. Rep. 32 ( 7 ): 945 – 957 .
- Konishi , M. and Yanagisawa , S. ( 2008 ). Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3 . Plant. J. 55 : 821 – 831 .
- Larkindale , J. , Hall , D.J. , Knight , M.R. , and Vierling , E. ( 2005 ). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermo-tolerance . Plant Physiol. 138 : 882 – 897 .
- Lata , C. and Prasad , M. ( 2011 ). Role of DREBs in regulation of abiotic stress responses in plants . J. Exp. Bot. 62 : 4731 – 4748 .
- Li , N. , Han , X. , Feng , D. et al. ( 2019 ). Signaling crosstalk between salicylic acid and ethylene/Jasmonate in plant Defense: do we understand what they are whispering? Int. J. Mol. Sci. 20 ( 3 ): 671 .
- Li , W. , Ma , M. , Feng , Y. et al. ( 2015 ). EIN2-directed translational regulation of ethylene Signaling in Arabidopsis . Cell. 163 : 670 – 683 .
- Li , Z. , Zhang , L. , Yu , Y. et al. ( 2011 ). The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis . Plant. J. 68 : 88 – 99 .
- Lin , Z. , Zhong , S. , and Grierson , D. ( 2009 ). Recent advances in ethylene research . J. Exp. Bot. 60 : 3311 – 3336 .
- Linkies , A. and Leubner-Metzger , G. ( 2012 ). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination . Plant. Cell. Rep. 31 : 253 – 270 .
- Lorenzo , O. , Piqueras , R. , Sanchez-Serrano , J.J. , and Solano , R. ( 2003 ). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense . Plant. Cell. 15 ( 1 ): 165 – 178 .
- Ma , B. , Yin , C.C. , He , S.J. et al. ( 2014 ). Ethylene-induced inhibition of root growth requires abscisic acid function in rice ( Oryza sativa L.) seedlings . PLos Genet. 10 : e1004701 .
- Maksymiec , W. ( 2007 ). Signaling responses in plants to heavy metal stress . Acta. Physiol. Plant. 29 : 177 – 187 .
- Maksymiec , W. and Baszynski , T. ( 1996 ). Chlorophyll fluorescence in primary leaves of excess Cu-treated runner bean plants depends on their growth stages and the duration of Cu action . J. Plant Physiol 149 : 196 – 200 .
- Masood , A. , Iqbal , N. , and Khan , N.A. ( 2012 ). Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by Sulphur in mustard . Plant. Cell. Environ. 35 : 524 – 533 .
- Matilla , A.J. and Matilla-Vázquez , M.A. ( 2008 ). Involvement of ethylene in seed physiology . Plant. Sci. 175 : 87 – 97 .
- Mayak , S. , Tirosh , T. , and Glick , B.R. ( 2004a ). Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper . Plant. Sci. 166 : 525 – 530 .
- Mayak , S. , Tirosh , T. , and Glick , B.R. ( 2004b ). Plant growth promoting bacteria that confer resistance in tomato to salt stress . Plant Physiol. Biochem. 42 : 565 – 572 .
- Merchante , C. , Brumos , J. , Yun , J. et al. ( 2015 ). Gene-specific translation regulation mediated by the hormone-Signaling molecule EIN2 . Cell. 163 : 684 – 697 .
- Morant , M. , Ekstrom , C. , Ulvskov , P. et al. ( 2010 ). Metabolomic, transcriptional, hormonal, and signaling crosstalk in Superroot2 . Mol. Plant. 3 : 192 – 211 .
- Movahedi , S. , Tabatabaei , B.S. , Alizade , H. et al. ( 2012 ). Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance . Biol. Plant. 56 : 37 – 42 .
- Muday , G.K. , Rahman , A. , and Binder , B.M. ( 2012 ). Auxin and ethylene: collaborators or competitors? Trends Plant Sci. 17 : 181 – 195 .
- Müller , M. and Munné-Bosch , S. ( 2015 ). Ethylene response factors: a key regulatory hub in hormone and stress signaling . Plant Physiol. 169 : 32 – 41 .
- Navarro , L. , Bari , R. , Achard , P. et al. ( 2008 ). DELLAs control plant immune responses by modulating the balance of jasmonicacid and salicylic acid signaling . Curr. Biol. 18 ( 9 ): 650 – 655 .
- Negi , S. , Sukumar , P. , Liu , X. et al. ( 2010 ). Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato . Plant. J. 61 ( 1 ): 3 – 15 .
- Neill , S. , Barros , R. , Bright , J. et al. ( 2008 ). Nitric oxide, stomatal closure, and abiotic stress . J. Exp. Bot. 59 : 165 – 176 .
- Nguyen , D. , Rieu , I. , Mariani , C. , and van Dam , N.M. ( 2016 ). How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory . Plant. Mol. Biol. 91 : 727 – 740 .
- Nishiyama , R. , Watanabe , Y. , Leyva-Gonzalez , M.A. et al. ( 2013 ). Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response . Proc. Natl. Acad. Sci. U. S. A. 110 ( 12 ): 4840 – 4845 .
- Nomura , S. , Nakashima , H. , Mizutani , M. et al. ( 2013 ). Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds . Plant. Cell. Rep. 32 : 829 – 838 .
- Nuruzzaman , M. , Sharoni , A.M. , and Kikuchi , S. ( 2013 ). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants . Front. Microbiol. 4 : 248 .
- O'Donnell , P.J. , Calvert , C. , Atzorn , R. et al. ( 1996 ). Ethylene as a signal mediating the wound response of tomato plants . Sci. 274 ( 5294 ): 1914 – 1917 .
- Potuschak , T. , Lechner , E. , Parmentier , Y. et al. ( 2003 ). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2 . Cell. 115 : 679 – 689 .
- Pré , M. , Atallah , M. , Champion , A. et al. ( 2008 ). The AP2/ERF domain transcription factor ORA59 integrates Jasmonic acid and ethylene signals in plant Defense . Plant Physiol. 147 : 1347 – 1357 .
- Qiao , H. , Shen , Z.S. , Huang , C. et al. ( 2012 ). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas . Sci. 338 : 390 – 393 .
- Reynolds , M. and Tuberosa , R. ( 2008 ). Translational research impacting on crop productivity in drought-prone environments . Curr. Opin. Plant Biol. 11 : 171 – 179 .
- Richard , A.J. and El-Abd , S.O. ( 1989 ). Prevention of salt-induced epinasty by a-aminooxyacetic acid and cobalt . Plant. Growth. Regul. 8 : 315 – 323 .
- Rzewuski , G. and Sauter , M. ( 2008 ). Ethylene biosynthesis and signaling in rice . Plant. Sci. 175 : 32 – 42 .
- Schaller , G.E. ( 2012 ). Ethylene and the regulation of plant development . BMC Biol. 10 ( 1 ): 1 – 3 .
- Schellingen , K. , Van Der Straeten , D. , Vandenbussche , F. et al. ( 2014 ). Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression . BMC Plant Biol . 14 : 214 .
- Shan , W. , Kuang , J.F. , Wj , L. , and Chen , J.Y. ( 2014 ). Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1 . Plant. Cell. Environ. 37 : 2116 – 2127 .
- Shi , Y. , Tian , S. , Hou , L. et al. ( 2012 ). Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-a ARR genes in Arabidopsis . Plant. Cell. 24 : 2578 – 2595 .
- Shibli , R.A. , Kushad , M. , Yousef , G.G. , and Lila , M.A. ( 2007 ). Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation . Plant. Growth. Regul. 51 : 159 – 169 .
- Sobeih , W.Y. , Dodd , I.C. , Bacon , M.A. et al. ( 2004 ). Long-distance signals regulating stomatal conductance and leaf growth in tomato ( Lycopersicon esculentum ) plants subjected to partial root zone drying . J. Exp. Bot. 55 : 2353 – 2363 .
- Solano , R. , Stepanova , A. , Chao , Q. , and Ecker , J.R. ( 1998 ). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE 3 and ETHYLENE-RESPONSE-FACTOR 1 . Genes. Dev. 12 : 3703 – 3714 .
- Song , S. , Huang , H. , Gao , H. et al. ( 2014 ). Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signalling in Arabidopsis . Plant. Cell. 26 ( 1 ): 263 – 279 .
- Sugimoto , Y. , Ali , A.M. , Yabuta , S. et al. ( 2003 ). Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis . Physiol. Plant. 119 : 137 – 145 .
- Sun , X. , Zhao , T. , Gan , S. et al. ( 2016 ). Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057 . Sci. Rep. 6 : 24066 .
- Tanaka , Y. , Sano , T. , Tamaoki , M. et al. ( 2005 ). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis . Plant Physiol. 138 : 2337 – 2343 .
- Thao , N.P. , Khan , M.I.R. , Thu , N.B.A. et al. ( 2015 ). Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress . Plant Physiol. 169 : 73 – 84 .
- Thomashow , M.F. ( 2010 ). Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway . Plant Physiol. 154 : 571 – 577 .
- Tilman , D. , Balzer , C. , Hill , J. , and Belfort , B.L. ( 2011 ). Global food demand and the sustainable intensification of agriculture . Proc. Natl. Acad. Sci. U. S. A. 108 : 20260 – 20264 .
- Vandenbussche , F. , Vaseva , I. , Vissenberg , K. , and Van Der Straeten , D. ( 2012 ). Ethylene in vegetative development: a tale with a riddle . New Phytol. 194 : 895 – 909 .
- Vob , U. , Bishopp , A. , Farcot , E. , and Bennett , M.J. ( 2014 ). Modelling hormonal response and development . Trends Plant Sci. 19 : 311 – 319 .
- Wang , F. , Cui , X. , Sun , Y. , and Dong , C.H. ( 2013 ). Ethylene signaling and regulation in plant growth and stress responses . Plant. Cell. Rep. 32 : 1099 – 1109 .
- Wang , K.L.C. , Li , H. , and Ecker , J.R. ( 2002 ). Ethylene biosynthesis and signalling networks . Plant. Cell. 14 ( Suppl ): S131 – S151 .
-
Wani , S.H.
and
Sah , S.K.
(
2014
).
Biotechnology and abiotic stress tolerance in rice
.
J. Rice. Res.
2
:
105
.
10.4172/jrr.1000e105 Google Scholar
- Wilkinson , S. and Davies , W.J. ( 2010 ). Drought, ozone, ABA and ethylene: new insights from cell to plant to community . Plant. Cell. Environ. 33 : 510 – 525 .
- Wilson , R.L. , Kim , H. , Bakshi , A. , and Binder , B.M. ( 2014 ). The ETHYLENE receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress . Plant Physiol. 165 : 1353 – 1366 .
- Yang , S.F. and Hoffman , N.E. ( 1984 ). Ethylene biosynthesis and its regulation in higher plants . Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 35 : 155 – 189 .
- Yoon , G.M. ( 2015 ). New insights into the protein turnover regulation in ethylene biosynthesis . Mol. Cells. 38 : 597 – 603 .
- Zhang , H. and Zhou , C. ( 2013 ). Signal transduction in leaf senescence . Plant. Mol. Biol. 82 : 539 – 545 .
- Zhang , J. , Jia , W. , Yang , J. , and Ismail , A.M. ( 2006 ). Role of ABA in integrating plant responses to drought and salt stresses . Field. Crops. Res. 97 ( 1 ): 111 – 119 .
- Zhang , M. , Yuan , B. , and Leng , P. ( 2009 ). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit . J. Exp. Bot. 60 : 1579 – 1588 .
- Zhu , Z. , An , F. , Feng , Y. et al. ( 2011 ). Derepression of ethylene stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis . Proc. Natl. Acad. Sci. U. S. A. 108 ( 30 ): 12539 – 12544 .