Ethylene Implication in Root Development
Aditi Gupta
CSIR-National Botanical Research Institute (NBRI), Lucknow, India
Search for more papers by this authorAnshu Rastogi
Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Poznan, Poland
Search for more papers by this authorManjul Singh
Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
Search for more papers by this authorAditi Gupta
CSIR-National Botanical Research Institute (NBRI), Lucknow, India
Search for more papers by this authorAnshu Rastogi
Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Poznan, Poland
Search for more papers by this authorManjul Singh
Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
Search for more papers by this authorDurgesh Kumar Tripathi
Amity University Uttar Pradesh, Noida, India
Search for more papers by this authorSummary
Anatomically, plants can be divided into above-ground parts called shoots and below-ground parts called roots . Shoots act as the source of food production via photosynthesis; they harness carbon dioxide and sunlight. The plant root system harvests mineral nutrients and water from the soil and provides anchorage to the shoots. They mutually support each other's growth and development. Roots encounter far more challenges than shoots as their resources mainly depend on spatiotemporal landscapes. The study of molecular processes involved in root growth and development is key to understand plant plasticity. Phytohormones regulate almost all aspects of root system architecture development and responses. Ethylene, a gaseous plant hormone, affects multiple developmental processes during plant growth either independently or by interacting with other signaling networks of plants. In this chapter, we provide insights into the role of the ethylene response pathway in root growth and development. We also discuss the impact of other hormones and their crosstalk with ethylene to control different features of root system architecture and summarize available information on molecular mechanisms governing these processes.
References
- Aloni , R. ( 2013 ). Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation . Planta 238 : 819 ā 830 .
- Aloni , R. , Aloni , E. , Langhans , M. , and Ullrich , C.I. ( 2006 ). Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism . Ann. Bot. 97 : 883 ā 893 .
- Alonso , J.M. , Stepanova , A.N. , Solano , R. et al. ( 2003 ). Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis . Proc Natl Acad Sci USA 100 : 2992 ā 2997 .
- An , L. , Zhou , Z. , Sun , L. et al. ( 2012 ). A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis . Plant J 72 : 474 ā 490 .
- Bakshi , A. , Piya , S. , Fernandez , J.C. et al. ( 2018 ). Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses . Plant Physiol 176 : 910 ā 929 .
- Beemster , G.T. , Fiorani , F. , and Inze , D. ( 2003 ). Cell cycle: the key to plant growth control? Trends Plant Sci 8 : 154 ā 158 .
-
Binder , B.M.
,
Chang , C.
, and
Schaller , G.E.
(
2018
).
Perception of ethylene by plantsāethylene receptors
.
Annual Plant Reviews
44
:
117
ā
145
.
10.1002/9781119312994.apr0477 Google Scholar
- Bleecker , A.B. , Estelle , M.A. , Somerville , C. , and Kende , H. ( 1988 ). Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana . Science 241 : 1086 ā 1089 .
- Buer , C.S. ( 2003 ). Ethylene modulates root-wave responses in Arabidopsis . Plant Physiol. 132 : 1085 ā 1096 .
- Buer , C.S. , Sukumar , P. , and Muday , G.K. ( 2006 ). Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis . Plant Physiol. 140 : 1384 ā 1396 .
- Chang , K.N. , Zhong , S. , Weirauch , M.T. et al. ( 2013 ). Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis . Elife 2 : e00675 .
- Chen , H. , Ma , B. , Zhou , Y. et al. ( 2018 ). E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein . Proc Natl Acad Sci USA 115 : 4513 ā 4518 .
- Crossett , R. and Campbell , D.J. ( 1975 ). The effects of ethylene in the root environment upon the development of barley . Plant Soil 42 : 453 ā 464 .
- Dolan , L. and Roberts , K. ( 1995 ). The development of cell pattern in the root epidermis . Philos Trans R Soc Lond B Biol Sci 350 : 95 ā 99 .
- Dolan , L. , Janmaat , K. , Willemsen , V. et al. ( 1993 ). Cellular organisation of the Arabidopsis thaliana root . Development 119 : 71 ā 84 .
- Dubois , M. , Van den Broeck , L. , and InzĆ© , D. ( 2018 ). The pivotal role of ethylene in plant growth . Trends Plant Sci. 23 : 311 ā 323 .
- Feng , Y. , Xu , P. , Li , B. et al. ( 2017 ). Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis . Proc Natl Acad Sci USA 114 : 13834 ā 13839 .
- Fortunati , A. , Piconese , S. , Tassone , P. et al. ( 2008 ). A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor . J. Exp. Bot. 59 : 1363 ā 1374 .
- Guisinger , M.M. and Kiss , J.Z. ( 1999 ). The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis . Am. J. Bot. 86 : 1357 ā 1366 .
- Gunawardena , A.H. , Pearce , D.M. , Jackson , M.B. et al. ( 2001 ). Share characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize ( Zea mays L.) . Planta 212 ( 2 ): 205 ā 214 .
- Guo , H. and Ecker , J.R. ( 2003 ). Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor . Cell 115 : 667 ā 677 .
- Guo , H. and Ecker , J.R. ( 2004 ). The ethylene signaling pathway: new insights . Curr. Opin. Plant Biol. 7 : 40 ā 49 .
- Gupta , A. , Singh , M. , and Laxmi , A. ( 2015 ). Interaction between glucose and Brassinosteroid during the regulation of lateral root development in Arabidopsis . Plant Physiol. 168 : 307 ā 320 .
- He , W. , Brumos , J. , Li , H. et al. ( 2011 ). A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis . Plant Cell 23 : 3944 ā 3960 .
- Hirota , A. , Kato , T. , Fukaki , H. et al. ( 2007 ). The auxin-regulated AP2/EREBP Gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis . Plant Cell 19 : 2156 ā 2168 .
- Huang , S.-J. , Chang , C.-L. , Wang , P.-H. et al. ( 2013 ). A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana . J. Exp. Bot. 64 : 4343 ā 4360 .
- Iqbal , N. , Khan , N.A. , Ferrante , A. et al. ( 2017 ). Ethylene role in plant growth, development and senescence: interaction with other phytohormones . Front Plant Sci 8 : 475 .
- Ishikawa , H. and Evans , M.L. ( 1995 ). Specialized zones of development in roots . Plant Physiol 109 : 725 .
- Ivanchenko , M.G. , Muday , G.K. , and Dubrovsky , J.G. ( 2008 ). Ethyleneāauxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana . Plant J 55 : 335 ā 347 .
- Ju , C. and Chang , C. ( 2015 ). Mechanistic insights in ethylene perception and signal transduction . Plant Physiol. 169 : 85 ā 95 .
- Jung , J.K. and McCouch , S. ( 2013 ). Getting to the roots of it: genetic and hormonal control of root architecture . Front Plant Sci 4 : 186 .
- Kieber , J.J. , Rothenberg , M. , Roman , G. et al. ( 1993 ). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis , encodes a member of the raf family of protein kinases . Cell 72 : 427 ā 441 .
- Lacey , R.F. and Binder , B.M. ( 2014 ). How plants sense ethylene gas ā the ethylene receptors . J. Inorg. Biochem. 133 : 58 ā 62 .
- Larrainzar , E. , Molenaar , J.A. , Wienkoop , S. et al. ( 2014 ). Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules . Plant Cell Environ. 37 ( 9 ): 2051 ā 2063 .
- Laskowski , M.J. , Williams , M.E. , Nusbaum , H.C. , and Sussex , I.M. ( 1995 ). Formation of lateral root meristems is a two-stage process . Development 121 : 3303 ā 3310 .
- Lavenus , J. , Guyomarc'h , S. , and Laplaze , L. ( 2016 ). PIN transcriptional regulation shapes root system architecture . Trends Plant Sci 21 : 175 ā 177 .
- Le , J. , Vandenbussche , F. , Van Der Straeten , D. , and Verbelen , J.-P. ( 2001 ). In the early response of arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation . Plant Physiol 125 : 519 ā 522 .
- Lee , J.S. and Evans , M.L. ( 1990 ). Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays . Plant Physiol. 94 : 1770 ā 1775 .
- Lewis , D.R. , Negi , S. , Sukumar , P. , and Muday , G.K. ( 2011 ). Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers , Development . 138 : 3485 ā 3495 .
- Li , W. , Ma , M. , Feng , Y. et al. ( 2015 ). EIN2-directed translational regulation of ethylene signaling in Arabidopsis . Cell 163 : 670 ā 683 .
- Li , X. , Chen , L. , Forde , B.G. , and Davies , W.J. ( 2017 ). The biphasic root growth response to abscisic acid in Arabidopsis involves interaction with ethylene and auxin signalling pathways . Front Plant Sci 8 : 1493 .
- Liu , G. , Gao , S. , Tian , H. et al. ( 2016 ). Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis . PLoS Genet. 12 : e1006360 .
- Liu , J. , Rowe , J. , and Lindsey , K. ( 2014 ). Hormonal crosstalk for root development: a combined experimental and modeling perspective . Front Plant Sci 5 : 116 .
- Liu , X. , Liu , R. , Li , Y. et al. ( 2017 ). EIN3 and PIF3 form an interdependent module that represses chloroplast development in buried seedlings . Plant Cell 29 : 3051 ā 3067 .
- Mao , J.-L. , Miao , Z.-Q. , Wang , Z. et al. ( 2016 ). Arabidopsis ERF1 mediates crosstalk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression . PLoS Genet. 12 : e1005760 .
- Masucci , J.D. and Schiefelbein , J.W. ( 1996 ). Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root . Plant Cell 8 : 1505 ā 1517 .
- Maurel , C. and Nacry , P. ( 2020 ). Root architecture and hydraulics converge for acclimation to changing water availability . Nat Plants 6 : 744 ā 749 .
- Merchante , C. , Brumos , J. , Yun , J. et al. ( 2015 ). Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2 . Cell 163 : 684 ā 697 .
- Miao , Z.-Q. , Zhao , P.-X. , Mao , J.-L. et al. ( 2018 ). HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression Plant Cell . 30 : 2761 ā 2778 .
- Motte , H. , Vanneste , S. , and Beeckman , T. ( 2019 ). Molecular and environmental regulation of root development . Annu Rev Plant Biol 70 : 465 ā 488 .
- Muraro , D. , Byrne , H. , King , J. et al. ( 2011 ). The influence of cytokinināauxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development . J Theor Biol 283 : 152 ā 167 .
- Muthert , L.W.F. , Izzo , L.G. , van Zanten , M. , and Aronne , G. ( 2020 ). Root ropisms: Investigations on Earth and in space to unravel plant growth direction . Front Plant Sci 10 : 1807 .
- Negi , S. , Ivanchenko , M.G. , and Muday , G.K. ( 2008 ). Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana . Plant J 55 : 175 ā 187 .
- Negi , S. , Sukumar , P. , Liu , X. et al. ( 2010 ). Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato . Plant J 61 : 3 ā 15 .
- Nemhauser , J.L. , Hong , F. , and Chory , J. ( 2006 ). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses . Cell 126 : 467 ā 475 .
- Nishimura , T. , Hayashi , K. , Suzuki , H. et al. ( 2014 ). Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis . Plant J 77 : 352 ā 366 .
- Nziengui , H. , Lasok , H. , Kochersperger , P. et al. ( 2018 ). Root gravitropism is regulated by a crosstalk between para-aminobenzoic acid, ethylene, and auxin . Plant Physiol 178 ( 3 ): 1370 ā 1389 .
- Oliva , M. and Dunand , C. ( 2007 ). Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis . New Phytol. 176 : 37 ā 43 .
- Orman-Ligeza , B. , Parizot , B. , Gantet , P.P. et al. ( 2013 ). Post-embryonic root organogenesis in cereals: branching out from model plants . Trends Plant Sci 18 ( 8 ): 459 ā 467 .
- Overvoorde , P. , Fukaki , H. , and Beeckman , T. ( 2010 ). Auxin control of root development . Cold Spring Harb Perspect Biol 2 : a001537 .
- Pan , C. , Zhang , H. , Ma , Q. et al. ( 2019 ). Role of ethylene biosynthesis and signaling in elevated CO 2 -induced heat stress response in tomato . Planta 250 : 563 ā 572 .
- Pesquet , E. and Tuominen , H. ( 2011 ). Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures . New Phytol 190 : 138 ā 149 .
- Pitts , R.J. , Cernac , A. , and Estelle , M. ( 1998 ). Auxin and ethylene promote root hair elongation in Arabidopsis . Plant J 16 : 553 ā 560 .
- Planas-Riverola , A. , Gupta , A. , Betegón-Putze , I. et al. ( 2019 ). Brassinosteroid signaling in plant development and adaptation to stress . Development 146 : dev151894 .
- Potuschak , T. , Lechner , E. , Parmentier , Y. et al. ( 2003 ). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2 . Cell 115 : 679 ā 689 .
- Pozhvanov , G.A. , Gobova , A.E. , Bankin , M.P. et al. ( 2016 ). Ethylene is involved in the actin cytoskeleton rearrangement during the root gravitropic response of Arabidopsis thaliana . Russ. J. Plant Physiol. 63 : 587 ā 596 .
- Qin , H. , Wang , J. , Chen , X. et al. ( 2019 ). Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress . New Phytol 223 : 798 ā 813 .
- Qin , H. , Zhang , Z. , Wang , J. et al. ( 2017 ). The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development . PLoS Genet. 13 : e1006955 .
- Rai , M.I. , Wang , X. , Thibault , D.M. et al. ( 2015 ). The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene . BMC Plant Biol. 15 : 157 .
- Reid , J.B. and Ross , J.J. ( 2011 ). Regulation of tissue repair in plants . Proc Natl Acad Sci USA 108 : 17241 ā 17242 .
- Resnick , J.S. , Wen , C.-K. , Shockey , J.A. , and Chang , C. ( 2006 ). REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis . Proc. Natl. Acad. Sci. 103 : 7917 ā 7922 .
- Ruzicka , K. , Ljung , K. , Vanneste , S. et al. ( 2007 ). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution . Plant Cell 19 : 2197 ā 2212 .
-
Salazar , C.
,
HernƔndez , C.
, and
Pino , M.A.
(
2015
).
Plant water stress: associations between ethylene and abscisic acid response
.
Chilean J. Agric. Res.
75
(
Sul.1
):
71
ā
79
.
10.4067/S0718-58392015000300008 Google Scholar
- Santisree , P. , Nongmaithem , S. , Vasuki , H. et al. ( 2011 ). Tomato root penetration in soil requires a coaction between ethylene and auxin signaling . Plant Physiol. 156 : 1424 ā 1438 .
- Scharein , B. and Groth , G. ( 2011 ). Phosphorylation alters the interaction of the Arabidopsis phosphotransfer protein AHP1 with its sensor kinase ETR1 . PLoS One 6 : e24173 .
- Scharein , B. , Voet-van-Vormizeele , J. , Harter , K. , and Groth , G. ( 2008 ). Ethylene signaling: identification of a putative ETR1āAHP1 phosphorelay complex by fluorescence spectroscopy . Anal Biochem 377 : 72 ā 76 .
- Sengupta , D. and Reddy , A.R. ( 2018 ). Simplifying the root dynamics: from complex hormoneāenvironment interactions to specific root architectural modulation . Plant Growth Regul 85 : 337 ā 349 .
- Serek , M. , Tamari , G. , Sisler , E.C. , and Borochov , A. ( 1995 ). Inhibition of ethylene-induced cellular senescence symptoms by 1-methylcyclopropene, a new inhibitor of ethylene action . Physiologia Plantarum 94 : 229 ā 232 .
- Shakeel , S. , Gao , Z. , Amir , M. et al. ( 2015 ). Ethylene regulates levels of ethylene-receptor/CTR1 signaling complexes in Arabidopsis thaliana . J. Biol. Chem. 290 : 12415 ā 12424 .
- Singh , M. , Gupta , A. , and Laxmi , A. ( 2014a ). Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis . Plant Signal. Behav. 9 : e29219 .
- Singh , M. , Gupta , A. , and Laxmi , A. ( 2014b ). Glucose control of root growth direction in Arabidopsis thaliana . J. Exp. Bot. 65 : 2981 ā 2993 .
- Singh , M. , Gupta , A. , and Laxmi , A. ( 2015 ). Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis . Plant Signal. Behav. 10 : e1058460 .
- Song , L. , Yu , H. , Dong , J. et al. ( 2016 ). The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation . PLoS Genet. 12 : e1006194 .
- Stepanova , A.N. , Hoyt , J.M. , Hamilton , A.A. , and Alonso , J.M. ( 2005 ). A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis . Plant Cell 17 : 2230 ā 2242 .
- Stepanova , A.N. , Robertson-Hoyt , J. , Yun , J. et al. ( 2008 ). TAA1 -mediated auxin biosynthesis is essential for hormone crosstalk and plant development . Cell 133 : 177 ā 191 .
- Stepanova , A.N. , Yun , J. , Likhacheva , A.V. , and Alonso , J.M. ( 2007 ). Multilevel interactions between ethylene and auxin in Arabidopsis roots . Plant Cell 19 : 2169 ā 2185 .
- Strader , L.C. , Chen , G.L. , and Bartel , B. ( 2010 ). Ethylene directs auxin to control root cell expansion . Plant J 64 : 874 ā 884 .
- Street , I.H. , Aman , S. , Zubo , Y. et al. ( 2015 ). Ethylene inhibits cell proliferation of the Arabidopsis root meristem . Plant Physiol 169 : 338 ā 350 .
- Sun , X. , Li , Y. , He , W. et al. ( 2017 ). Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase . Nat. Commun. 8 : 15758 .
- Sytar , O. , Kumari , P. , Yadav , S. et al. ( 2019 ). Phytohormone priming: regulator for heavy metal stress in plants . J Plant Growth Regul 38 : 739 ā 752 .
- Takatsuka , H. and Umeda , M. ( 2014 ). Hormonal control of cell division and elongation along differentiation trajectories in roots . J Exp Bot 65 : 2633 ā 2643 .
- Tanimoto , M. , Roberts , K. , and Dolan , L. ( 1995 ). Ethylene is a positive regulator of root hair development in Arabidopsis thaliana . Plant J 8 : 943 ā 948 .
- Tao , J.-J. , Chen , H.-W. , Ma , B. et al. ( 2015 ). The role of ethylene in plants under salinity stress . Front Plant Sci 6 : 1059 .
- Tƶtzke , C. , Kardjilov , N. , Lenoir , N. et al. ( 2019 ). What comes NeXT?āhigh-speed neutron tomography at ILL . Opt Express 27 : 28640 ā 28648 .
- Tsuchisaka , A. and Theologis , A. ( 2004 ). Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family . Proc Natl Acad Sci USA 101 : 2275 ā 2280 .
- Ubeda-TomĆ”s , S. , Federici , F. , Casimiro , I. et al. ( 2009 ). Gibberellin signaling in the endodermis controls Arabidopsis root meristem size . Curr Biol 19 : 1194 ā 1199 .
- Ubeda-TomĆ”s , S. , Swarup , R. , Coates , J. et al. ( 2008 ). Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis . Nat Cell Biol 10 : 625 ā 628 .
- Vandenbussche , F. , Smalle , J. , Le , J. et al. ( 2003 ). The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin . Plant Physiol. 131 : 1228 ā 1238 .
- Vaseva , I.I. , Qudeimat , E. , Potuschak , T. et al. ( 2018 ). The plant hormone ethylene restricts Arabidopsis growth via the epidermis . Proc Natl Acad Sci USA 115 : E4130 ā E4139 .
- Verbelen , J.-P. , Cnodder , T.D. , Le , J. et al. ( 2006 ). The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone . Plant Signal Behav 1 : 296 ā 304 .
- Vogel , J.P. , Woeste , K.E. , Theologis , A. , and Kieber , J.J. ( 1998 ). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively . Proc Natl Acad Sci USA 95 : 4766 ā 4771 .
- Wang , J. and Huang , R. ( 2019 ). Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response . Front Plant Sci 10 : 319 .
- Wang , Y. , Diao , P. , Kong , L. et al. ( 2020 ). Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway . Front Plant Sci 11 : 1066 .
- Wei , Z. and Li , J. ( 2016 ). Brassinosteroids regulate root growth, development, and symbiosis . Mol Plant 9 : 86 ā 100 .
- Whalen , M.C. and Feldman , L.J. ( 1988 ). The effect of ethylene on root growth of Zea mays seedlings . Can J Bot 66 : 719 ā 723 .
- Woeste , K.E. , Ye , C. , and Kieber , J.J. ( 1999 ). Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase . Plant Physiol 119 : 521 ā 530 .
- Won , C. , Shen , X. , Mashiguchi , K. et al. ( 2011 ). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF Arabidopsis and YUCCAs in Arabidopsis . Proc Natl Acad Sci USA 108 : 18518 ā 18523 .
- Yamamoto , C. , Sakata , Y. , Taji , T. et al. ( 2008 ). Unique ethylene-regulated touch responses of Arabidopsis thaliana roots to physical hardness . J. Plant Res. 121 : 509 .
- Yang , C. , Lu , X. , Ma , B. et al. ( 2015 ). Ethylene signaling in rice and Arabidopsis : conserved and diverged aspects . Mol. Plant 8 : 495 ā 505 .
- Yasumura , Y. , Pierik , R. , Kelly , S. et al. ( 2015 ). An ancestral role for CONSTITUTIVE TRIPLE RESPONSE1 proteins in both ethylene and abscisic acid signaling . Plant Physiol 169 : 283 ā 298 .
- Zdarska , M. , Cuyacot , A.R. , Tarr , P.T. et al. ( 2019 ). ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth . Mol Plant 12 : 1338 ā 1352 .
- Zemlyanskaya , E.V. , Omelyanchuk , N.A. , Ubogoeva , E.V. , and Mironova , V.V. ( 2018 ). Deciphering auxin-ethylene crosstalk at a systems level . Int J Mol Sci 19 : 4060 .
- Zhang , S. , Huang , L. , Yan , A. et al. ( 2016 ). Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis . J. Exp. Bot. 67 : 6363 ā 6372 .