Printability and Techniques
C. Anandharamakrishnan
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorJeyan A. Moses
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorT. Anukiruthika
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorC. Anandharamakrishnan
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorJeyan A. Moses
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorT. Anukiruthika
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorSummary
3D printing as a paradigm of industrial 4.0 allows to design and fabricate novel food textures with enhanced functional properties. From an industrial point of view, 3D printing is a versatile technology with greater degrees of freedom. Nevertheless, food printing is a complex process as it dealt with a multicomponent biological system with varied material behaviors. The success of printability relies on material composition, process conditions, and the usage of additives. Most of the reports available in the literature explain the printability of specific food materials. However, only a handful of studies discuss the assessment of printability. The present chapter is attempted in streamlining the methods and procedures that are available in the literature for the assessment and evaluation of printability of foods. Printability tests such as line tests, lattice tests, and cylinder tests; dimensional stability, and handling properties aids in the assessment of printability while shape resemblance, printing percentage, and dimensional deviation help in the evaluation of printability. Most of the studies claimed to follow certain procedures in determining printability. This void misleads the usage of analytical methods for the characterization of materials. Hence proper understanding of material behavior in response to printing process variables is quite essential in determining the suitable testing methods. A detailed discussion is provided on various characterization methods that are used in 3D printing studies for analyzing material response and behavior. Certainly, the present chapter provides valuable insights in establishing a testing standard for determining printability that would open a new dimensional array of testing protocols useful for future 3D printing studies.
References
- Ahmed , J. , Mulla , M. , Joseph , A. et al. ( 2020 ). Zinc oxide/clove essential oil incorporated type B gelatin nanocomposite formulations: a proof-of-concept study for 3D printing applications . Food Hydrocolloids 98 : 105256 .
- Álvarez-Castillo , E. , Oliveira , S. , Bengoechea , C. et al. ( 2020 ). A rheological approach to 3D printing of plasma protein based doughs . Journal of Food Engineering : 110255 .
- Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020a ). 3D printing of egg yolk and white with rice flour blends . Journal of Food Engineering 265 : 109691 . https://doi.org/10.1016/j.jfoodeng.2019.109691 .
-
Anukiruthika , T.
,
Priyanka , S.
,
Moses , J.A.
, and
Anandharamakrishnan , C.
(
2020b
).
Characterisation of green nanomaterials
. In:
Green Nanomaterials
(eds.
K. Knoerzer
and
K. Muthukumarappan
), pp.
43
–
79
.
Springer
.
10.1007/978-981-15-3560-4_3 Google Scholar
- Asadchikov , V.E. , Buzmakov , A.V. , Dyachkova , I.G. et al. ( 2019 ). Study of properties of materials by absorption and diffraction X-ray microtomography . Inorganic Materials 55 ( 15 ): 1458 – 1464 .
- Azam , R.S.M. , Zhang , M. , Bhandari , B. , and Yang , C. ( 2018a ). Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate . Food Biophysics 13 ( 3 ): 250 – 262 .
- Azam , S.M.R. , Zhang , M. , Mujumdar , A.S. , and Yang , C. ( 2018b ). Study on 3D printing of orange concentrate and material characteristics . Journal of Food Process Engineering 41 ( 5 ): 1 – 10 . https://doi.org/10.1111/jfpe.12689 .
- Bakarich , S.E. , Beirne , S. , Wallace , G.G. et al. ( 2013 ). Extrusion printing of ionic--covalent entanglement hydrogels with high toughness . Journal of Materials Chemistry B 1 ( 38 ): 4939 – 4946 .
- Bunaciu , A.A. , Udristioiu , E.G. , and Aboul-Enein , H.Y. ( 2015 ). X-ray diffraction: instrumentation and applications . Critical Reviews in Analytical Chemistry 45 ( 4 ): 289 – 299 .
-
Caporizzi , R.
,
Derossi , A.
, and
Severini , C.
(
2019
).
Cereal-based and insect-enriched printable food: from formulation to postprocessing treatments. Status and Perspectives
. In:
Fundamentals of 3D Food Printing and Applications
.
Elsevier Inc.
https://doi.org/10.1016/B978-0-12-814564-7.00004-3
.
10.1016/B978-0-12-814564-7.00004-3 Google Scholar
- Chen , J. , Mu , T. , Goffin , D. et al. ( 2019 ). Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing . Journal of Food Engineering . https://doi.org/10.1016/j.jfoodeng.2019.03.016 .
- Chen , H. , Zhang , M. , and Yang , C. ( 2020 ). Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics . Journal of Food Engineering , p. 110278 .
- Chi , C. , Li , X. , Zhang , Y. et al. ( 2017 ). Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid . Food & Function 8 ( 2 ): 720 – 730 .
- Chi , C. , Li , X. , Zhang , Y. et al. ( 2018 ). Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates . Food Hydrocolloids 84 : 473 – 480 .
- Chuanxing , F. , Qi , W. , Hui , L. et al. ( 2018 ). Effects of pea protein on the properties of potato starch-based 3D printing materials . International Journal of Food Engineering 14 ( 3 ).
- Crompton , K.E. , Forsythe , J.S. , Horne , M.K. et al. ( 2009 ). Molecular level and microstructural characterisation of thermally sensitive chitosan hydrogels . Soft Matter 5 ( 23 ): 4704 – 4711 .
- Dankar , I. , Haddarah , A. , Omar , F.E.L. et al. ( 2018 ). 3D printing technology: the new era for food customization and elaboration . Trends in Food Science and Technology 75 : 231 – 242 . https://doi.org/10.1016/j.tifs.2018.03.018 .
- Derossi , A. , Caporizzi , R. , Azzollini , D. , and Severini , C. ( 2018 ). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children . Journal of Food Engineering 220 : 65 – 75 .
- Derossi , A. , Paolillo , M. , Caporizzi , R. , and Severini , C. ( 2020 ). Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures . Journal of Food Engineering 275 : 109865 .
- Dick , A. , Bhandari , B. , Dong , X. , and Prakash , S. ( 2020 ). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food . Food Hydrocolloids 107 : 105940 .
- Dzhatdoeva , A.A. , Polimova , A.M. , Proskurnina , E.V. et al. ( 2016 ). Determination of lipids and their oxidation products by IR spectrometry . Journal of Analytical Chemistry 71 ( 6 ): 542 – 548 .
- Falcone , P.M. , Baiano , A. , Conte , A. et al. ( 2006 ). Imaging techniques for the study of food microstructure: a review . Advances in Food and Nutrition Research 51 : 205 – 263 .
- Ghazanfari , A. , Li , W. , Leu , M.C. , and Hilmas , G.E. ( 2017 ). A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying . Additive Manufacturing 15 : 102 – 112 .
- Gholamipour-Shirazi , A. , Norton , I.T. , and Mills , T. ( 2019 ). Designing hydrocolloid based food-ink formulations for extrusion 3D printing . Food Hydrocolloids 95 : 161 – 167 . https://doi.org/10.1016/j.foodhyd.2019.04.011 .
- Godoi , F.C. , Prakash , S. , and Bhandari , B.R. ( 2016 ). 3d printing technologies applied for food design: status and prospects . Journal of Food Engineering 179 : 44 – 54 . https://doi.org/10.1016/j.jfoodeng.2016.01.025 .
-
Gross , B.C.
,
Erkal , J.L.
,
Lockwood , S.Y.
et al. (
2014
).
Evaluation of 3D Printing and its Potential Impact on Biotechnology and the Chemical Sciences
.
ACS Publications
.
10.1021/ac403397r Google Scholar
- Guo , L. , Hu , J. , Zhang , J. , and Du , X. ( 2016 ). The role of entanglement concentration on the hydrodynamic properties of potato and sweet potato starches . International Journal of Biological Macromolecules 93 : 1 – 8 .
- Hamilton , C.A. , Alici , G. , and Panhuis , M. ( 2018 ). 3D printing vegemite and marmite: redefining “breadboards.” . Journal of Food Engineering 220 : 83 – 88 .
-
Hao , L.
,
Mellor , S.
,
Seaman , O.
et al. (
2010
).
Material characterisation and process development for chocolate additive layer manufacturing
.
Virtual and Physical Prototyping
5
(
2
):
57
–
64
.
10.1080/17452751003753212 Google Scholar
- He , Y. , Yang , F. , Zhao , H. et al. ( 2016 ). Research on the printability of hydrogels in 3D bioprinting . Scientific Reports 6 : 29977 .
- Huang , C.Y. ( 2018 ). Extrusion-based 3D printing and characterization of edible materials [University of Waterloo] . https://uwspace.uwaterloo.ca/handle/10012/12899
- Huang , J. , Wei , M. , Ren , R. et al. ( 2017 ). Morphological changes of blocklets during the gelatinization process of tapioca starch . Carbohydrate Polymers 163 : 324 – 329 .
- Jiang , H. , Zheng , L. , Zou , Y. et al. ( 2019 ). 3D food printing: main components selection by considering rheological properties . Critical Reviews in Food Science and Nutrition 59 : 1 – 13 . https://doi.org/10.1080/10408398.2018.1514363 .
- Karino , T. , Shibayama , M. , Okumura , Y. , and Ito , K. ( 2006 ). SANS study on pulley effect of slide-ring gel . Physica B: Condensed Matter 385 : 807 – 809 .
- Keerthana , K. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). Development of fiber-enriched 3D printed snacks from alternative foods: a study on button mushroom . Journal of Food Engineering . https://doi.org/10.1016/j.jfoodeng.2020.110116 .
- Khan , F. , Tanaka , M. , and Ahmad , S.R. ( 2015 ). Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices . Journal of Materials Chemistry B 3 ( 42 ): 8224 – 8249 .
- Kim , H.W. , Bae , H. , and Park , H.J. ( 2018a ). Classification of the printability of selected food for 3D printing: development of an assessment method using hydrocolloids as reference material . Journal of Food Engineering 215 : 23 – 32 .
- Kim , H.W. , Lee , J.H. , Park , S.M. et al. ( 2018b ). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food Printing . Journal of Food Science 83 ( 12 ): 2923 – 2932 .
- Kim , H.W. , Lee , I.J. , Park , S.M. et al. ( 2019 ). Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough . LWT 101 : 69 – 75 .
- Koh , L.W. , Kasapis , S. , Lim , K.M. , and Foo , C.W. ( 2009 ). Structural enhancement leading to retardation of in vitro digestion of rice dough in the presence of alginate . Food Hydrocolloids 23 ( 6 ): 1458 – 1464 .
- Kouzani , A.Z. , Adams , S. , Oliver , R. et al. ( 2016 ). 3D printing of a pavlova . 2016 IEEE Region 10 Conference (TENCON), pp. 2281 – 2285 .
- Kouzani , A.Z. , Adams , S. , Whyte , D.J. et al. ( 2017 ). 3D printing of food for people with swallowing difficulties . DesTech 2016: Proceedings of the International Conference on Design and Technology, pp. 23 – 29 .
- Krishnaraj , P. , Anukiruthika , T. , Choudhary , P. et al. ( 2019 ). 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour . Food and Bioprocess Technology 12 ( 10 ): 1776 – 1786 . https://doi.org/10.1007/s11947-019-02336-5 .
- Lawal , O.S. , Lapasin , R. , Bellich , B. et al. ( 2011 ). Rheology and functional properties of starches isolated from five improved rice varieties from West Africa . Food Hydrocolloids 25 ( 7 ): 1785 – 1792 .
- Le Tohic , C. , O'Sullivan , J.J. , Drapala , K.P. et al. ( 2018 ). Effect of 3D printing on the structure and textural properties of processed cheese . Journal of Food Engineering 220 : 56 – 64 .
- Lee , J.H. , Won , D.J. , Kim , H.W. , and Park , H.J. ( 2019 ). Effect of particle size on 3D printing performance of the food-ink system with cellular food materials . Journal of Food Engineering 256 : 1 – 8 . https://doi.org/10.1016/j.jfoodeng.2019.03.014 .
- Lei , N. , Chai , S. , Xu , M. et al. ( 2020 ). Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: a thermodynamic study . International Journal of Biological Macromolecules 147 : 109 – 116 .
- Leung , P.Y.V. ( 2017 ). Sugar 3D printing: additive manufacturing with molten sugar for investigating molten material fed printing. 3D . Printing and Additive Manufacturing 4 ( 1 ): 13 – 18 .
- Leyva-Porras , C. , Cruz-Alcantar , P. , Espinosa-Solis , V. et al. ( 2020 ). Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries . Polymers 12 ( 1 ): 5 .
- Li , W. , Ghazanfari , A. , Leu , M.C. , and Landers , R.G. ( 2015 ). Methods of extrusion on demand for high solids loading ceramic paste in freeform extrusion fabrication . Solid Freeform Fabrication Symposium, Austin, TX .
- Lille , M. , Nurmela , A. , Nordlund , E. et al. ( 2018 ). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing . Journal of Food Engineering 220 : 20 – 27 .
- Liu , L. and Ciftci , O.N. ( 2020 ). Effects of high oil compositions and printing parameters on food paste properties and printability in a 3D printing food processing model . Journal of Food Engineering , p. 110135 .
- Liu , Z. , Zhang , M. , Bhandari , B. , and Wang , Y. ( 2017 ). 3D printing: Printing precision and application in food sector . Trends in Food Science & Technology 69 : 83 – 94 .
- Liu , Z. , Zhang , M. , Bhandari , B. , and Yang , C. ( 2018 ). Impact of rheological properties of mashed potatoes on 3D printing . Journal of Food Engineering 220 : 76 – 82 . https://doi.org/10.1016/j.jfoodeng.2017.04.017 .
- Liu , Y. , Yu , Y. , Liu , C. et al. ( 2019a ). Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing . LWT 102 : 338 – 346 . https://doi.org/10.1016/j.lwt.2018.12.053 .
- Liu , Y. , Zhang , W. , Wang , K. et al. ( 2019b ). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: rheological properties and 3D printing performance . Food and Bioprocess Technology 12 ( 12 ): 1967 – 1979 .
- Liu , Y. , Liang , X. , Saeed , A. et al. ( 2019c ). Properties of 3D printed dough and optimization of printing parameters . Innovative Food Science & Emerging Technologies https://doi.org/10.1016/J.IFSET.2019.03.008 .
- Liu , Y. , Chen , L. , Xu , H. et al. ( 2019d ). Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization . International Journal of Biological Macromolecules 134 : 856 – 863 .
- Liu , Z. , Zhang , M. , and Ye , Y. ( 2020a ). Indirect prediction of 3D printability of mashed potatoes based on LF-NMR measurements . Journal of Food Engineering ; 110137 .
- Liu , Z. , Chen , H. , Zheng , B. et al. ( 2020b ). Understanding the structure and rheological properties of potato starch induced by hot-extrusion 3D printing . Food Hydrocolloids , pp. 105812 .
- Liu , Y. , Tang , T. , Duan , S. et al. ( 2020c ). Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste . LWT 127 : 109360 .
- Liu , Y. , Tang , T. , Duan , S. et al. ( 2020d ). Applicability of rice doughs as promising food materials in extrusion-based 3D printing . Food and Bioprocess Technology 13 ( 3 ): 548 – 563 .
- Maniglia , B.C. , Lima , D.C. , da Matta Júnior , M. et al. ( 2020 ). Dry heating treatment: a potential tool to improve the wheat starch properties for 3D food printing application . Food Research International 137 : 109731 .
- Mantihal , S. , Prakash , S. , Godoi , F.C. , and Bhandari , B. ( 2017 ). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling . Innovative Food Science and Emerging Technologies 44 : 21 – 29 . https://doi.org/10.1016/j.ifset.2017.09.012 .
- Mantihal , S. , Prakash , S. , and Bhandari , B. ( 2019 ). Textural modification of 3D printed dark chocolate by varying internal infill structure . Food Research International 121 : 648 – 657 .
- Mizrahi , M. , Golan , A. , Mizrahi , A.B. et al. ( 2016 ). Digital gastronomy: methods & recipes for hybrid cooking . Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 541 – 552 .
- Nachal , N. , Moses , J.A. , Karthik , P. , and Anandharamakrishnan , C. ( 2019 ). Applications of 3D printing in food processing . Food Engineering Reviews 11 ( 3 ): 123 – 141 . https://doi.org/10.1007/s12393-019-09199-8 .
- Nida , S. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). 3D printing of grinding and milling fractions of rice husk . Waste and Biomass Valorization : 1 – 10 . https://doi.org/10.1007/s12649-020-01000-w .
- Nijdam , J.J. , Agarwal , D. , and Schon , B.S. ( 2021a ). Assessment of a novel window of dimensional stability for screening food inks for 3D printing . Journal of Food Engineering 292 : 110349 .
- Nijdam , J.J. , LeCorre-Bordes , D. , Delvart , A. , and Schon , B.S. ( 2021b ). A rheological test to assess the ability of food inks to form dimensionally stable 3D food structures . Journal of Food Engineering 291 : 110235 .
- O'Bryan , C.S. , Bhattacharjee , T. , Hart , S. et al. ( 2017 ). Self-assembled micro-organogels for 3D printing silicone structures . Science Advances 3 ( 5 ): e1602800 .
- Oliveira , S.M. , Fasolin , L.H. , Vicente , A.A. et al. ( 2020 ). Printability, microstructure, and flow dynamics of phase-separated edible 3D inks . Food Hydrocolloids 109 : 106120 .
- Ouyang , L. , Yao , R. , Zhao , Y. , and Sun , W. ( 2016 ). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells . Biofabrication 8 ( 3 ): 35020 .
- Park , S.M. , Kim , H.W. , and Park , H.J. ( 2020 ). Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production . Journal of Food Engineering 271 : 109781 .
- Pauw , B.R. ( 2013 ). Everything SAXS: small-angle scattering pattern collection and correction . Journal of Physics: Condensed Matter 25 ( 38 ): 383201 .
- Peleg , M. and Normand , M.D. ( 2013 ). Modeling of fungal and bacterial spore germination under static and dynamic conditions . Applied and Environmental Microbiology 79 ( 21 ): 6765 – 6775 . https://doi.org/10.1128/AEM.02521-13 .
- Pérez , B. , Nykvist , H. , Brøgger , A.F. et al. ( 2019 ). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: a review . Food Chemistry 287 ( October 2018 ): 249 – 257 . https://doi.org/10.1016/j.foodchem.2019.02.090 .
- du Plessis , A. , Tshibalanganda , M. , and le Roux , S.G. ( 2020 ). Not all scans are equal: X-ray tomography image quality evaluation . Materials Today Communications 22 : 100792 .
- Pulatsu , E. , Su , J.-W. , Lin , J. , and Lin , M. ( 2020 ). Factors affecting 3D printing and post-processing capacity of cookie dough . Innovative Food Science & Emerging Technologies 61 : 102316 .
- Sanchez , P.D.C. , Hashim , N. , Shamsudin , R. , and Nor , M.Z.M. ( 2020 ). Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: a review . Trends in Food Science & Technology 96 : 208 – 221 .
- Sangeetha , G. , Rajeshwari , S. , and Venckatesh , R. ( 2011 ). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties . Materials Research Bulletin 46 ( 12 ): 2560 – 2566 .
- Severini , C. , Derossi , A. , and Azzollini , D. ( 2016 ). Variables affecting the printability of foods: preliminary tests on cereal-based products . Innovative Food Science and Emerging Technologies 38 : 281 – 291 . https://doi.org/10.1016/j.ifset.2016.10.001 .
- Severini , C. , Azzollini , D. , Albenzio , M. , and Derossi , A. ( 2018a ). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects . Food Research International 106 ( November 2017 ): 666 – 676 . https://doi.org/10.1016/j.foodres.2018.01.034 .
- Severini , C. , Derossi , A. , Ricci , I. et al. ( 2018b ). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects . Journal of Food Engineering 220 : 89 – 100 . https://doi.org/10.1016/j.jfoodeng.2017.08.025 .
-
Shahrubudin , N.
,
Lee , T.C.
, and
Ramlan , R.
(
2019
).
An overview on 3D printing technology: technological, materials, and applications
.
Procedia Manufacturing
35
:
1286
–
1296
.
https://doi.org/10.1016/j.promfg.2019.06.089
.
10.1016/j.promfg.2019.06.089 Google Scholar
- Shalviri , A. , Liu , Q. , Abdekhodaie , M.J. , and Wu , X.Y. ( 2010 ). Novel modified starch-xanthan gum hydrogels for controlled drug delivery: synthesis and characterization . Carbohydrate Polymers 79 ( 4 ): 898 – 907 .
-
Sharif , N.
,
Khoshnoudi-Nia , S.
, and
Jafari , S.M.
(
2020
).
Confocal laser scanning microscopy (CLSM) of nanoencapsulated food ingredients
. In:
Characterization of Nanoencapsulated Food Ingredients
(ed.
S.M. Jafari
), pp.
131
–
158
.
Elsevier
.
10.1016/B978-0-12-815667-4.00004-3 Google Scholar
- Shibayama , M. ( 2011 ). Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms . Polymer Journal 43 ( 1 ): 18 – 34 .
- Shibayama , M. ( 2012 ). Structure-mechanical property relationship of tough hydrogels . Soft Matter 8 ( 31 ): 8030 – 8038 .
- Soares , S. and Forkes , A. ( 2014 ). Insects Au gratin-an investigation into the experiences of developing a 3D printer that uses insect protein based flour as a building medium for the production of sustainable food . DS 78: Proceedings of the 16th International Conference on Engineering and Product Design Education (E&PDE14), Design Education and Human Technology Relations, University of Twente, The Netherlands, 04-05.09. 2014, pp. 426 – 431 .
- Sun , Y. , Zhang , M. , and Chen , H. ( 2020 ). LF-NMR intelligent evaluation of rheology and printability for 3D printing of cookie dough pretreated by microwave . LWT 132 : 109752 .
- Tanaka , H. , Asano , Y. , Watanabe , M. , and Masumori , A. ( 2015 ). Food printing technologies out of white rice . NIP & Digital Fabrication Conference 2015 ( 1 ): 289 – 292 .
- Theagarajan , R. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). 3D extrusion printability of rice starch and optimization of process variables . Food and Bioprocess Technology . https://doi.org/10.1007/s11947-020-02453-6 .
- Vancauwenberghe , V. , Katalagarianakis , L. , Wang , Z. et al. ( 2017 ). Pectin based food-ink formulations for 3-D printing of customizable porous food simulants . Innovative Food Science and Emerging Technologies 42 ( June ): 138 – 150 . https://doi.org/10.1016/j.ifset.2017.06.011 .
- Vancauwenberghe , V. , Delele , M.A. , Vanbiervliet , J. et al. ( 2018 ). Model-based design and validation of food texture of 3D printed pectin-based food simulants . Journal of Food Engineering 231 : 72 – 82 . https://doi.org/10.1016/j.jfoodeng.2018.03.010 .
- Vieira , M.V. , Oliveira , S.M. , Amado , I.R. et al. ( 2020 ). 3D printed functional cookies fortified with Arthrospira platensis : evaluation of its antioxidant potential and physical-chemical characterization . Food Hydrocolloids 107 : 105893 .
- Wang , S. , Luo , H. , Zhang , J. et al. ( 2014 ). Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: the role of surface proteins and lipids . Journal of Agricultural and Food Chemistry 62 ( 16 ): 3636 – 3643 .
- Wang , L. , Zhang , M. , Bhandari , B. , and Yang , C. ( 2018 ). Investigation on fish surimi gel as promising food material for 3D printing . Journal of Food Engineering 220 : 101 – 108 . https://doi.org/10.1016/j.jfoodeng.2017.02.029 .
- Wang , H. , Xiao , N. , Wang , X. et al. ( 2019 ). Effect of pregelatinized starch on the characteristics, microstructures, and quality attributes of glutinous rice flour and dumplings . Food Chemistry 283 : 248 – 256 .
- Wilson , A. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). Customized shapes for chicken meat–based products: feasibility study on 3D-printed nuggets . Food and Bioprocess Technology , pp. 1 – 16 .
- Xu , L. , Gu , L. , Su , Y. et al. ( 2020 ). Impact of thermal treatment on the rheological, microstructural, protein structures and extrusion 3D printing characteristics of egg yolk . Food Hydrocolloids 100 : 105399 .
-
Yang , F.
,
Zhang , M.
,
Prakash , S.
, and
Liu , Y.
(
2018a
).
Physical properties of 3D printed baking dough as affected by different compositions
.
Innovative Food Science and Emerging Technologies
49
(
2017
):
202
–
210
.
https://doi.org/10.1016/j.ifset.2018.01.001
.
10.1016/j.ifset.2018.01.001 Google Scholar
- Yang , F. , Zhang , M. , Bhandari , B. , and Liu , Y. ( 2018b ). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters . LWT - Food Science and Technology 87 : 67 – 76 . https://doi.org/10.1016/j.lwt.2017.08.054 .
- Yang , F. , Guo , C. , Zhang , M. et al. ( 2019 ). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation . LWT 102 : 89 – 99 .
- Zeng , X. , Chen , H. , Chen , L. , and Zheng , B. ( 2020 ). Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing . Food Chemistry 342 : 128362 .
- Zhang , B. , Ni , B. , Lu , S. et al. ( 2012 ). Synthesis and characterization of a novel potato starch derivative with cationic acetylcholine groups . International Journal of Biological Macromolecules 50 ( 3 ): 701 – 706 .
- Zhang , B. , Li , X. , Liu , J. et al. ( 2013 ). Supramolecular structure of A-and B-type granules of wheat starch . Food Hydrocolloids 31 ( 1 ): 68 – 73 .
- Zhang , B. , Zhou , W. , Qiao , D. et al. ( 2019 ). Changes in nanoscale chain assembly in sweet potato starch lamellae by downregulation of biosynthesis enzymes . Journal of Agricultural and Food Chemistry 67 ( 22 ): 6302 – 6312 .
-
Zhang , H.
,
Zhang , F.
, and
Yuan , R.
(
2020
).
Applications of natural polymer-based hydrogels in the food industry
. In:
Hydrogels Based on Natural Polymers
, pp.
357
–
410
.
Elsevier
.
10.1016/B978-0-12-816421-1.00015-X Google Scholar
- Zhao , Y. , Li , Y. , Mao , S. et al. ( 2015 ). The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology . Biofabrication 7 ( 4 ): 45002 .
- Zhu , F. ( 2017 ). NMR spectroscopy of starch systems . Food Hydrocolloids 63 : 611 – 624 .
- Zhu , S. , Stieger , M.A. , van der Goot , A.J. , and Schutyser , M.A.I. ( 2019 ). Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behaviour . Innovative Food Science & Emerging Technologies 58 : 102214 .