Current State of 3D Printing Technologies and Materials
Poul Norby
Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
Search for more papers by this authorPoul Norby
Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
Storage of energy is crucial in the future society where sustainable energy sources will become dominating. The intermittent nature of energy sources as wind and solar makes it necessary to improve the energy storage solutions. Generally, 3D printed electrode structures can be divided into two classes reflecting the strategy for battery assembly: 3D structuring of 2-dimensional electrode surfaces and interdigitated patterns for in situ built 3-dimensional electrode/electrolyte structures. When 3D-printing an entire battery the goal is to prepare an all-solid-state battery, and one of the key requirements is therefore to be able to print a solid electrolyte. Solid electrolytes for solid state lithium-ion batteries can be divided into organic and inorganic materials. A further development into true 3-dimensional interdigitated patterns could be one of the next steps in development of 3D-printed batteries.
References
- Arthur, T. S., Bates, D. J., Cirigliano, N., Johnson, D. C., Malati, P., Mosby, J. M., … Dunn, B. (2011). Three-dimensional electrodes and battery architectures. MRS Bulletin, 36(7), 523–531. doi:10.1557/mrs.2011.156
- Yu, X., Liu, Y., Pham, H., Sarkar, S., Ludwig, B., Chen, I., … Pan, H. (2019). Customizable nonplanar printing of lithium-ion batteries. Advanced Materials Technologies, 1900645. doi:10.1002/admt.201900645
- Yoshima, K., Munakata, H., & Kanamura, K. (2012). Fabrication of micro lithium-ion battery with 3D anode and 3D cathode by using polymer wall. Journal of Power Sources, 208, 404–408. doi:10.1016/j.jpowsour.2012.02.045
- Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., & Lewis, J. A. (2013). 3D printing of interdigitated Li-ion microbattery architectures. Advanced Materials, 25(33), 4539–4543. doi:10.1002/adma.201301036
- Chang, P., Mei, H., Zhou, S., Dassios, K. G., & Cheng, L. (2019). 3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 7(9), 4230–4258. doi:10.1039/c8ta11860d
- Deiner, L. J., Gomes Bezerra, C. A., Howell, T. G., & Powell, A. S. (2019). Digital printing of solid state lithium ion batteries. Advanced Engineering Materials, 1900737, 1–18. doi:10.1002/adem.201900737
- Zhu, C., Liu, T., Qian, F., Chen, W., Chandrasekaran, S., Yao, B., … Li, Y. (2017). 3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 15, 107–120. doi:10.1016/j.nantod.2017.06.007
- Wei, M., Zhang, F., Wang, W., Alexandridis, P., Zhou, C., & Wu, G. (2017). 3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources, 354, 134–147. doi:10.1016/j.jpowsour.2017.04.042
- Ruiz-Morales, J. C., Tarancón, A., Canales-Vázquez, J., Méndez-Ramos, J., Hernández-Afonso, L., Acosta-Mora, P., … Fernández-González, R. (2017). Three dimensional printing of components and functional devices for energy and environmental applications. Energy and Environmental Science, 10(4), 846–859. doi:10.1039/c6ee03526d
- Ambrosi, A., & Pumera, M. (2016). 3D-printing technologies for electrochemical applications. Chemical Society Reviews, 45(10), 2740–2755. doi:10.1039/c5cs00714c
- Tian, X., Jin, J., Yuan, S., Chua, C. K., Tor, S. B., & Zhou, K. (2017). Emerging 3D-printed electrochemical energy storage devices: A critical review. Advanced Energy Materials, 7(17), 1–17. doi:10.1002/aenm.201700127
- Zhang, F., Wei, M., Viswanathan, V. V., Swart, B., Shao, Y., Wu, G., & Zhou, C. (2017). 3D printing technologies for electrochemical energy storage. Nano Energy, 40(May), 418–431. doi:10.1016/j.nanoen.2017.08.037
- Park, S., Nenov, N. S., Ramachandran, A., Chung, K., Hoon Lee, S., Yoo, J., … Bae, C. J. (2018). Development of highly energy densified ink for 3D printable batteries. Energy Technology, 6(10), 2058–2064. doi:10.1002/ente.201800279
- Delannoy, P. E., Riou, B., Brousse, T., Le Bideau, J., Guyomard, D., & Lestriez, B. (2015). Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries. Journal of Power Sources, 287, 261–268. doi:10.1016/j.jpowsour.2015.04.067
- Ben-Barak, I., Kamir, Y., Menkin, S., Goor, M., Shekhtman, I., Ripenbein, T., … Peled, E. (2019). Drop-on-demand 3D printing of lithium iron phosphate cathodes. Journal of The Electrochemical Society, 166(3), A5059–A5064. doi:10.1149/2.0091903jes
- Maurel, A., Courty, M., Fleutot, B., Tortajada, H., Prashantha, K., Armand, M., … Dupont, L. (2018). Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing. Chemistry of Materials, 30(21), 7484–7493. doi:10.1021/acs.chemmater.8b02062
- Hu, J., Jiang, Y., Cui, S., Duan, Y., Liu, T., Guo, H., … Pan, F. (2016). 3D-Printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Advanced Energy Materials, 6(18), 1–8. doi:10.1002/aenm.201600856
- Liu, C., Cheng, X., Li, B., Chen, Z., Mi, S., & Lao, C. (2017). Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials, 10(8). doi:10.3390/ma10080934
- Liu, C., Xu, F., Cheng, X., Tong, J., Liu, Y., Chen, Z., … Ma, J. (2019). Comparative study on the electrochemical performance of LiFePO 4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process. Ceramics International, 45(11), 14188–14197. doi:10.1016/j.ceramint.2019.04.124
- Ding, J., Shen, K., Du, Z., Li, B., & Yang, S. (2017). 3D-Printed hierarchical porous frameworks for sodium storage. ACS Applied Materials and Interfaces, 9(48), 41871–41877. doi:10.1021/acsami.7b12892
- Wang, J., Sun, Q., Gao, X., Wang, C., Li, W., Holness, F. B., … Sun, X. (2018). Toward high areal energy and power density electrode for li-ion batteries via optimized 3D printing approach. ACS Applied Materials and Interfaces, 10(46), 39794–39801. doi:10.1021/acsami.8b14797
- Saleh, M. S., Li, J., Park, J., & Panat, R. (2018). 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Additive Manufacturing, 23(April), 70–78. doi:10.1016/j.addma.2018.07.006
- Qiao, Y., Liu, Y., Chen, C., Xie, H., Yao, Y., He, S., … Hu, L. (2018). 3D-Printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Advanced Functional Materials, 28(51). doi:10.1002/adfm.201805899
- Lacey, S. D., Kirsch, D. J., Li, Y., Morgenstern, J. T., Zarket, B. C., Yao, Y., … Hu, L. (2018). Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Advanced Materials, 30(12), 1–9. doi:10.1002/adma.201705651
- Zhang, C., Shen, K., Li, B., Li, S., & Yang, S. (2018). Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. Journal of Materials Chemistry A, 6(41), 19960–19966. doi:10.1039/c8ta08559e
- Shen, K., Mei, H., Li, B., Ding, J., & Yang, S. (2018). 3D Printing sulfur copolymer-graphene architectures for Li-S batteries. Advanced Energy Materials, 8(4), 1–6. doi:10.1002/aenm.201701527
- Miranda, D., Costa, C. M., Almeida, A. M., & Lanceros-Méndez, S. (2016). Computer simulation evaluation of the geometrical parameters affecting the performance of two dimensional interdigitated batteries. Journal of Electroanalytical Chemistry, 780, 1–11. doi:10.1016/j.jelechem.2016.08.031
- Li, J., Leu, M. C., Panat, R., & Park, J. (2017). A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing. Materials and Design, 119, 417–424. doi:10.1016/j.matdes.2017.01.088
- Fu, K., Wang, Y., Yan, C., Yao, Y., Chen, Y., Dai, J., … Hu, L. (2016). Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials, 28, 2587–2594. doi:10.1002/adma.201505391
- Yeganeh Ghotbi, M. (2019). Solid state electrolytes for electrochemical energy devices. Journal of Materials Science: Materials in Electronics, 30(15), 13835–13854. doi:10.1007/s10854-019-01749-4
- Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., … Liu, X. (2019). Review on polymer-based composite electrolytes for lithium batteries. Frontiers in Chemistry, 7(August), 1–17. doi:10.3389/fchem.2019.00522
- Cheng, M., Jiang, Y., Yao, W., Yuan, Y., Deivanayagam, R., Foroozan, T., … Shahbazian-Yassar, R. (2018). Elevated-temperature 3D printing of hybrid solid-state electrolyte for li-ion batteries. Advanced Materials, 30(39), 1–10. doi:10.1002/adma.201800615
- Blake, A. J., Kohlmeyer, R. R., Hardin, J. O., Carmona, E. A., Maruyama, B., Berrigan, J. D., … Durstock, M. F. (2017). 3D Printable ceramic–polymer electrolytes for flexible high-performance li-ion batteries with enhanced thermal stability. Advanced Energy Materials, 7, 1602920. doi:10.1002/aenm.201602920
- McOwen, D. W., Xu, S., Gong, Y., Wen, Y., Godbey, G. L., Gritton, J. E., … Wachsman, E. D. (2018). 3D-Printing electrolytes for solid-state batteries. Advanced Materials, 30(18), 1–7. doi:10.1002/adma.201707132
- Reyes, C., Somogyi, R., Niu, S., Cruz, M. A., Yang, F., Catenacci, M. J., … Wiley, B. J. (2018). Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Applied Energy Materials, 1(10), 5268–5279. doi:10.1021/acsaem.8b00885
- Wang, Y., Chen, C., Xie, H., Gao, T., Yao, Y., Pastel, G., … Hu, L. (2017). 3D-Printed all-fiber li-ion battery toward wearable energy storage. Advanced Functional Materials, 27(43), 1–8. doi:10.1002/adfm.201703140
- Down, M. P., Martínez-Periñán, E., Foster, C. W., Lorenzo, E., Smith, G. C., & Banks, C. E. (2019). Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures. Advanced Energy Materials, 9(11). doi:10.1002/aenm.201803019
- Wei, T. S., Ahn, B. Y., Grotto, J., & Lewis, J. A. (2018). 3D Printing of customized li-ion batteries with thick electrodes. Advanced Materials, 30(16), 1–7. doi:10.1002/adma.201703027