Thermoelectrics
Fredrick Kim
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorSeungjun Choo
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJae Sung Son
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorFredrick Kim
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorSeungjun Choo
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJae Sung Son
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
World energy consumption has rapidly grown thanks to a robust global economy and increased heating and cooling demand in developing countries. Thermoelectric (TE) energy conversion can provide a unique solution to generate electricity from heat, more than 60% of which is dissipated to the environment from nature, industry, and transportation. Three-dimensional (3D) printing technologies can revolutionize several aspects of TE module manufacturing. This chapter reviews the recent progress in the development of 3D printing technologies for TE materials and devices. It discusses various processes of 3Dprinting—such as the extrusion-based process, fused deposition modeling, stereolithography apparatus, and selective laser sintering—available to synthesize and control the geometry of TE materials, including several examples of new types of TE power generators created with 3D printing technologies. The chapter presents an outlook of this field regarding the issues and solutions facing the commercialization of TE power generation technology.
References
- Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15, 1513.
- Jo, S., Choo, S., Kim, F., Heo, S. H., & Son, J. S. (2019). Ink processing for thermoelectric materials and power-generating devices. Advanced Materials, 31, e1804930.
- Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457.
- Sundarraj, P., Maity, D., Roy, S. S., & Taylor, R. A. (2014). Recent advances in thermoelectric materials and solar thermoelectric generators – A critical review. RSC Advances, 4, 46860.
- Bahk, J.-H., Fang, H., Yazawa, K., & Shakouri, A. (2015). Flexible thermoelectric materials and device optimization for wearable energy harvesting. Journal of Materials Chemistry C, 3, 10362.
- Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167.
- Sootsman, J. R., Chung, D. Y., & Kanatzidis, M. G. (2009). New and old concepts in thermoelectric materials. Angewandte Chemie (International Ed. in English), 48, 8616.
- Rull-Bravo, M., Moure, A., Fernández, J. F., & Martín-González, M. (2015). Skutterudites as thermoelectric materials: Revisited. RSC Advances, 5, 41653.
- Wang, S., Li, H., Lu, R., Zheng, G., & Tang, X. (2013). Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology, 24, 285702.
- Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., … Ren, Z. (2008). High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320, 634.
- Miura, S., Sato, Y., Fukuda, K., Nishimura, K., & Ikeda, K. (2000). Texture and thermoelectric properties of hot-extruded Bi2Te3 compound. Materials Science and Engineering A, 277, 244.
- M'Barki, A., Bocquet, L., & Stevenson, A. (2017). Linking rheology and printability for dense and strong ceramics by direct ink writing. Scientific Reports, 7, 6017.
- Lower, G. W., Walker, W. C., & Zettlemoyer, A. C. (1953). The rheology of printing inks. II. Temperature control studies in the rotational viscometer. Journal of Colloid Science, 8, 116.
- Wang, Z., Wang, X., & Fang, T. (1998). The rheology of the offset inks. Surface Coatings International, 81, 219.
- Zhu, C., & Smay, J. E. (2011). Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication. Journal of Rheology, 55, 655.
- Nadkarni, S. S., & Smay, J. E. (2006). Concentrated barium titanate colloidal gels prepared by bridging flocculation for use in solid freeform fabrication. Journal of the American Ceramic Society, 89, 96.
- Lewis, J. A. (2006). Direct ink writing of 3D functional materials. Advanced Functional Materials, 16, 2193.
- We, J. H., Kim, S. J., & Cho, B. J. (2014). Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy, 73, 506.
- Du, Y., Shen, S. Z., Cai, K., & Casey, P. S. (2012). Research progress on polymer–inorganic thermoelectric nanocomposite materials. Progress in Polymer Science, 37, 820.
- Madan, D., Wang, Z., Chen, A., Wright, P. K., & Evans, J. W. (2013). High-performance dispenser printed MA p-type Bi0.5Sb1.5Te3 flexible thermoelectric generators for powering wireless sensor networks. ACS Applied Materials & Interfaces, 5, 11872.
- Kim, F., Kwon, B., Eom, Y., Lee, J. E., Park, S., Jo, S., … Son, J. S. (2018). 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy, 3, 301.
- Park, S. H., Jo, S., Kwon, B., Kim, F., Ban, H. W., Lee, J. E., … Son, J. S. (2016). High-performance shape-engineerable thermoelectric painting. Nature Communications, 7, 13403.
- Jo, S., Park, S. H., Ban, H. W., Gu, D. H., Kim, B.-S., Son, J. H., … Son, J. S. (2016). Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials. Journal of Alloys and Compounds, 689, 899.
- Jo, S., Park, S. H., Shin, H., Oh, I., Heo, S. H., Ban, H. W., … Son, J. S. (2019). Soluble telluride-based molecular precursor for solution-processed high-performance thermoelectrics. ACS Applied Energy Materials, 2, 4582.
- Webber, D. H., & Brutchey, R. L. (2013). Alkahest for V2VI3 chalcogenides: Dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. Journal of the American Chemical Society, 135, 15722.
- Kovalenko, M. V., Spokoyny, B., Lee, J. S., Scheele, M., Weber, A., Perera, S., … Talapin, D. V. (2010). Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. Journal of the American Chemical Society, 132, 6686.
- Eom, Y., Kim, F., Yang, S. E., Son, J. S., & Chae, H. G. (2019). Rheological design of 3D printable all-inorganic inks using BiSbTe-based thermoelectric materials. Journal of Rheology, 63, 291.
- Saeidi-Javash, M., Kuang, W., Dun, C., & Zhang, Y. (2019). 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates. Advanced Functional Materials, 29, 1901930.
- Dudek, P. (2013). FDM 3D Printing thecnology in manufacturing composite elements. Archives of Metallurgy and Materials, 58, 1415.
- Oztan, C., Ballikaya, S., Ozgun, U., Karkkainen, R., & Celik, E. (2019). Additive manufacturing of thermoelectric materials via fused filament fabrication. Applied Materials Today, 15, 77.
- Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276.
- Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., … McAlpine, M. C. (2013). 3D printed bionic ears. Nano Letters, 13, 2634.
- Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., & Lewis, J. A. (2014). Lewis, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, 26, 3124.
- M. He, Y. Zhao, B. Wang, Q. Xi, J. Zhou, Z. Liang, 3D Printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 2015, 11, 5889.
- Kumar, S., Hofmann, M., Steinmann, B., Foster, E. J., & Weder, C. (2012). Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals. ACS Applied Materials & Interfaces, 4, 5399.
- Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442.
- Vandenbroucke, B., & Kruth, J. P. (2007). Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 13, 196.
- Rafi, H. K., Pal, D., Patil, N., Starr, T. L., & Stucker, B. E. (2014). Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. Journal of Materials Engineering and Performance, 23, 4421.
- Riemer, A., Leuders, S., Thöne, M., Richard, H. A., Tröster, T., & Niendorf, T. (2014). On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Engineering Fracture Mechanics, 120, 15.
- Wang, Z., Guan, K., Gao, M., Li, X., Chen, X., & Zeng, X. (2012). The microstructure and mechanical properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds, 513, 518.
- Song, B., Dong, S., Zhang, B., Liao, H., & Coddet, C. (2012). Microstructure and tensile properties of iron parts fabricated by selective laser melting. Materials and Design, 35, 120.
- Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., … Wicker, R. B. (2012). Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Journal of Materials Research and Technology, 28, 1.
- Alhnan, M. A., Okwuosa, T. C., Sadia, M., Wan, K. W., Ahmed, W., & Arafat, B. (2016). Emergence of 3D printed dosage forms: Opportunities and challenges. Pharmaceutical Research, 33, 1817.
- Lin, D., Nian, Q., Deng, B., Jin, S., Hu, Y., Wang, W., & Cheng, G. J. (2014). Three-dimensional printing of complex structures: Man made or toward nature? ACS Nano, 8, 9710.
- Vrancken, B., Thijs, L., Kruth, J.-P., & Van Humbeeck, J. (2012). Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties. Journal of Alloys and Compounds, 541, 177.
- Kanagarajah, P., Brenne, F., Niendorf, T., & Maier, H. J. (2013). Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Materials Science and Engineering A, 588, 188.
- El-Desouky, A. R. A., Bardet, P., Andre, M., & LeBlanc, S. (2015). Selective laser melting of a bismuth telluride thermoelectric materials. Proceedings of Solid Freeform Fabrication Symposium, 1043.
- El-Desouky, A., Carter, M., Mahmoudi, M., Elwany, A., & LeBlanc, S. (2017). Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. Journal of Manufacturing Processes, 25, 411.
- El-Desouky, A., Carter, M., Andre, M. A., Bardet, P. M., & LeBlanc, S. (2016). Pulsed laser melting of bismuth telluride thermoelectric materials. Materials Letters, 185, 598.
- Su, X., Li, H., Yan, Y., Wang, G., Chi, H., Zhou, X., … Uher, C. (2012). Microstructure and thermoelectric properties of CoSb2. 75Ge0. 25− xTex prepared by rapid solidification. Acta Materialia, 60, 3536.
- Li, H., Tang, X., Su, X., & Zhang, Q. (2008). Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Applied Physics Letters, 92, 202114.
-
Li, G., Bajaj, S., Aydemir, U., Hao, S., Xiao, H., Goddard, W. A., … Snyder, G. J. (2016). P-type Co interstitial defects in thermoelectric skutterudite CoSb3 due to the breakage of Sb4-rings. Journal of Materials Chemistry, 28, 2172.
10.1021/acs.chemmater.6b00112 Google Scholar
- Yan, Y., Ke, H., Yang, J., Uher, C., & Tang, X. (2018). Fabrication and thermoelectric properties of n-Type CoSb2.85Te0.15 using selective laser melting. ACS Applied Materials & Interfaces, 10, 13669.
- Shi, J., Chen, H., Jia, S., & Wang, W. (2019). 3D printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. Journal of Manufacturing Processes, 37, 370.
- Qiu, J., Yan, Y., Luo, T., Tang, K., Yao, L., Zhang, J., … Tang, X. (2019). 3D Printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy & Environmental Science, 12, 3106.
- Yan, Y., Geng, W., Qiu, J., Ke, H., Luo, C., Yang, J., … Tang, X. (2018). Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. RSC Advances, 8, 15796.
- Mao, Y., Yan, Y., Wu, K., Xie, H., Xiu, Z., Yang, J., … Tang, X. (2017). Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification. RSC Advances, 7, 21439.
- Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., … Gogna, P. (2007). New directions for low-dimensional thermoelectric materials. Advanced Materials, 19, 1043.
- Lin, C. Y., Wirtz, T., LaMarca, F., & Hollister, S. J. (2007). Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Materials Research. Part A, 83, 272.
- Xiao, Z., Yang, Y., Xiao, R., Bai, Y., Song, C., & Wang, D. (2018). Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Materials and Design, 143, 27.