3D-Printing for Solar Cells
Marcel Di Vece
Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, University of Milan, Milan, Italy
Search for more papers by this authorRuud E.I. Schropp
Department of Physics and Astronomy, University of the Western Cape, Belville, South Africa
Search for more papers by this authorMarcel Di Vece
Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, University of Milan, Milan, Italy
Search for more papers by this authorRuud E.I. Schropp
Department of Physics and Astronomy, University of the Western Cape, Belville, South Africa
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
This chapter discusses the current promising developments in 3D-printing for photovoltaic (PV) structures, from interconnects to novel perovskite layer deposition. It demonstrates the current research activity and shows possible future possibilities. The chapter describes how a light management system for solar cells using a light trap was investigated using 3D-printing. Internal light trapping schemes, like improve the absorption, but at the same time deteriorate the electrical properties of the solar cell by inducing additional bulk and surface recombination centers. An external light trap is of interest for all solar cell technologies, because the light trap is placed as an add-on on top of the cell and retroreflects the light that is reflected as well as the light that is radiatively emitted by the solar cell. The top of the external light trap is a compound parabolic concentrator (CPC). CPCs are generally applied for concentrated PVs and solar thermal applications.
References
- Schmela, M. (2019). Global market outlook for solar power/2019–2023. Brussels: Solar Power Europe. p 90.
- Green, M. A. (2003). Third generation photovoltaics: Advanced solar energy conversion. Berlin: Springer.
- Conibeer, G. (2007). Third-generation photovoltaics. Materials Today, 10(11), 42–50. doi:10.1016/S1369-7021(07)70278-X
- Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of P-N junction solar cells. Journal of Applied Physics, 32(3), 510–519. doi:10.1063/1.1736034
- Ruiz-Morales, J. C., Tarancón, A., Canales-Vázquez, J., Méndez-Ramos, J., Hernández-Afonso, L., Acosta-Mora, P., … Fernández-González, R. (2017). Three dimensional printing of components and functional devices for energy and environmental applications. Energy & Environmental Science, 10(4), 846–859. doi:10.1039/C6EE03526D
- Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Processing and Preparation of Polymer and Organic Solar Cells, 93(4), 394–412. doi:10.1016/j.solmat.2008.10.004
- Schweitzer, A., Geißendörfer, S., Siepmann, O., Sergeev, O., & Vehse, M. (2011). Monolithic series interconnection of flexible thin-film PV devices. Proceedings of the 26th European Photovoltaic Solar Energy Conference Proceedings, 1157–1160. doi:10.4229/EUPVSEC20152015-3CV.1.3.
- Vak, D., Hwang, K., Faulks, A., Jung, Y.-S., Clark, N., Kim, D.-Y., … Watkins, S. E. (2015). 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Advanced Energy Materials, 5(4), 1401539. doi:10.1002/aenm.201401539
- Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F. H., Watkins, S. E., Subbiah, J., … Vak, D. (2015). Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 27(7), 1241–1247. doi:10.1002/adma.201404598
- Di Giacomo, F., Fakharuddin, A., Jose, R., & Brown, T. M. (2016). Progress, challenges and perspectives in flexible perovskite solar cells. Energy & Environmental Science, 9(10), 3007–3035. doi:10.1039/C6EE01137C
- Yoon, J., Baca, A. J., Park, S.-I., Elvikis, P., Geddes, J. B., III, Li, L., … Rogers, J. A. (2008). Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Materials, 7, 907.
- Gizachew, Y. T., Escoubas, L., Simon, J. J., Pasquinelli, M., Loiret, J., Leguen, P. Y., … Aguerre, J. P. (2011). Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells. Special Issue Thin Film Photovoltaic Applications TFPA, 95, S70–S82. doi:10.1016/j.solmat.2010.12.031
- Galagan, Y., Coenen, E. W. C., Sabik, S., Gorter, H. H., Barink, M., Veenstra, S. C., … Blom, P. W. M. (2012). Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Solar Energy Materials & Solar Cells, 104, 32–38. doi:10.1016/j.solmat.2012.04.039
- Jiang, Y., Chen, Y., Zhang, M., Qiu, Y., Lin, Y., & Pan, F. (2016). 3D-printing Ag-line of front-electrodes with optimized size and interface to enhance performance of si solar cells. RSC Advances, 6, 51871–51876. doi:10.1039/C6RA08985B
- Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S.-I., Xiong, Y., … Lewis, J. A. (2009). Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323(5921), 1590. doi:10.1126/science.1168375
- Ahn, B. Y., Lorang, D. J., Duoss, E. B., & Lewis, J. A. (2010). Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chemical Communications, 46, 7118–7120. doi:10.1039/C0CC01691H
- Myers, B., Bernardi, M., & Grossman, J. C. (2010). Three-dimensional photovoltaics. Applied Physics Letters, 96(7), 071902. doi:10.1063/1.3308490
- Bernardi, M., Ferralis, N., Wan, J. H., Villalon, R., & Grossman, J. C. (2012). Solar energy generation in three dimensions. Energy & Environmental Science, 5(5), 6880–6884. doi:10.1039/C2EE21170J
- ZigZagSolar.
- Mathies, F., Eggers, H., Richards, B. S., Hernandez-Sosa, G., Lemmer, U., & Paetzold, U. W. (2018). Inkjet-printed triple cation perovskite solar cells. ACS Applied Energy Materials, 1, 1834–1839. doi:10.1021/acsaem.8b00222
- Howard, I. A., Abzieher, T., Hossain, I. M., Eggers, H., Schackmar, F., Ternes, S., … Paetzold, U. W. (2019). Coated and printed perovskites for photovoltaic applications. Advanced Materials, 0(0), 1806702. doi:10.1002/adma.201806702
- Andersen, T. R., Dam, H. F., Hösel, M., Helgesen, M., Carlé, J. E., Larsen-Olsen, T. T., … Krebs, F. C. (2014). Ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy & Environmental Science, 7(9), 2925–2933. doi:10.1039/C4EE01223B
- Huang, Q.-Z., Zhu, Y.-Q., Shi, J.-F., Wang, L.-L., Zhong, L.-W., & Xu, G. (2017). Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology. Chinese Physics B, 26(3), 038401. doi:10.1088/1674-1056/26/3/038401
- Apostoleris, H., Leland, J., Chiesa, M., & Stefancich, M. (2016, September 7). 3D-printed concentrators for tracking-integrated CPV modules. Proceedings of the SPIE 9955, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIII—Commemorating the 50th Anniversary of Nonimaging Optics, 995507. doi:10.1117/12.2237786.
- Luxexcel.
- Mokkapati, S., & Catchpole, K. R. (2012). Nanophotonic light trapping in solar cells. Journal of Applied Physics, 112(10), 101101. doi:10.1063/1.4747795
- Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11, 174.
- Rau, U., & Kirchartz, T. (2014). On the thermodynamics of light trapping in solar cells. Nature Materials, 13, 103.
- Rau, U., Paetzold, U. W., & Kirchartz, T. (2014). Thermodynamics of light management in photovoltaic devices. Physical Review B, 90(3), 035211. doi:10.1103/PhysRevB.90.035211
- Sun, C.-H., Jiang, P., & Jiang, B. (2008). Broadband moth-eye antireflection coatings on silicon. Applied Physics Letters, 92(6), 061112. doi:10.1063/1.2870080
- Matsui, T., Tsukiji, M., Saika, H., Toyama, T., & Okamoto, H. (2002). Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells. 19th International Conference on Amorphous and Microcrystalline Semiconductors, 299–302, 1152–1156. doi:10.1016/S0022-3093(01)01083-3
- Schropp, R. E. I., Rath, J. K., & Li, H. (2009). Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells. Proceedings of 4th International Asian Conference on Crystal Growth and Crystal Technology, 311(3), 760–764. doi:10.1016/j.jcrysgro.2008.09.155
- Python, M., Dominé, D., Söderström, T., Meillaud, F., & Ballif, C. (2010). Microcrystalline silicon solar cells: Effect of substrate temperature on cracks and their role in post-oxidation. Progress in Photovoltaics: Research and Applications, 18(7), 491–499. doi:10.1002/pip.956
- Paetzold, U. W., Smeets, M., Meier, M., Bittkau, K., Merdzhanova, T., Smirnov, V., … Rau, U. (2014). Disorder improves nanophotonic light trapping in thin-film solar cells. Applied Physics Letters, 104(13), 131102. doi:10.1063/1.4869289
- Springer, J., Poruba, A., Müllerova, L., Vanecek, M., Kluth, O., & Rech, B. (2004). Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. Journal of Applied Physics, 95(3), 1427–1429. doi:10.1063/1.1633652
- Haug, F.-J., Söderström, T., Cubero, O., Terrazzoni-Daudrix, V., & Ballif, C. (2008). Plasmonic absorption in textured silver back reflectors of thin film solar cells. Journal of Applied Physics, 104(6), 064509. doi:10.1063/1.2981194
- Moulin, E., Paetzold, U. W., Kirchhoff, J., Bauer, A., & Carius, R. (2012). Study of detached back reflector designs for thin-film silicon solar cells. Physica Status Solidi RRL: Rapid Research Letters, 6(2), 65–67. doi:10.1002/pssr.201105463
- Spinelli, P., & Polman, A. (2012). Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Optics Express, 20(S5), A641–A654. doi:10.1364/OE.20.00A641
- van Lare, M., Lenzmann, F., & Polman, A. (2013). Dielectric back scattering patterns for light trapping in thin-film SI solar cells. Optics Express, 21(18), 20738–20746. doi:10.1364/OE.21.020738
- Sai, H., Kanamori, Y., & Kondo, M. (2011). Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response. Applied Physics Letters, 98(11), 113502. doi:10.1063/1.3565249
- Biswas, R., & Xu, C. (2011). Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit. Optics Express, 19(S4), A664–A672. doi:10.1364/OE.19.00A664
- Wang, K. X., Yu, Z., Liu, V., Cui, Y., & Fan, S. (2012). Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters, 12(3), 1616–1619. doi:10.1021/nl204550q
- Campbell, P., & Green, M. A. (1986). The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Transactions on Electron Devices, 33(2), 234–239. doi:10.1109/T-ED.1986.22472
- Winston, R. (1974). Principles of solar concentrators of a novel design. Solar Energy, 16(2), 89–95. doi:10.1016/0038-092X(74)90004-8
- Gaspare, M. (1984). High yielding solar modulus for the transformation, on photovoltaic cells, of a substantially monochromatic radiation in electric energy.
- Goetzberger, A., Goldschmidt, J. C., Peters, M. (2011). Photovoltaic device and use thereof. Patent No. WO2011098212.
- Peumans, P., Bulović, V., & Forrest, S. R. (2000). Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters, 76(19), 2650–2652. doi:10.1063/1.126433
- Atwater, J. H., Spinelli, P., Kosten, E., Parsons, J., Van Lare, C., Van de Groep, J., … Atwater, H. A. (2011). Microphotonic parabolic light directors fabricated by two-photon lithography. Applied Physics Letters, 99(15), 151113. doi:10.1063/1.3648115
- Yan, W., Hossain, M. M., & Gu, M. (2013). High light-directing micrometer-sized parabolic mirror arrays. Optics Letters, 38(16), 3177–3180. doi:10.1364/OL.38.003177
- Spinelli, P., Macco, B., Verschuuren, M. A., Kessels, W. M. M., & Polman, A. (2013). Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination. Applied Physics Letters, 102(23), 233902. doi:10.1063/1.4810970
-
Luque, A., & Hegedus, S. (2011). Handbook of photovoltaic science and engineering. Wiley.
10.1002/9780470974704.ch4 Google Scholar
- Zhao, J., Wang, A., Green, M. A., & Ferrazza, F. (1998). 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 73(14), 1991–1993. doi:10.1063/1.122345
- Kosten, E. D., Atwater, J. H., Parsons, J., Polman, A., & Atwater, H. A. (2013). Highly efficient GaAs solar cells by limiting light emission angle. Light: Science & Applications, 2, e45.
- Kosten, E. D., Kayes, B. M., & Atwater, H. A. (2014). Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells. Energy & Environmental Science, 7(6), 1907–1912. doi:10.1039/C3EE43584A
- Green, M. A. (2012). Radiative efficiency of state-of-the-art photovoltaic cells. Progress in Photovoltaics: Research and Applications, 20(4), 472–476. doi:10.1002/pip.1147
- Braun, A., Katz, E. A., Feuermann, D., Kayes, B. M., & Gordon, J. M. (2013). Photovoltaic performance enhancement by external recycling of photon emission. Energy & Environmental Science, 6(5), 1499–1503. doi:10.1039/C3EE40377G
- Yablonovitch, E. (1982). Statistical ray optics. Journal of the Optical Society of America, 72(7), 899–907. doi:10.1364/JOSA.72.000899
- Winston, R., Miñano, J. C., & Benítez, P. (2005). Nonimaging optics, Electronics & Electrical. Burlington, MA.
- Rabl, A., O'Gallagher, J., & Winston, R. (1980). Design and test of non-evacuated solar collectors with compound parabolic concentrators. Solar Energy, 25(4), 335–351. doi:10.1016/0038-092X(80)90346-1
- Solargenix Energy.
- Paire, M., Lombez, L., Péré-Laperne, N., Collin, S., Pelouard, J.-L., Lincot, D., & Guillemoles, J.-F. (2011). Microscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 thin films. Applied Physics Letters, 98(26), 264102. doi:10.1063/1.3604789
- Jared, B. H., Saavedra, M. P., Anderson, B. J., Goeke, R. S., Sweatt, W. C., Nielson, G. N., … Haney, M. W. (2014). Micro-concentrators for a microsystems-enabled photovoltaic system. Optics Express, 22(S2), A521–A527. doi:10.1364/OE.22.00A521
- Gu, T., Agrawal, G., Vessey, A., Sweatt, W. C., Jared, B. H., Luis Cruz-Campa, J., … Haney, M. W. (2015). Micro-concentrator module for microsystems-enabled photovoltaics: Optical performance characterization, modelling and analysis. IEEE 42nd Photovoltaic Specialists Conference PVSC, 1–5. doi:10.1109/PVSC.2015.7356183.
- Jutteau, S., Paire, M., Proise, F., Lombez, L., & Guillemoles, J. (2015). Micro solar concentrators: Design and fabrication for microcells arrays. IEEE 42nd Photovoltaic Specialists Conference PVSC, 1–4. doi:10.1109/PVSC.2015.7355767
- Würfel, P., & Würfel, U. (2009). Physics of solar cells: From basic principles to advanced concepts. Weinheim: Wiley.
- Luque, A., & Miñano, J. C. (1991). Optical aspects in photovoltaic energy conversion. Solar Cells, 31(3), 237–258. doi:10.1016/0379-6787(91)90026-L
- Ulbrich, C., Peters, M., Bläsi, B., Kirchartz, T., Gerber, A., & Rau, U. (2010). Enhanced light trapping in thin-film solar cells by a directionally selective filter. Optics Express, 18(S2), A133–A138. doi:10.1364/OE.18.00A133
- Höhn, O., Kraus, T., Bauhuis, G., Schwarz, U. T., & Bläsi, B. (2014). Maximal power output by solar cells with angular confinement. Optics Express, 22(S3), A715–A722. doi:10.1364/OE.22.00A715
- Kosten, E. D., Newman, B. K., Lloyd, J. V., Polman, A., & Atwater, H. A. (2015). Limiting light escape angle in silicon photovoltaics: Ideal and realistic cells. IEEE Journal of Photovoltaics, 5(1), 61–69. doi:10.1109/JPHOTOV.2014.2360566
- van Dijk, L., Marcus, E. A. P., Oostra, A. J., Schropp, R. E. I., & Di Vece, M. (2015). 3D-printed concentrator arrays for external light trapping on thin film solar cells. Solar Energy Materials & Solar Cells, 139, 19–26. doi:10.1016/j.solmat.2015.03.002
- Green, M. A. (2002). Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Progress in Photovoltaics: Research and Applications, 10(4), 235–241. doi:10.1002/pip.404
-
Nelson, J. (2003). The physics of solar cells. World Scientific.
10.1142/p276 Google Scholar
- Ultimaker Homepage.
- Luque, A., Sala, G., & Arboiro, J. C. (1998). Electric and thermal model for non-uniformly illuminated concentration cells. Solar Energy Materials & Solar Cells, 51(3), 269–290. doi:10.1016/S0927-0248(97)00228-6
- Gordon, J. M., Feuermann, D., & Mashaal, H. (2015). Micro-optical designs for angular confinement in solar cells. Journal of Photonics for Energy, 5(1), 1–10.
- Holman, Z. C., De Wolf, S., & Ballif, C. (2013). Improving metal reflectors by suppressing surface plasmon polaritons: A priori calculation of the internal reflectance of a solar cell. Light: Science & Applications, (2), e106.
- Weinstein, L., Kraemer, D., McEnaney, K., & Chen, G. (2014). Optical cavity for improved performance of solar receivers in solar-thermal systems. Solar Energy, 108, 69–79. doi:10.1016/j.solener.2014.06.023
- Weinstein, L. A., Hsu, W.-C., Yerci, S., Boriskina, S. V., & Chen, G. (2015). Enhanced absorption of thin-film photovoltaic cells using an optical cavity. Journal of Optics, 17(5), 055901. doi:10.1088/2040-8978/17/5/055901
- Tormen, M., Inganäs, O., Tvingstedt, K., & Zilio, S. D. (2010). Photovoltaic device with enhanced light harvesting. U.S. Patent Application 12/601,798.
- Tvingstedt, K., Zilio, S. D., Inganäs, O., & Tormen, M. (2008). Trapping light with micro lenses in thin film organic photovoltaic cells. Optics Express, 16(26), 21608–21615. doi:10.1364/OE.16.021608
- Peters, M., Ulbrich, C., Goldschmidt, J. C., Fernandez, J., Siefer, G., & Bläsi, B. (2011). Directionally selective light trapping in a germanium solar cell. Optics Express, 19(S2), A136–A145. doi:10.1364/OE.19.00A136
- Kim, S. J., Margulis, G. Y., Rim, S.-B., Brongersma, M. L., McGehee, M. D., & Peumans, P. (2013). Geometric light trapping with a V-trap for efficient organic solar cells. Optics Express, 21(S3), A305–A312. doi:10.1364/OE.21.00A305
- van Dijk, L., van de Groep, J., Di Vece, M., & Schropp, R. E. I. (2016). Exploration of external light trapping for photovoltaic modules. Optics Express, 24(14), A1158–A1175. doi:10.1364/OE.24.0A1158
- van Dijk, L., van de Groep, J., Veldhuizen, L. W., Di Vece, M., & Schropp, R. E. I. (2017). Concepts for external light trapping and its utilization in colored and image displaying photovoltaic modules. Progress in Photovoltaics: Research and Applications, 25(7), 553–568. doi:10.1002/pip.2863