The Density Matrix Renormalization Group for Strong Correlation in Ground and Excited States
Leon Freitag
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
Search for more papers by this authorMarkus Reiher
ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
Search for more papers by this authorLeon Freitag
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
Search for more papers by this authorMarkus Reiher
ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
Search for more papers by this authorLeticia González
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, Sweden
Search for more papers by this authorSummary
The density matrix renormalization group (DMRG), originally introduced by White in 1992 in solid state physics, has since found numerous applications in quantum chemistry. DMRG allows one to approximate the full CI wave function with polynomial scaling, making active spaces with about 100 orbitals accessible. Together with self-consistent field orbital optimization (DMRG-SCF), it allows for much larger active spaces than the complete active space self-consistent field (CASSCF) method. In this chapter, we provide an introduction to the theory behind DMRG, both in the original renormalization group formulation, as well as in the more modern formulation where wave functions and operators are represented as matrix product states and matrix product operators, respectively. We further discuss quantum-information-theoretical orbital entanglement measures that are accessible through DMRG, which pave the way to automated active space selection in multicongurational calculations, and factors that control DMRG convergence and accuracy. Finally, we review modern developments in and around DMRG, such as post-DMRG methods for the description of dynamic correlation and environment effects, tensor network states, as well as applications of DMRG and DMRG-SCF in quantum chemistry.
References
- Roos, B.O., Taylor, P.R., and Siegbahn, P.E. (1980). A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48 : 157–173.
-
Roos, B.O. (1980). The complete active space SCF method in a Fock-matrix-based super-CI formulation.
Int. J. Quantum Chem.
18
: 175–189.
10.1002/qua.560180822 Google Scholar
- Cheung, L.M., Sundberg, K.R., and Ruedenberg, K. (1978). Dimerization of carbene to ethylene. J. Am. Chem. Soc. 100 : 8024–8025.
- Cheung, L.M., Sundberg, K.R., and Ruedenberg, K. (1979). Electronic rearrangements during chemical reactions. II. Planar dissociation of ethylene. Int. J. Quantum Chem. 16 : 1103–1139.
- Ruedenberg, K., Schmidt, M.W., Gilbert, M.M., and Elbert, S.T. (1982). Are atoms intrinsic to molecular electronic wave functions? I. The FORS model. Chem. Phys. 71 : 41–49.
- Vogiatzis, K.D., Ma, D., Olsen, J. et al. (2017). Pushing configuration-interaction to the limit: towards massively parallel MCSCF calculations. J. Chem. Phys. 147 : 184111.
- Malmqvist, P.A., Rendell, A., and Roos, B.O. (1990). The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem. 94 : 5477–5482.
- Ma, D., Li Manni, G., and Gagliardi, L. (2011). The generalized active space concept in multiconfigurational self-consistent field methods. J. Chem. Phys. 135 : 044128.
- Ivanic, J. (2003). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method. J. Chem. Phys. 119 : 9364–9376.
- Li Manni, G., Aquilante, F., and Gagliardi, L. (2011). Strong correlation treated via effective hamiltonians and perturbation theory. J. Chem. Phys. 134 : 034114.
- Li Manni, G., Ma, D., Aquilante, F. et al. (2013). SplitGAS method for strong correlation and the challenging case of Cr2 . J. Chem. Theory Comput. 9 : 3375–3384.
- Zimmerman, P.M. (2017). Incremental full configuration interaction. J. Chem. Phys. 146 : 104102.
- Eriksen, J.J., Lipparini, F., and Gauss, J. (2017). Virtual orbital many-body expansions: a possible route towards the full configuration interaction limit. J. Phys. Chem. Lett. 8 : 4633–4639.
- Eriksen, J., and Gauss, J. (2018). Many-body expanded full configuration interaction. I. Weakly correlated regime. J. Chem. Theory Comput. 14 : 5180–5191.
- Booth, G.H., Thom, A.J.W., and Alavi, A. (2009). Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131 : 054106.
- Li Manni, G., Smart, S.D., and Alavi, A. (2016). Combining the complete active space self-consistent field method and the full configuration interaction quantum monte carlo within a super-CI framework, with application to challenging metal-porphyrins. J. Chem. Theory Comput. 12 : 1245–1258.
- Holmes, A.A., Tubman, N.M., and Umrigar, C.J. (2016). Heat-bath configuration interaction: an efficient selected configuration interaction algorithm inspired by heat-bath sampling. J. Chem. Theory Comput. 12 : 3674–3680.
- Smith, J.E.T., Mussard, B., Holmes, A.A., and Sharma, S. (2017). Cheap and near exact CASSCF with large active spaces. J. Chem. Theory Comput. 13 : 5468–5478.
- Tubman, N.M., Lee, J., Takeshita, T.Y. et al. (2016). A deterministic alternative to the full configuration interaction quantum monte carlo method. J. Chem. Phys. 145 : 044112.
- Tubman, N.M., Freeman, C.D., Levine, D.S. et al. (2020). Modern approaches to exact diagonalization and selected configuration interaction with the adaptive sampling CI method. J. Chem. Theory Comput. 16 : 2139–2159.
- Petruzielo, F.R., Holmes, A.A., Changlani, H.J. et al. (2012). Semistochastic projector Monte Carlo method. Phys. Rev. Lett. 109 : 230201.
- Holmes, A.A., Changlani, H.J., and Umrigar, C.J. (2016). Efficient heat-bath sampling in Fock space. J. Chem. Theory Comput. 12 : 1561–1571.
- Huron, B., Malrieu, J.P., and Rancurel, P. (1973). Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wave functions. J. Chem. Phys. 58 : 5745–5759.
- Buenker, R.J. and Peyerimhoff, S.D. (1974). Individualized configuration selection in CI calculations with subsequent energy extrapolation. Theoret. Chim. Acta 35 : 33–58.
- Miralles, J., Daudey, J.-P., and Caballol, R. (1992). Variational calculation of small energy differences. The singlet-triplet gap in [Cu2Cl6]2− . Chem. Phys. Lett. 198 : 555–562.
- Miralles, J., Castell, O., Caballol, R., and Malrieu, J.-P. (1993). Specific CI calculation of energy differences: transition energies and bond energies. Chem. Phys. 172 : 33–43.
- Neese, F. (2003). A spectroscopy oriented configuration interaction procedure. J. Chem. Phys. 119 : 9428–9443.
- Olsen, J., Malmqvist, P.-A., Roos, B.O. et al. (1987). A non-linear approach to configuration interaction: the low-rank CI method (LR CI). Chem. Phys. Lett. 133 : 91–101.
- Koch, H. and Dalgaard, E. (1992). A variational matrix decomposition applied to full configuration-interaction calculations. Chem. Phys. Lett. 198 : 51–58.
- Fales, B.S., Seritan, S., Settje, N.F. et al. (2018). Large-scale electron correlation calculations: rank-reduced full configuration interaction. J. Chem. Theory Comput. 14 : 4139–4150.
- Shepard, R. (2005). A general nonlinear expansion form for electronic wave functions. J. Phys. Chem. A 109 : 11629–11641.
- Shepard, R. and Minkoff, M. (2006). Optimization of nonlinear wave function parameters. Int. J. Quantum Chem. 106 : 3190–3207.
- Shepard, R., Minkoff, M., and Brozell, S.R. (2007). Nonlinear wave function expansions: a progress report. Int. J. Quantum Chem. 107 : 3203–3218.
- Gidofalvi, G. and Shepard, R. (2009). The evaluation of spin-density matrices within the graphically contracted function method. Int. J. Quantum Chem. 109 : 3552–3563.
- Gidofalvi, G. and Shepard, R. (2009). Computation of determinant expansion coefficients within the graphically contracted function method. J. Comput. Chem. 30 : 2414–2419.
-
Shavitt, I. (1977). Graph theoretical concepts for the unitary group approach to the many-electron correlation problem.
Int. J. Quantum Chem.
12
: 131–148.
10.1002/qua.560120819 Google Scholar
-
Shavitt, I. (1978). Matrix element evaluation in the unitary group approach to the electron correlation problem.
Int. J. Quantum Chem.
14
: 5–32.
10.1002/qua.560140803 Google Scholar
- White, S.R. (1992). Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69 : 2863–2866.
- White, S.R. (1993). Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48 : 10345–10356.
- Fano, G., Ortolani, F., and Ziosi, L. (1998). The density matrix renormalization group method: application to the PPP model of a cyclic polyene chain. J. Chem. Phys. 108 : 9246–9252.
- Yaron, D., Moore, E.E., Shuai, Z., and Brédas, J.L. (1998). Comparison of density matrix renormalization group calculations with electron-hole models of exciton binding in conjugated polymers. J. Chem. Phys. 108 : 7451–7458.
- White, S.R. and Martin, R.L. (1999). Ab initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 110 : 4127–4130.
- Daul, S., Ciofini, I., Daul, C., and White, S.R. (2000). Full-CI quantum chemistry using the density matrix renormalization group. Int. J. Quantum Chem. 79 : 331–342.
- Mitrushenkov, A.O., Fano, G., Ortolani, F. et al. (2001). Quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 115 : 6815–6821.
- Mitrushenkov, A.O., Linguerri, R., Palmieri, P., and Fano, G. (2003). Quantum chemistry using the density matrix renormalization group II. J. Chem. Phys. 119 : 4148–4158.
- Mitrushchenkov, A.O., Fano, G., Linguerri, R., and Palmieri, P. (2011). On the importance of orbital localization in QC-DMRG calculations. Int. J. Quantum Chem. 112 : 1606–1619.
- Chan, G.K.-L. and Head-Gordon, M. (2002). Highly correlated calculations with a polynomial cost algorithm: a study of the density matrix renormalization group. J. Chem. Phys. 116 : 4462–4476.
- Chan, G.K.-L. and Head-Gordon, M. (2003). Exact solution (within a triple-zeta, double polarization basis set) of the electronic schrödinger equation for water. J. Chem. Phys. 118 : 8551–8554.
- Chan, G.K.-L. (2004). An algorithm for large scale density matrix renormalization group calculations. J. Chem. Phys. 120 : 3172–3178.
- Chan, G.K.-L., Kállay, M., and Gauss, J. (2004). State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. J. Chem. Phys. 121 : 6110–6116.
- Chan, G.K.-L. and Van Voorhis, T. (2005). Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-hermitian operators, and applications to polyenes. J. Chem. Phys. 122 : 204101.
- Legeza, Ö., Röder, J., and Hess, B.A. (2003). QC-DMRG study of the ionic-neutral curve crossing of LiF. Mol. Phys. 101 : 2019–2028.
- Moritz, G., Hess, B.A., and Reiher, M. (2005). Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings. J. Chem. Phys. 122 : 024107.
- Moritz, G., Wolf, A., and Reiher, M. (2005). Relativistic DMRG calculations on the curve crossing of cesium hydride. J. Chem. Phys. 123 : 184105.
- Zgid, D. and Nooijen, M. (2008). On the spin and symmetry adaptation of the density matrix renormalization group method. J. Chem. Phys. 128 : 014107.
- Zgid, D. and Nooijen, M. (2008). The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space. J. Chem. Phys. 128 : 144116.
- Zgid, D. and Nooijen, M. (2008). Obtaining the two-body density matrix in the density matrix renormalization group method. J. Chem. Phys. 128 : 144115.
- Kurashige, Y. and Yanai, T. (2009). High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. J. Chem. Phys. 130 : 234114.
- Legeza, O. and Fáth, G. (1996). Accuracy of the density-matrix renormalization-group method. Phys. Rev. B 53 : 14349–14358.
- Legeza, O., Röder, J., and Hess, B.A. (2003). Controlling the accuracy of the density-matrix renormalization-group method: the dynamical block state selection approach. Phys. Rev. B 67 : 125114.
- Marti, K.H. and Reiher, M. (2010). DMRG control using an automated Richardson-type error protocol. Mol. Phys. 108 : 501–512.
- Hubig, C., Haegeman, J., and Schollwöck, U. (2018). Error estimates for extrapolations with matrix-product states. Phys. Rev. B 97 : 045125.
- Hachmann, J., Cardoen, W., and Chan, G.K.-L. (2006). Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group. J. Chem. Phys. 125 : 144101.
- Schollwöck, U. (2011). The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326 : 96–192.
- Schollwöck, U. (2011). The density-matrix renormalization group: a short introduction. Phil. Trans. R. Soc. A 369 : 2643–2661.
-
Hallberg, K. (2004). Theoretical Methods for Strongly Correlated Electrons (eds. D. Sénéchal, A.-M. Tremblay and C. Bourbonnais), 3–37. Springer.
10.1007/0-387-21717-7_1 Google Scholar
- Hallberg, K.A. (2006). New trends in density matrix renormalization. Adv. Phys. 55 : 477–526.
- Chan, G.K.-L., Dorando, J.J., Ghosh, D. et al. (2008). Frontiers in Quantum Systems in Chemistry and Physics, Progress in Theoretical Chemistry and Physics 18 (eds. S. Wilson, P.J. Grout, J. Maruani, et al.), 49–65. Springer Netherlands.
-
Chan, G.K.-L. and Zgid, D. (2009). Annual Reports in Computational Chemistry, vol.
5
(ed. R.A. Wheeler), 149–162. Elsevier.
10.1016/S1574-1400(09)00507-6 Google Scholar
- Chan, G.K.-L. and Sharma, S. (2011). The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62 : 465–481.
- Olivares-Amaya, R., Hu, W., Nakatani, N. et al. (2015). The ab-initio density matrix renormalization group in practice. J. Chem. Phys. 142 : 034102.
- Chan, G.K.-L., Keselman, A., Nakatani, N. et al. (2016). Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. J. Chem. Phys. 145 : 014102.
- Marti, K.H. and Reiher, M. (2011). New electron correlation theories for transition metal chemistry. Phys. Chem. Chem. Phys. 13 : 6750–6759.
- Wouters, S. and Van Neck, D. (2014). The density matrix renormalization group for ab initio quantum chemistry. Eur. Phys. J. D 68 : 272.
- Sharma, S. and Chan, G.K.-L. (2012). Spin-adapted density matrix renormalization group algorithms for quantum chemistry. J. Chem. Phys. 136 : 124121.
- Keller, S. and Reiher, M. (2016). Spin-adapted matrix product states and operators. J. Chem. Phys. 144 : 134101.
- Jordan, P. and Wigner, E. (1928). Über das Paulische Äquivalenzverbot. Z. Physik 47 : 631–651.
- Freitag, L. (2015). Quantum chemical studies on electronic structure and photodynamics of ruthenium complexes. Ph.D. thesis, University of Vienna.
- Östlund, S. and Rommer, S. (1995). Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75 : 3537–3540.
- Rommer, S. and Östlund, S. (1997). Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55 : 2164–2181.
- Keller, S., Dolfi, M., Troyer, M., and Reiher, M. (2015). An efficient matrix product operator representation of the quantum chemical hamiltonian. J. Chem. Phys. 143 : 244118.
- Chan, G.K.-L. (2008). Density matrix renormalization group lagrangians. Phys. Chem. Chem. Phys. 10 : 3454–3459.
- White, S.R. (2005). Density matrix renormalization group algorithms with a single center site. Phys. Rev. B 72 : 180403.
- Dorando, J.J., Hachmann, J., and Chan, G.K.-L. (2007). Targeted excited state algorithms. J. Chem. Phys. 127 : 084109.
- Ren, J., Yi, Y., and Shuai, Z. (2016). Inner space perturbation theory in matrix product states: replacing expensive iterative diagonalization. J. Chem. Theory Comput. 12 : 4871–4878.
- Guo, S., Li, Z., and Chan, G.K.-L. (2018). A perturbative density matrix renormalization group algorithm for large active spaces. J. Chem. Theory Comput. 14 : 4063–4071.
- Legeza, O., Noack, R.M., Sólyom, J., and Tincani, L. (2008). Computational Many-Particle Physics, Lecture Notes in Physics 739 (eds. H. Fehske, R. Schneider and A. Weiße), 653–664. Springer Berlin Heidelberg.
- Legeza, O. and Sólyom, J. (2003). Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B 68 : 195116.
- Rissler, J., Noack, R.M., and White, S.R. (2006). Measuring orbital interaction using quantum information theory. Chem. Phys. 323 : 519–531.
- Boguslawski, K., Tecmer, P., Legeza, O., and Reiher, M. (2012). Entanglement measures for single- and multireference correlation effects. J. Phys. Chem. Lett. 3 : 3129–3135.
- Boguslawski, K., Tecmer, P., Barcza, G. et al. (2013). Orbital entanglement in bond-formation processes. J. Chem. Theory Comput. 9 : 2959–2973.
- Boguslawski, K. and Tecmer, P. (2015). Orbital entanglement in quantum chemistry. Int. J. Quantum Chem. 115 : 1289–1295.
- Boguslawski, K. and Tecmer, P. (2017). Erratum: orbital entanglement in quantum chemistry. Int. J. Quantum Chem. 117 : e25455.
- Legeza, O., Noack, R.M., Sólyom, J., and Tincani, L. (2008). Computational Many-Particle Physics, Lecture Notes in Physics 739 (eds. H. Fehske, R. Schneider and A. Weiße), 653–664. Springer Berlin Heidelberg.
- Freitag, L., Knecht, S., Keller, S.F. et al. (2015). Orbital entanglement and CASSCF analysis of the Ru–NO bond in a ruthenium nitrosyl complex. Phys. Chem. Chem. Phys. 17 : 14383–14392.
- Stein, C.J. and Reiher, M. (2016). Automated selection of active orbital spaces. J. Chem. Theory Comput. 12 : 1760–1771.
- Stein, C.J., von Burg, V., and Reiher, M. (2016). The delicate balance of static and dynamic electron correlation. J. Chem. Theory Comput. 12 : 3764–3773.
- Stein, C.J. and Reiher, M. (2019). autoCAS: a program for fully automated multi-configurational calculations. J. Comput. Chem. 40 : 2216–2226.
- Sinha, S.B., Shopov, D.Y., Sharninghausen, L.S. et al. (2017). Redox activity of oxo-bridged iridium dimers in an N,O-donor environment: characterization of remarkably stable Ir(IV,V) complexes. J. Am. Chem. Soc. 139 : 9672–9683.
- Becker, P., Duhamel, T., Stein, C.J. et al. (2017). Cooperative light-activated iodine and photoredox catalysis for the amination of C–H bonds. Angew. Chem. Int. Ed. 56 : 8004–8008.
- Husch, T., Freitag, L., and Reiher, M. (2018). Calculation of ligand dissociation energies in large transition-metal complexes. J. Chem. Theory Comput. 14 : 2456–2468.
- Stein, C.J. and Reiher, M. (2017). Automated identification of relevant frontier orbitals for chemical compounds and processes. Chimia 71 : 170–176.
- Stein, C.J. and Reiher, M. (2017). Measuring multi-configurational character by orbital entanglement. Mol. Phys. 115 : 2110–2119.
- Nakatani, N., Wouters, S., Van Neck, D., and Chan, G.K.-L. (2014). Linear response theory for the density matrix renormalization group: efficient algorithms for strongly correlated excited states. J. Chem. Phys. 140 : 024108.
- McCulloch, I.P. (2007). From density-matrix renormalization group to matrix product states. J. Stat. Mech. Theory Exp. 2007 : P10014.
- Keller, S.F. and Reiher, M. (2014). Determining factors for the accuracy of DMRG in chemistry. Chimia 68 : 200–203.
- Moritz, G. and Reiher, M. (2007). Decomposition of density matrix renormalization group states into a Slater determinant basis. J. Chem. Phys. 126 : 244109.
- Barcza, G., Legeza, O., Marti, K.H., and Reiher, M. (2011). Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A 83 : 012508.
- Ghosh, D., Hachmann, J., Yanai, T., and Chan, G.K.-L. (2008). Orbital optimization in the density matrix renormalization group, with applications to polyenes and β -carotene. J. Chem. Phys. 128 : 144117.
- Ma, Y., Knecht, S., Keller, S., and Reiher, M. (2017). Second-order self-consistent-field density-matrix renormalization group. J. Chem. Theory Comput. 13 : 2533–2549.
- Sun, Q., Yang, J., and Chan, G.K.-L. (2017). A general second order complete active space self-consistent-field solver for large-scale systems. Chem. Phys. Lett. 683 : 291–299.
- Legeza, O. and Sólyom, J. (2004). Quantum data compression, quantum information generation, and the density-matrix renormalization-group method. Phys. Rev. B 70 : 205118.
- Yanai, T., Kurashige, Y., Mizukami, W. et al. (2015). Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: a review of theory and applications. Int. J. Quantum Chem. 115 : 283–299.
- Kurashige, Y. and Yanai, T. (2011). Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer. J. Chem. Phys. 135 : 094104.
- Kurashige, Y. (2014). Multireference electron correlation methods with density matrix renormalisation group reference functions. Mol. Phys. 112 : 1485–1494.
- Nakatani, N. and Guo, S. (2017). Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations. J. Chem. Phys. 146 : 094102.
- Yanai, T., Saitow, M., Xiong, X.-G. et al. (2017). Multistate complete-active-space second-order perturbation theory based on density matrix renormalization group reference states. J. Chem. Theory Comput. 13 : 4829–4840.
- Guo, S., Watson, M.A., Hu, W. et al. (2016). N-electron valence state perturbation theory based on a density matrix renormalization group reference function, with applications to the chromium dimer and a trimer model of poly(p-phenylenevinylene). J. Chem. Theory Comput. 12 : 1583–1591.
- Freitag, L., Knecht, S., Angeli, C., and Reiher, M. (2017). Multireference perturbation theory with Cholesky decomposition for the density matrix renormalization group. J. Chem. Theory Comput. 13 : 451–459.
- Mazziotti, D.A. (1998). Approximate solution for electron correlation through the use of schwinger probes. Chem. Phys. Lett. 289 : 419–427.
- Harris, F.E. (2002). Cumulant-based approximations to reduced density matrices. Int. J. Quantum Chem. 90 : 105–113.
- Kutzelnigg, W., Shamasundar, K.R., and Mukherjee, D. (2010). Spinfree formulation of reduced density matrices, density cumulants and generalised normal ordering. Mol. Phys. 108 : 433–451.
- Zgid, D., Ghosh, D., Neuscamman, E., and Chan, G.K.-L. (2009). A Study of Cumulant Approximations to N-Electron Valence Multireference Perturbation Theory, vol. 130 , 194107.
- Kurashige, Y., Chalupský, J., Lan, T.N., and Yanai, T. (2014). Complete active space second-order perturbation theory with cumulant approximation for extended active-space wave function from density matrix renormalization group. J. Chem. Phys. 141 : 174111.
- Saitow, M., Kurashige, Y., and Yanai, T. (2013). Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J. Chem. Phys. 139 : 044118.
- Saitow, M., Kurashige, Y., and Yanai, T. (2015). Fully internally contracted multireference configuration interaction theory using density matrix renormalization group: a reduced-scaling implementation derived by computer-aided tensor factorization. J. Chem. Theory Comput. 11 : 5120–5131.
- Luo, Z., Ma, Y., Wang, X., and Ma, H. (2018). Externally-contracted multireference configuration interaction method using a DMRG reference wave function. J. Chem. Theory Comput. 14 : 4747–4755.
- Phung, Q.M., Wouters, S., and Pierloot, K. (2016). Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J. Chem. Theory Comput. 12 : 4352–4361.
- Sharma, S., Jeanmairet, G., and Alavi, A. (2016). Quasi-degenerate perturbation theory using matrix product states. J. Chem. Phys. 144 : 034103.
- Sharma, S. and Chan, G.K.-L. (2014). Communication: a flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states. J. Chem. Phys. 141 : 111101.
- Sharma, S., Knizia, G., Guo, S., and Alavi, A. (2017). Combining internally contracted states and matrix product states to perform multireference perturbation theory. J. Chem. Theory Comput. 13 : 488–498.
- Sokolov, A.Y., Guo, S., Ronca, E., and Chan, G.K.-L. (2017). Time-dependent n-electron valence perturbation theory with matrix product state reference wave functions for large active spaces and basis sets: applications to the chromium dimer and all-trans polyenes. J. Chem. Phys. 146 : 244102.
- Sokolov, A.Y. and Chan, G.K.-L. (2016). A time-dependent formulation of multi-reference perturbation theory. J. Chem. Phys. 144 : 064102.
- Roemelt, M., Guo, S., and Chan, G.K.-L. (2016). A projected approximation to strongly contracted n-electron valence perturbation theory for DMRG wave functions. J. Chem. Phys. 144 : 204113.
- Yanai, T. and Chan, G.K.-L. (2006). Canonical transformation theory for multireference problems. J. Chem. Phys. 124 : 194106.
- Yanai, T. and Chan, G.K.-L. (2007). Canonical transformation theory from extended normal ordering. J. Chem. Phys. 127 : 104107.
- Chan, G.K.-L. and Yanai, T. (2007). Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules (ed. D. Mazziotti), 343–384. Wiley.
- Yanai, T., Kurashige, Y., Neuscamman, E., and Chan, G.K.-L. (2010). Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory. J. Chem. Phys. 132 : 024105.
- Neuscamman, E., Yanai, T., and Chan, G.K.-L. (2010). Strongly contracted canonical transformation theory. J. Chem. Phys. 132 : 024106.
- Neuscamman, E., Yanai, T., and Chan, G.K.-L. (2010). A review of canonical transformation theory. Int. Rev. Phys. Chem. 29 : 231–271.
- Yanai, T., Kurashige, Y., Neuscamman, E., and Chan, G.K.-L. (2012). Extended implementation of canonical transformation theory: parallelization and a new level-shifted condition. Phys. Chem. Chem. Phys. 14 : 7809–7820.
- Leininger, T., Stoll, H., Werner, H.-J., and Savin, A. (1997). Combining long-range configuration interaction with short-range density functionals. Chem. Phys. Lett. 275 : 151–160.
- Toulouse, J., Colonna, F., and Savin, A. (2004). Long-range–short-range separation of the electron-electron interaction in density-functional theory. Phys. Rev. A 70 : 062505.
- Fromager, E., Toulouse, J., and Jensen, H.J.A. (2007). On the universality of the long-/short-range separation in multiconfigurational density-functional theory. J. Chem. Phys. 126 : 074111.
- Fromager, E., Réal, F., Wåhlin, P. et al. (2009). On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f 0 actinide species. J. Chem. Phys. 131 : 054107.
- Hedegård, E.D., Toulouse, J., and Jensen, H.J.A. (2018). Multiconfigurational short-range density-functional theory for open-shell systems. J. Chem. Phys. 148 : 214103.
- Hedegård, E.D., Knecht, S., Kielberg, J.S. et al. (2015). Density matrix renormalization group with efficient dynamical electron correlation through range separation. J. Chem. Phys. 142 : 224108.
- Veis, L., Antalík, A., Brabec, J. et al. (2016). Coupled cluster method with single and double excitations tailored by matrix product state wave functions. J. Phys. Chem. Lett. 7 : 4072–4078.
- Faulstich, F.M., Laestadius, A., Kvaal, S. et al. (2019). Analysis of the coupled-cluster method tailored by tensor-network states in quantum chemistry. SIAM J. Numer. Anal. 57 : 2579–2607.
- Sharma, S. and Alavi, A. (2015). Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states. J. Chem. Phys. 143 : 102815.
- Dresselhaus, T., Neugebauer, J., Knecht, S. et al. (2015). Self-consistent embedding of density-matrix renormalization group wave functions in a density functional environment. J. Chem. Phys. 142 : 044111.
- Hedegård, E.D. and Reiher, M. (2016). Polarizable embedding density matrix renormalization group. J. Chem. Theory Comput. 12 : 4242–4253.
- Baerends, E.J., Ellis, D.E., and Ros, P. (1973). Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem. Phys. 2 : 41–51.
- Whitten, J.L. (1973). Coulombic potential energy integrals and approximations. J. Chem. Phys. 58 : 4496–4501.
- Vahtras, O., Almlöf, J., and Feyereisen, M.W. (1993). Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 213 : 514–518.
- Ten-no, S. and Iwata, S. (1996). Multiconfiguration self-consistent field procedure employing linear combination of atomic-electron distributions. J. Chem. Phys. 105 : 3604–3611.
- Ten-No, S. and Iwata, S. (1996). On approximating electron repulsion integrals with linear combination of atomic-electron distributions. Int. J. Quantum Chem. 60 : 1319–1324.
- Beebe, N.H.F. and Linderberg, J. (1977). Simplifications in the generation and transformation of two-electron integrals in molecular calculations. Int. J. Quantum Chem. 12 : 683–705.
- Aquilante, F., Pedersen, T.B., Lindh, R. et al. (2008). Accurate ab initio density fitting for multiconfigurational self-consistent field methods. J. Chem. Phys. 129 : 024113.
- Aquilante, F., Malmqvist, P.-A., Pedersen, T.B. et al. (2008). Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of CoIII (diiminato)(NPh). J. Chem. Theory Comput. 4 : 694–702.
- Guo, Y., Sivalingam, K., Valeev, E.F., and Neese, F. (2016). SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital n-electron valence perturbation theory. J. Chem. Phys. 144 : 094111.
- Stålring, J., Bernhardsson, A., and Lindh, R. (2001). Analytical gradients of a state average mcscf state and a state average diagnostic. Mol. Phys. 99 : 103–114.
- Snyder, J.W., Hohenstein, E.G., Luehr, N., and Martínez, T.J. (2015). An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 143 : 154107.
- Snyder, J.W., Fales, B.S., Hohenstein, E.G. et al. (2017). A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. J. Chem. Phys. 146 : 174113.
- Dupuis, M. (1981). Energy derivatives for configuration interaction wave functions. J. Chem. Phys. 74 : 5758–5765.
- Osamura, Y., Yamaguchi, Y., and Schaefer, H.F. (1982). Generalization of analytic configuration interaction (ci) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed hartree–fock equations for multiconfiguration SCF molecular wave functions. J. Chem. Phys. 77 : 383–390.
- Hu, W. and Chan, G.K.-L. (2015). Excited-state geometry optimization with the density matrix renormalization group, as applied to polyenes. J. Chem. Theory Comput. 11 : 3000–3009.
- Freitag, L., Ma, Y., Baiardi, A. et al. (2019). Approximate analytical gradients and nonadiabatic couplings for the state-average density matrix renormalization group self-consistent-field method. J. Chem. Theory Comput. 15 : 6724–6737.
- Lengsfield, B.H. III, Saxe, P., and Yarkony, D.R. (1984). On the evaluation of nonadiabatic coupling matrix elements using SA-MCSCF/CI wave functions and analytic gradient methods. I. J. Chem. Phys. 81 : 4549–4553.
- Lengsfield, B.H. and Yarkony, D.R. (2007). Nonadiabatic interactions between potential energy surfaces: theory and applications. Adv. Chem. Phys. : 1–71.
- Fdez. Galván, I., Delcey, M.G., Pedersen, T.B. et al. (2016). Analytical state-average complete-active-space self-consistent field nonadiabatic coupling vectors: implementation with density-fitted two-electron integrals and application to conical intersections. J. Chem. Theory Comput. 12 : 3636–3653.
- Eisert, J. (2013). Emergent Phenomena in Correlated Matter (eds. E. Pavarini, E. Koch and U. Schollwöck), 17.1–17.41. Verlag: Forschungszentrum Jülich.
- Orús, R. (2014). A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349 : 117–158.
- Ran, S.-J., Tirrito, E., Peng, C., Chen, X., Su, G., Lewenstein, M. (2017) Review of Tensor Network Contraction Approaches, arXiv:1708.09213.
- Bridgeman, J.C. and Chubb, C.T. (2017). Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A Math. Theor. 50 : 223001.
- Szalay, S., Pfeffer, M., Murg, V. et al. (2015). Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 115 : 1342–1391.
- Marti, K.H., Bauer, B., Reiher, M. et al. (2010). Complete-graph tensor network states: a new fermionic wave function ansatz for molecules. New J. Phys. 12 : 103008.
- Kovyrshin, A. and Reiher, M. (2016). Tensor network states with three-site correlators. New J. Phys. 18 : 113001.
- Kovyrshin, A. and Reiher, M. (2017). Self-adaptive tensor network states with multi-site correlators. J. Chem. Phys. 147 : 214111.
- Murg, V., Verstraete, F., Legeza, O., and Noack, R.M. (2010). Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B 82 : 205105.
- Nakatani, N. and Chan, G.K.-L. (2013). Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. J. Chem. Phys. 138 : 134113.
- Murg, V., Verstraete, F., Schneider, R. et al. (2015). Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems. J. Chem. Theory Comput. 11 : 1027–1036.
- Gunst, K., Verstraete, F., Wouters, S. et al. (2018). T3NS: Three-legged tree tensor network states. J. Chem. Theory Comput. 14 : 2026–2033.
- Hachmann, J., Dorando, J.J., Avilés, M., and Chan, G.K.-L. (2007). The radical character of the acenes: a density matrix renormalization group study. J. Chem. Phys. 127 : 134309.
- Mizukami, W., Kurashige, Y., and Yanai, T. (2013). More π electrons make a difference: emergence of many radicals on graphene nanoribbons studied by ab initio DMRG theory. J. Chem. Theory Comput. 9 : 401–407.
- Wouters, S., Limacher, P.A., Van Neck, D., and Ayers, P.W. (2012). Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations. J. Chem. Phys. 136 : 134110.
- Ma, Y. and Ma, H. (2013). Assessment of various natural orbitals as the basis of large active space density-matrix renormalization group calculations. J. Chem. Phys. 138 : 224105.
- Ronca, E., Li, Z., Jimenez-Hoyos, C.A., and Chan, G.K.-L. (2017). Time-step targeting time-dependent and dynamical density matrix renormalization group algorithms with ab initio hamiltonians. J. Chem. Theory Comput. 13 : 5560–5571.
- Ma, Y., Wen, J., and Ma, H. (2015). Density-matrix renormalization group algorithm with multi-level active space. J. Chem. Phys. 143 : 034105.
- Marti, K.H., Malkin Ondík, I., Moritz, G., and Reiher, M. (2008). Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. J. Chem. Phys. 128 : 014104.
- Yanai, T., Kurashige, Y., Ghosh, D., and Chan, G.K.-L. (2009). Accelerating convergence in iterative solution for large-scale complete active space self-consistent-field calculations. Int. J. Quantum Chem. 109 : 2178–2190.
- Mizukami, W., Kurashige, Y., and Yanai, T. (2010). Communication: novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations. J. Chem. Phys. 133 : 091101.
- Kawakami, T., Saito, T., Sharma, S. et al. (2017). Full-valence density matrix renormalisation group calculations on meta-benzyne based on unrestricted natural orbitals. Revisit of seamless continuation from broken-symmetry to symmetry-adapted models for diradicals. Mol. Phys. 115 : 2267–2284.
- Wouters, S., Van Speybroeck, V., and Van Neck, D. (2016). DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes. J. Chem. Phys. 145 : 054120.
- Barford, W., Bursill, R.J., and Lavrentiev, M.Y. (2001). Density-matrix renormalization-group calculations of excited states of linear polyenes. Phys. Rev. B 63 : 195108.
- Ma, H., Cai, F., Liu, C., and Jiang, Y. (2005). Spin distribution in neutral polyene radicals: Pariser–Parr–Pople model studied with the density matrix renormalization group method. J. Chem. Phys. 122 : 104909.
- Ma, H., Liu, C., and Jiang, Y. (2005). Theoretical study of the lowest π?→?π * excitation energies for neutral and doped polyenes. J. Chem. Phys. 123 : 084303.
- Bursill, R.J., Barford, W., and Daly, H. (1999). Molecular orbital models of benzene. Biphenyl and the oligophenylenes. Chem. Phys. 243 : 35–44.
- Raghu, C., Pati, Y.A., and Ramasesha, S. (2002). Structural and electronic instabilities in polyacenes: density-matrix renormalization group study of a long-range interacting model. Phys. Rev. B 65 : 155204.
- Das, M. and Ramasesha, S. (2006). A density matrix renormalization group study of low-lying excitations of polythiophene within a Pariser–Parr–Pople model. J. Chem. Sci. 118 : 67–78.
- Das, M. (2010). Low-lying excitations of poly-fused thiophene within Pariser–Parr–Pople model: a density matrix renormalization group study. J. Chem. Phys. 132 : 194107.
- Mukhopadhyay, S. and Ramasesha, S. (2009). Study of linear and nonlinear optical properties of dendrimers using density matrix renormalization group method. J. Chem. Phys. 131 : 074111.
- Goli, V.M.L.D.P., Prodhan, S., Mazumdar, S., and Ramasesha, S. (2016). Correlated electronic properties of some graphene nanoribbons: a DMRG study. Phys. Rev. B 94 : 035139.
- Kumar, M., Pati, Y.A., and Ramasesha, S. (2012). A density matrix renormalization group method study of optical properties of porphines and metalloporphines. J. Chem. Phys. 136 : 014112.
- Thomas, S., Pati, Y.A., and Ramasesha, S. (2013). Linear and nonlinear optical properties of expanded porphyrins: a DMRG study. J. Phys. Chem. A 117 : 7804–7809.
- Kurashige, Y., Chan, G.K.-L., and Yanai, T. (2013). Entangled quantum electronic wave functions of the Mn4 CaO5 cluster in photosystem II. Nat. Chem. 5 : 660–666.
- Kawakami, T., Miyagawa, K., Isobe, H. et al. (2018). Relative stability between the manganese hydroxide- and oxo-models for water oxidation by CCSD, DMRG CASCI, CASSCF, CASPT2 and CASDFT methods; Importance of static and dynamical electron correlation effects for OEC of PSII. Chem. Phys. Lett. 705 : 85–91.
- Roemelt, M., Krewald, V., and Pantazis, D.A. (2018). Exchange coupling interactions from the density matrix renormalization group and n-electron valence perturbation theory: application to a biomimetic mixed-valence manganese complex. J. Chem. Theory Comput. 14 : 166–179.
- Radoń, M. and Pierloot, K. (2008). Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations. J. Phys. Chem. A 112 : 11824–11832.
- Phung, Q.M. and Pierloot, K. (2018). The dioxygen adducts of iron and manganese porphyrins: electronic structure and binding energy. Phys. Chem. Chem. Phys. 20 : 17009–17019.
- Boguslawski, K., Marti, K.H., Legeza, O., and Reiher, M. (2012). Accurate ab initio spin densities. J. Chem. Theory Comput. 8 : 1970–1982.
- Chalupský, J., Rokob, T.A., Kurashige, Y. et al. (2014). Reactivity of the binuclear non-heme iron active site of Δ9 desaturase studied by large-scale multireference ab initio calculations. J. Am. Chem. Soc. 136 : 15977–15991.
- Kurashige, Y., Saitow, M., Chalupský, J., and Yanai, T. (2014). Radical O–O coupling reaction in diferrate-mediated water oxidation studied using multireference wave function theory. Phys. Chem. Chem. Phys. 16 : 11988–11999.
- Zhao, Y., Boguslawski, K., Tecmer, P. et al. (2015). Dissecting the bond-formation process of d 10 -metal–ethene complexes with multireference approaches. Theor. Chem. Acc. 134 : 1–10.
- Dong, G., Phung, Q.M., Hallaert, S.D. et al. (2017). H2 binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods. Phys. Chem. Chem. Phys. 19 : 10590–10601.
- Artiukhin, D.G., Stein, C.J., Reiher, M., and Neugebauer, J. (2017). Quantum chemical spin densities for radical cations of photosynthetic pigment models. Photochem. Photobiol. 93 : 815–833.
- Harris, T.V., Kurashige, Y., Yanai, T., and Morokuma, K. (2014). Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes. J. Chem. Phys. 140 : 054303.
- Nguyen Lan, T., Kurashige, Y., and Yanai, T. (2015). Scalar relativistic calculations of hyperfine coupling constants using ab initio density matrix renormalization group method in combination with third-order Douglas–Kroll–Hess transformation: case studies on 4d transition metals. J. Chem. Theory Comput. 11 : 73–81.
- Knecht, S., Keller, S., Autschbach, J., and Reiher, M. (2016). A nonorthogonal state-interaction approach for matrix product state wave functions. J. Chem. Theory Comput. 12 : 5881–5894.
- Battaglia, S., Keller, S., and Knecht, S. (2018). Efficient relativistic density-matrix renormalization group implementation in a matrix-product formulation. J. Chem. Theory Comput. 14 : 2353–2369.
- Sayfutyarova, E.R. and Chan, G.K.-L. (2018). Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group. J. Chem. Phys. 148 : 184103.
- Roemelt, M. and Pantazis, D.A. (2019). Multireference approaches to spin-state energetics of transition metal complexes utilizing the density matrix renormalization group. Adv. Theory Simul. : 1800201.
- König, E. and Madeja, K. (1967). Infra-red spectra at the 5T2–1A1 cross-over in iron (II) complexes. Spectrochim. Acta A Mol. Spectrosc. 23 : 45–54.
- Reiher, M. (2002). Theoretical study of the Fe(Phen) 2 (NCS) 2 spin-crossover complex with reparametrized density functionals. Inorg. Chem. 41 : 6928–6935.
-
Swart, M., Güell, M., and Solà, M. (2010). Quantum Biochemistry (ed. C. F. Matta), 551–583. Wiley-VCH Verlag GmbH & Co. KGaA.
10.1002/9783527629213.ch19 Google Scholar
- Swart, M. (2013). Spin states of (bio)inorganic systems: successes and pitfalls. Int. J. Quantum Chem. 113 : 2–7.
- Costas, M. and Harvey, J.N. (2013). Spin states: discussion of an open problem. Nat. Chem. 5 : 7–9.
- Schröder, D., Shaik, S., and Schwarz, H. (2000). Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33 : 139–145.
-
Usharani, D., Wang, B., Sharon, D.A., and Shaik, S. (2015). Spin States in Biochemistry and Inorganic Chemistry (eds. M. Swart and M. Costas), 131–156. Wiley.
10.1002/9781118898277.ch7 Google Scholar
- Wouters, S., Bogaerts, T., Voort, P.V.D. et al. (2014). Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-mn(salen). J. Chem. Phys. 140 : 241103.
- Phung, Q.M., Domingo, A., and Pierloot, K. (2017). Dinuclear iron(II) spin-crossover compounds: a theoretical study. Chem. Eur. J. 24 : 5183–5190.
- Coe, J.P., Almeida, N.M.S., and Paterson, M.J. (2017). Investigation of challenging spin systems using monte carlo configuration interaction and the density matrix renormalization group. J. Comput. Chem. 38 : 2701–2712.
- Pierloot, K., Phung, Q.M., and Domingo, A. (2017). Spin state energetics in first-row transition metal complexes: contribution of (3s3p) correlation and its description by second-order perturbation theory. J. Chem. Theory Comput. 13 : 537–553.
- Franz, K.J., Doerrer, L.H., Spingler, B., and Lippard, S.J. (2001). Pentacoordinate cobalt(III) thiolate and nitrosyl tropocoronand compounds. Inorg. Chem. 40 : 3774–3780.
- Hopmann, K.H., Conradie, J., Tangen, E. et al. (2015). Singlet–triplet gaps of cobalt nitrosyls: insights from tropocoronand complexes. Inorg. Chem. 54 : 7362–7367.
- Angeli, C., Cimiraglia, R., Evangelisti, S. et al. (2001). Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114 : 10252.
- Angeli, C., Cimiraglia, R., and Malrieu, J.-P. (2001). N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 350 : 297–305.
- Angeli, C., Cimiraglia, R., and Malrieu, J.-P. (2002). N-electron valence state perturbation theory: a spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 117 : 9138–9153.
- Knecht, S., Legeza, O., and Reiher, M. (2014). Communication: four-component density matrix renormalization group. J. Chem. Phys. 140 : 041101.
- Roemelt, M. (2015). Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: application to g-tensors. J. Chem. Phys. 143 : 044112.
- Sayfutyarova, E.R. and Chan, G.K.-L. (2016). A state interaction spin-orbit coupling density matrix renormalization group method. J. Chem. Phys. 144 : 234301.
- King, H.F., Stanton, R.E., Kim, H. et al. (1967). Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics. J. Chem. Phys. 47 : 1936–1941.
- Malmqvist, P.-A. and Roos, B.O. (1989). The CASSCF state interaction method. Chem. Phys. Lett. 155 : 189–194.
- Boguslawski, K., Réal, F., Tecmer, P. et al. (2017). On the multi-reference nature of plutonium oxides:, PuO2 , PuO3 and PuO2 (OH) 2 . Phys. Chem. Chem. Phys. 19 : 4317–4329.
- Tecmer, P., Boguslawski, K., Legeza, O., and Reiher, M. (2013). Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO. Phys. Chem. Chem. Phys. 16 : 719–727.
- Wouters, S., Poelmans, W., Ayers, P.W., and Van Neck, D. (2014). CheMPS2: a free open-source spin-adapted implementation of the density matrix renormalization group for ab initio quantum chemistry. Comput. Phys. Commun. 185 : 1501–1514.
- Liu, F., Kurashige, Y., Yanai, T., and Morokuma, K. (2013). Multireference ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran. J. Chem. Theory Comput. 9 : 4462–4469.
- Ren, J., Peng, Q., Zhang, X. et al. (2017). Role of the dark 2A g state in donor–acceptor copolymers as a pathway for singlet fission: a DMRG study. J. Phys . Chem. Lett. 8 : 2175–2181.
- Pusch, S., Tröster, A., Lefrancois, D. et al. (2018). Mechanism and Cis/trans selectivity of vinylogous nazarov-type [6 π ] photocyclizations. J. Org. Chem. 83 : 964–972.
- Taffet, E.J., Olivier, Y., Lam, F. et al. (2018). Carbene–metal–amide bond deformation, rather than ligand rotation, drives delayed fluorescence. J. Phys. Chem. Lett. 9 : 1620–1626.
- Shirai, S., Kurashige, Y., and Yanai, T. (2016). Computational evidence of inversion of 1L a and 1L b -derived excited states in naphthalene excimer formation from ab initio multireference theory with large active space: DMRG-CASPT2 study. J. Chem. Theory Comput. 12 : 2366–2372.
- Ma, Y., Knecht, S., and Reiher, M. (2017). Multiconfigurational effects in theoretical resonance Raman spectra. ChemPhysChem 18 : 384–393.
- Heller, E.J., Sundberg, R., and Tannor, D. (1982). Simple aspects of Raman scattering. J. Phys. Chem. 86 : 1822–1833.
- Neugebauer, J. and Hess, B.A. (2004). Resonance Raman spectra of uracil based on Kramers–Kronig relations using time-dependent density functional calculations and multireference perturbation theory. J. Chem. Phys. 120 : 11564–11577.
- Mai, S., Richter, M., Marquetand, P., and González, L. (2014). Excitation of Nucleobases from a Computational Perspective II: Dynamics; Topics in Current Chemistry, 1–55. Springer Berlin Heidelberg.
- Hassing, S. and Mortensen, O.S. (1980). Kramers–Kronig relations and resonance Raman scattering. J. Chem. Phys. 73 : 1078–1083.
- Peticolas, W.L. and Rush, T. (1995). Ab initio calculations of the ultraviolet resonance Raman spectra of uracil. J. Comput. Chem. 16 : 1261–1270.
- Rush, T.I. and Peticolas, W.L. (1995). Ab initio transform calculation of resonance Raman spectra of uracil, 1-methyluracil, and 5-methyluracil. J. Phys. Chem. 99 : 14647–14658.
- Sun, S. and Brown, A. (2014). Simulation of the resonance Raman spectrum for uracil. J. Phys. Chem. A 118 : 9228–9238.
- Mercier, Y., Santoro, F., Reguero, M., and Improta, R. (2008). The decay from the dark nπ * excited state in uracil: an integrated CASPT2/CASSCF and PCM/TD-DFT study in the gas phase and in water. J. Phys. Chem. B 112 : 10769–10772.
- Baiardi, A., Stein, C.J., Barone, V., and Reiher, M. (2017). Vibrational density matrix renormalization group. J. Chem. Theory Comput. 13 : 3764–3777.
- Watson, J.K.G. (1968). Simplification of the molecular vibration-rotation hamiltonian. Mol. Phys. 15 : 479–490.
- Rakhuba, M. and Oseledets, I. (2016). Calculating vibrational spectra of molecules using tensor train decomposition. J. Chem. Phys. 145 : 124101.
- Knecht, S., Hedegård, E.D., Keller, S. et al. (2016). New approaches for ab initio calculations of molecules with strong electron correlation. Chimia 70 : 244–251.
- https://github.com/sanshar (accessed 14. 8. 2018).
- https://github.com/SebWouters/CheMPS2 (accessed 14. 8. 2018).
- https://scine.ethz.ch/download/ (accessed 14. 8. 2018).
- https://github.com/naokin/mpsxx (accessed 14. 8. 2018).