Equation-of-Motion Coupled-Cluster Models
Monika Musiał
Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
Search for more papers by this authorMonika Musiał
Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
Search for more papers by this authorLeticia González
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, Sweden
Search for more papers by this authorSummary
Various computational schemes hidden under the name EOM-CC (equation-of-motion coupled-cluster) create a path through which the CC theory is applied to investigate excited, ionized and electron-attached molecular systems. In this chapter we consider five realizations of the EOM-CC approach focused on the studies of electronic excitations (EE), ionization potentials (IP), electron-attached (EA) states, double ionization potentials (DIP) and double-electron-attached (DEA) states. The direct application of the considered methods allows to study electronic states of the reference system as well as those differing from the reference by one (IP, EA) or two (DIP, DEA) electrons. In addition we propose an indirect application of the EOM-CC schemes which in some cases may be more interesting than the direct one. Namely, when the open-shell system A is studied then we may adopt as the reference one of its charged analogues: A+, A−, A2+, A2−on condition that it represents the closed-shell structure implying using the restricted Hartree-Fock (HF) reference. Then to recover the data relevant to the neutral system A we need to apply the EA, IP, DEA or DIP variant of the EOM-CC scheme, respectively. This can be generalized in the following way: to study with the EOM-CC approach the system A (charged or neutral) we may select as the reference that form of A which is of closed-shell character and differs from A by no more than 2 electrons. Then by using one of the EOM variants listed above we may recover an original structure. Owing to that we may avoid calculations based on the potentially spin-contaminated unrestricted HF reference. Moreover, the DIP and DEA approaches open the way to describe in a correct way a homolytic dissociation of the single bond without necessity to deal with the open-shell products. For all five considered methods (i.e., EE-EOM-CC, IP-EOM-CC, DIP-EOM-CC, EA-EOM-CC, DEA-EOM-CC) we provide detailed working equations both at the CCSD and CCSDT level in the form ready to code. For each of the considered EOM schemes we give illustrative results which make it possible to compare the performance of the E0M-CCSD and EOM-CCSDT approaches.
References
- Coester, F. (1958). Bound states of a many-particle system. Nucl. Phys. 7 : 421.
- Coester, F. and Kümmel, H. (1960). Short-range correlation in nuclear wave functions. Nucl. Phys. 17 : 477.
- Čížek, J. (1966). On the correlation problem in atomic and molecular systems. Calculation of wave function components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45 : 4256.
- Čížek, J. (1969). On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 14 : 15.
- Paldus, J., Čížek, J., and Shavitt, I. (1974). Correlation problems in atomic and molecular systems. IV. Extended coupled-pair many-electron theory and its application to the BH3 molecule. Phys. Rev. A 5 : 50.
- Purvis, G.D. and Bartlett, R.J. (1982). A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76 : 1910.
- Bartlett, R.J. and Musiał, M. (2007). Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79 : 291.
- Raghavachari, K., Trucks, G.W., Pople, J.A., and Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157 : 479.
- Lyakh, D.I., Musiał, M., Lotrich, V., and Bartlett, R.J. (2012). Multireference nature of chemistry: the coupled-cluster view. Chem. Rev. 112 : 182.
- Rowe, D.J. (1968). The equations-of-motion method and the extended shell model. Rev. Mod. Phys. 40 : 153.
- Emrich, K. (1981). An extension of the coupled cluster formalism to excited states. Nucl. Phys. 351 : 397.
- Sekino, H. and Bartlett, R.J. (1984). A linear response, coupled-cluster theory for excitation energy. Int. J. Quantum Chem. 18 : 255.
- Geertsen, J., Rittby, M., and Bartlett, R.J. (1989). The equation-of-motion coupled-cluster method: excitation energies of Be and CO. Chem. Phys. Lett. 164 : 57.
- Comeau, D.C. and Bartlett, R.J. (1993). The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states. Chem. Phys. Lett. 207 : 414.
- Stanton, J.F. and Bartlett, R.J. (1993). The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98 : 7029.
- Bartlett, R.J. and Stanton, J.F. (1994). Reviews in Computational Chemistry, vol. 5 (eds. K.B. Lipkowitz and D.B. Boyd), 65. New York: VCH Publishers.
- Nooijen, M. and Bartlett, R.J. (1995). Equation of motion coupled cluster method for electron attachment. J. Chem. Phys. 102 : 3629.
- Watts, J.D. and Bartlett, R.J. (1994). The inclusion of connected triple excitations in the equation-of-motion coupled-cluster method. J. Chem. Phys. 101 : 3073.
- Watts, J.D. and Bartlett, R.J. (1995). Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies. Chem. Phys. Lett. 233 : 81.
- Watts, J.D. and Bartlett, R.J. (1996). Iterative and non-iterative triple excitations in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD () methods. Chem. Phys. Lett. 258 : 581.
- Musiał, M., Kucharski, S.A., and Bartlett, R.J. (2004). Approximate inclusion of the T3 and R3 operators in the equation-of-motion coupled cluster method. Adv. Quantum Chem. 47 : 209.
- Kowalski, K. and Piecuch, P. (2001). The active-space equation-of-motion coupled-cluster methods for excited electronic states: full EOMCCSDt. J. Chem. Phys. 115 : 643.
- Kucharski, S.A., Włoch, M., Musiał, M., and Bartlett, R.J. (2001). Coupled-cluster theory for excited states: the full equation-of-motion coupled-cluster single, double and triple excitation method. J. Chem. Phys. 115 : 8263.
- Hirata, S. (2004). Higher-order equation-of-motion coupled-cluster methods. J. Chem. Phys. 121 : 51.
- Kallay, M. and Surjan, P.R. (2000). Computing coupled-cluster wave functions with arbitrary excitations. J. Chem. Phys. 113 : 1359.
- Musiał, M., Kucharski, S.A., and Bartlett, R.J. (2003). Equation-of-motion coupled cluster method for the full inclusion of the connected triple excitations for ionized states: IP-EOM-CCSDT. J. Chem. Phys. 118 : 1128.
- Kamiya, M. and Hirata, S. (2006). Higher-order equation-of-motion coupled-cluster methods for ionization processes. J. Chem. Phys. 125 : 074111.
- Gour, J.R. and Piecuch, P. (2006). Efficient formulation and computer implementation of the active-space electron-attached and ionized equation-of-motion coupled-cluster methods. J. Chem. Phys. 115 : 234107.
- Musiał, M. and Bartlett, R.J. (2003). Equation-of-motion coupled cluster method with full inclusion of connected triple excitations for electron-attached states: EA-EOM-CCSDT. J. Chem. Phys. 119 : 1901.
- Kamiya, M. and Hirata, S. (2007). Higher-order equation-of-motion coupled-cluster methods for electron attachment. J. Chem. Phys. 126 : 134112.
- Sattelmeyer, K.W., Schaefer, H.F. III, and Stanton, J.F. (2003). Use of 2h and 3h – p-like coupled-cluster Tamm-Dancoff approaches for the equilibrium properties of ozone. Chem. Phys. Lett. 378 : 42.
- Demel, O., Shamasundar, K.R., Kong, L., and Nooijen, M. (2008). Application of double ionization state-specific equation of motion coupled cluster method to organic diradicals. J. Phys. Chem. A 112 : 11895.
- Musiał, M., Perera, A., and Bartlett, R.J. (2011). Multireference coupled-cluster theory: the easy way. J. Chem. Phys. 134 : 114108.
- Kuś, T. and Krylov, A.I. (2011). Using the charge stabilization technique in the double ionization potential equation-of-motion calculations with dianion references. J. Chem. Phys. 135 : 084109.
- Shen, J. and Piecuch, P. (2013). Doubly electron-attached and doubly ionized equation-of-motion coupled-cluster methods with 4-particle-2-hole and 4-hole-2-particle excitations and their active space extensions. J. Chem. Phys. 138 : 194102.
- Musiał, M., Kucharski, S.A., and Bartlett, R.J. (2011). Multireference double electron attached coupled cluster method with full inclusion of the connected triple excitations: MR-DA-CCSDT. J. Chem. Theory Comput. 7 : 3088.
- Monkhorst, H.J. (1977). Calculation of properties with the coupled-cluster method. Int. J. Quantum Chem. 11 : 421.
- Koch, H., Jensen, H.J.A., Jörgensen, P., and Helgaker, T. (1990). Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O. J. Chem. Phys. 93 : 3345.
- Koch, H. and Jörgensen, P. (1990). Coupled cluster response functions. J. Chem. Phys. 93 : 3333.
- Koch, H., Christiansen, O., Jörgensen, P., and Olsen, J. (1995). Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models. Chem. Phys. Lett. 244 : 75.
- Christiansen, O., Koch, H., and Jörgensen, P. (1995). Response functions in the CC3 iterative triple excitation model. J. Chem. Phys. 103 : 7429.
- Nakatsuji, H. (1979). Cluster expansion of the wave function. Electron correlation in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories. Chem. Phys. Lett. 67 : 329.
- Nakatsuji, H. (1979). Cluster expansion of the wave function. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories. Chem. Phys. Lett. 67 : 334.
- Nakatsuji, H., Ohta, K., and Hirao, K. (1981). Cluster expansion of the wave function. Electron correlation in ground state, valence and Rydberg excited states, ionized states, and electron-attached states of formaldehyde by SAC and SAC-CI theories. J. Chem. Phys. 75 : 2952.
- Noga, J. and Bartlett, R.J. (1988, 1987). The full CCSDT model for molecular electronic structure. J. Chem. Phys. 86 : 7041. Errata: 89: 3401.
- Kucharski, S.A. and Bartlett, R.J. (1992). The coupled-cluster single, double, triple, and quadruple excitation method. J. Chem. Phys. 97 : 4282.
- Kucharski, S.A. and Bartlett, R.J. (1999). Connected quadruples for the frequencies of O3 . J. Chem. Phys. 110 : 8233.
- Musiał, M., Kucharski, S.A., and Bartlett, R.J. (2002). Formulation and implementation of the full coupled-cluster method through pentuple excitations. J. Chem. Phys. 116 : 4382.
- Bartlett, R.J. (1989). Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J. Phys. Chem. 93 : 1697.
- Bartlett, R.J. (1995). Modern Electronic Structure Theory, Part 2 (ed. D.R. Yarkony), 1047. New York: World Scientific Publishing.
- Paldus, J. and Li, X. (1999). A Critical assessment of coupled cluster method in quantum chemistry. Adv. Chem. Phys. 110 : 1.
- Piecuch, P., Kucharski, S.A., Kowalski, K., and Musiał, M. (2002). Efficient computer implementation of the renormalized coupled cluster methods. The R-CCSD[T], R-CCSD(T), CR-CCSD[T] and CR-CCSD(T) approaches. Comput. Phys. Commun. 149 : 71.
- Piecuch, P., Kowalski, K., Pimienta, I.S.O. et al. (2004). Method of moments of coupled-cluster equations: a new formalism for designing accurate electronic structure methods for ground and excited states. Theor. Chem. Acc. 112 : 349.
-
Shavitt, I. and Bartlett, R.J. (2009). Many-Body Methods in Chemistry and Physics: Many-Body Perturbation Theory and Coupled Cluster Methods. Cambridge, England: Cambridge Press.
10.1017/CBO9780511596834 Google Scholar
- Krylov, A.I. (2008). Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker's guide to Fock space. Annu. Rev. Phys. Chem. 59 : 433.
- Musiał, M. (2010). The excited, ionized and electron attached states within the EOM-CC approach with full inclusion of connected triple excitations. Mol. Phys. 108 : 2921.
- Korona, T. and Werner, H.J. (2003). Local treatment of electron excitations in the EOM-CCSD method. J. Chem. Phys. 118 : 3006.
- Crawford, T.D. and King, R.A. (2002). Locally correlated equation-of-motion coupled cluster theory for the excited states of large molecules. Chem. Phys. Lett. 366 : 611.
- Nooijen, M. and Snijders, J.G. (1992). Coupled cluster approach to the single-particle Green's function. Int. J. Quantum Chem. 26 : 55.
- Nooijen, M. and Snijders, J.G. (1993). Coupled cluster Green's function method: working equations and applications. Int. J. Quantum Chem. 48 : 15.
- Stanton, J.F. and Gauss, J. (1994). Analytic energy derivatives for ionized states described by the equation-of-motion coupled cluster method. J. Chem. Phys. 101 : 8938.
- Stanton, J.F. and Gauss, J. (1999). A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy methods. J. Chem. Phys. 111 : 8785.
- Szalay, P.G., Watson, T., Perera, A. et al. (2012). Benchmark studies on the building blocks of DNA. 1. Superiority of coupled cluster methods in describing the excited states of nucleobases in the Franck-Condon region. J. Phys. Chem. A 116 : 6702.
- Davidson, E.R. (1975). The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17 : 87.
- Hirao, K. and Nakatsuji, H. (1982). A generalization of the Davidson's method to large nonsymmetric eigenvalue problems. J. Comput. Phys. 45 : 246.
- Musiał, M. and Bartlett, R.J. (2008). Intermediate Hamiltonian Fock-space multireference coupled-cluster method with full triples for calculation of excitation energies. J. Chem. Phys. 129 : 044101.
- Kendall, R.A., Dunning, T.H. Jr., and Harrison, R.J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96 : 6796.
- Li, X. and Paldus, J. (2006). General-model-space state-universal coupled-cluster methods for excited states: diagonal noniterative triple corrections. J. Chem. Phys. 124 : 034112.
- Musiał, M., Kucharski, S.A., Zerzucha, P. et al. (2009). Excited and ionized states of the ozone molecule with full triples coupled cluster methods. J. Chem. Phys. 131 : 194101.
- Sadlej, A.J. (1988). Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collect. Czechoslov. Chem. Commun. 53 : 1995.
- Banichevich, A. and Peyerimhoff, S.D. (1993). Theoretical study of the ground and excited states of ozone in its symmetric nuclear arrangement. Chem. Phys. 174 : 93.
- Anderson, S.M., Morton, J., and Mauersberger, K. (1990). Near-infrared absorption spectra of 16O3 and 18O3: adiabatic energy of the 1 A 2 state? J. Chem. Phys. 93 : 3826.
- Thunemann, K.-H., Peyerimhoff, S.D., and Buenker, R.J. (1978). Configuration interactions calculations for the ground and excited states of ozone and its positive ion: energy locations and transitions probabilities. J. Mol. Spectrosc. 70 : 432.
- Kimura, K., Katsumata, S., Achiba, Y. et al. (1981). Handbook of Hel Photoelectron Spectra of Fundamental Organic Molecules. New York: Halsted.
- Musiał, M., Bewicz, A., Skupin, P., and Kucharski, S.A. (2018). Potential energy curves for the LiK+ and NaK+ molecular ions with the coupled cluster method. Adv. Quantum Chem. 76 : 333.
- Radziemski, L.J., Engelman, R. Jr., and Brault, J.W. (1995). Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6I and 7I (Li I). Phys. Rev. A 52 : 4462.
- Sansonetti, J.E. (2008). Wavelengths, transition probabilities, and energy levels for the spectra of sodium (Na I-Na XI). J. Phys. Chem. Ref. Data 37 : 1659.
- Musiał, M. and Bartlett, R.J. (2011). Multi-reference Fock space coupled-cluster method in the intermediate Hamiltonian formulation for potential energy surfaces. J. Chem. Phys. 135 : 044121.
- Siegbahn, H., Asplund, L., and Kelfve, P. (1975). The Auger electron spectrum of water vapour. Chem. Phys. Lett. 35 : 330.
- Thompson, M., Hewritt, P.A., and Wooliscroft, D.S. (1976). Analytical aspects of Auger electron spectrometry of gases. Anal. Chem. 48 : 1336.
- Rye, R.R., Madey, T.E., Houston, J.E., and Holloway, P.H. (1978). Chemical-state effects in Auger electron spectroscopy. J. Chem. Phys. 69 : 1504.
- Moddeman, W.E., Carlson, T.A., Krause, M.O. et al. (1971). Determination of the K-LL Auger spectra of N2, O2 CO, NO, H2O, and CO2 . J. Chem. Phys. 55 : 2317.
- Dawber, G., McConkey, A.G., Acaldi, L. et al. (1994). Threshold photoelectrons coincidence spectroscopy of doubly-charged ions of nitrogen, carbon monoxide, nitric oxide and oxygen. J. Phys. B Atomic Mol. Phys. 27 : 2191.
- Benoit, C. and Horsley, J.A. (1975). Electronic states of C2H4 ++ from double charge transfer spectroscopy and from SCF-CI calculations. Mol. Phys. 30 : 557.
- Musiał, M. (2012). Multi-reference Fock space coupled-cluster method in standard and intermediate Hamiltonian formulation for the (2,0) sector. J. Chem. Phys. 136 : 134111.
- Moore, C.E. (1949). Atomic energy levels. Natl. Bur. Stand. (U.S.) 467 : 60.
- Koch, H., Kobayashi, R., Sanchez de Meras, A., and Jörgensen, P. (1994). Calculation of size-intensive transition moments from the coupled cluster singles and doubles linear response function. J. Chem. Phys. 100 : 4393.
- Mukhopadhyay, D., Kukhopadhyay, S., Chaudhuri, R., and Mukherjee, D. (1991). Aspects of separability in the coupled cluster based direct methods for energy differences. Theor. Chem. Acc. 80 : 441.
- Stanton, J.F. (1994). Separability properties of reduced and effective density matrices in the equation-of-motion coupled cluster method. J. Chem. Phys. 101 : 8928.
- Musiał, M. and Bartlett, R.J. (2011). Charge-transfer separability and size-extensivity in the equation-of-motion coupled cluster method: EOM-CC. J. Chem. Phys. 134 : 034106.
- Nooijen, M. and Bartlett, R.J. (1997). A new method for excited states: similarity transformed equation-of-motion coupled-cluster theory. J. Chem. Phys. 106 : 6441.
- Nooijen, M. and Bartlett, R.J. (1997). Similarity transformed equation-of-motion coupled-cluster study of ionized, electron attached, and excited states of free base porphin. J. Chem. Phys. 106 : 6449.
- Meissner, L. (1998). Fock-space coupled-cluster method in the intermediate Hamiltonian formulation: model with singles and doubles. J. Chem. Phys. 108 : 9227.
- Musiał, M. and Bartlett, R.J. (2008). Multireference Fock-space coupled-cluster and equation-of-motion coupled-cluster theories: the detailed interconnections. J. Chem. Phys. 129 : 134105.
- Krylov, A.I. (2001). Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model. Chem. Phys. Lett. 338 : 375.
- Levchenko, S.V. and Krylov, A.I. (2004). Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: theory and application to cyclobutadiene. J. Chem. Phys. 120 : 175.
- Levchenko, S.V. and Krylov, A.I. (2005). Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations. J. Chem. Phys. 123 : 84107.
- Kowalski, K. and Piecuch, P. (2000). the active-space equation-of-motion coupled-cluster methods for excited electronic states: the EOMCCSDt approach. J. Chem. Phys. 113 : 8490.
- Krylov, A.I., Sherrill, C.D., and Head-Gordon, M. (2000). Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models. J. Chem. Phys. 113 : 6509.
- Musiał, M., Lupa, Ł., and Kucharski, S.A. (2016). Equation-of-motion coupled cluster method for the description of the high spin excited states. J. Chem. Phys. 144 : 154105.