Multi-Configurational Density Functional Theory: Progress and Challenges
Hedegård Erik Donovan
Division of Theoretical Chemistry, Lund University, Kemicentrum P.O. Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorHedegård Erik Donovan
Division of Theoretical Chemistry, Lund University, Kemicentrum P.O. Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorLeticia González
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, Sweden
Search for more papers by this author*Electronic mail: [email protected]
Summary
Kohn-Sham density functional theory (KS-DFT) in its time-dependent (linear response) formulation has often provided accurate accounts of electronic excitations and excited state processes. The main features of DFT and its linear response variant are a cost efficient and quite accurate description of dynamical correlation, which is a large challenge for methods based on traditional wave function theory. However, DFT also has limitations, e.g., electronic states where several configurations are of importance; a scenario often encountered for electronically excited states. For these cases a correct description requires a genuine multi-configurational ansatz. The high computational cost of multi-configurational methods has, however, been a large hindrance for their general usage. This has led to development of a number of methods combining DFT and multi-configurational wave functions. The goal is to let the multi-configurational wave function include the configurations required for a physically correct description of the electronic state, while DFT efficiently can recover the dynamical correlation. In this chapter we provide an overview of different methods, combining multi-configurational wave functions and DFT. We discuss the main challenges with outset in three different models namely MRCI/DFT, MC-PDFT and MC-srDFT. These three models have been applied to describe excited states of a large number of organic molecules and to a lesser degree also transition metals; hence an preliminary assessment of their performance for chemically different systems can be made.
References
- Runge, E. and Gross, E.K.U. (1984). Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52 : 997–1000.
- Marques, M.A.L. and Gross, E.K.U. (2004). Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55 : 427–455.
- Casida, M.E. and Huix-Rotllant, M. (2012). Progress in time-dependent density-functional theory. Annu. Rev. Phys. Chem. 63 : 287–323.
- Adamo, C. and Jacquemin, D. (2013). The calculations of excited-state properties with time-dependent density functional theory. Chem. Soc. Rev. 42 : 845–856.
- Veryazov, V., Malmqvist, P.-Å., and Roos, B.O. (2011). How to select active space for multi- configurational quantum chemistry? Int. J. Quantum Chem. 111 : 3329–3338.
- Szalay, P.G., Müller, T., Gidofalvi, G. et al. (2012). Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112 : 108–181.
- Maitra, N.T., Zhang, F., Cave, R.J., and Burke, K. (2004). Double excitations within time-dependent density functional theory linear response. J. Chem. Phys. 120 : 5932–5937.
- Elliot, P., Goldson, S., Canahui, C., and Maitra, N.T. (2011). Perspectives on double-excitations in TDDFT. Chem. Phys. 391 : 110–119.
- Tozer, D. and Handy, N.C. (1998). Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J. Chem. Phys. 109 : 10180–10189.
- Liao, M.-S., Lu, Y., and Scheiner, S. (2003). Performance assessment of density-functional methods for study of charge-transfer complexes. J. Comput. Chem. 24 : 623–631.
- Fabiano, E., Sala, F.D., Barbarella, G. et al. (2006). Optical properties of N-succinimidyl bithiophene and the effects of the binding to biomolecules: comparison between coupled-cluster and time-dependent density functional theory calculations and experiments. J. Phys. Chem. B 110 : 18651–18660.
- Perpetè, E., Preat, J., André, J.-M., and Jacquemin, D. (2006). An ab initio study of the absorption spectra of indirubin, isoindigo, and related derivatives. J. Phys. Chem. A 110 : 5629–5635.
- Dreuw, A. and Head-Gordon, M. (2004). Failure of time-dependent density functional theory for long-range charge transfer excited States: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. J. Am. Chem. Soc. 126 : 4007–4016.
- Marti, K.H. and Reiher, M. (2010). The density matrix renormalization group algorithm in quantum chemistry. Z. Phys. Chem. 224 : 583–599.
- Chan, G.K.L. and Sharma, S. (2011). The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62 : 465–481.
- Kurashige, Y. (2014). Multireference electron correlation methods with density matrix renormalisation group reference functions. Mol. Phys. 112 : 1485–1494.
- Knecht, S., Hedegård, E.D., Keller, S. et al. (2016). New approaches for ab initio calculations of molecules with strong electron correlation. Chimia 70 : 244–251.
- Filippi, C., Assaraf, R., and Moroni, S. (2016). Simple formalism for efficient derivatives and multideterminant expansions in quantum Monte Carlo. J. Chem. Phys. 144 : 194105.
- Li Manni, G., Smart, S.D., and Alavi, A. (2016). Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins. J. Chem. Theory Comput. 12 : 1245–1258.
- Thomas, R.E., Sun, Q., Alavi, A., and Booth, G.H. (2015). Stochastic multiconfigurational self-consistent field theory. J. Chem. Theory Comput. 11 : 5316–5325.
- Olsen, J., Roos, B.O., Jørgensen, P., and Jensen, H.J.Å. (1988). Determinant based configuration-interaction algorithms for complete and restricted configuration-interaction spaces. J. Chem. Phys. 89 : 2185–2192.
- Fleig, T., Olsen, J., and Marian, C.M. (2001). The generalized active space concept for the relativistic treatment of electron correlation. I. Kramers-restricted two-component configuration interaction. J. Comp. Phys. 114 : 4775.
- Thyssen, J., Fleig, T., and Jensen, H.J.Å. (2008). A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. J. Comp. Phys. 129 : 034109.
- Ma, D., LI Manni, G., and Gagliardi, L. (2011). The generalized active space concept in multiconfigurational self-consistent field methods. J. Chem. Phys. 135 : 044128.
- Andersson, K., Malmqvist, P.-Å., Roos, B.O. et al. (1990). Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94 : 5483–5488.
- Andersson, K., Malmqvist, P.-Å., and Roos, B.O. (1992). Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96 : 1218–1226.
- Malmqvist, P.-Å., Pierloot, K., Shahi, A.R.M. et al. (2008). The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J. Chem. Phys. 128 : 204109.
- Ma, D., Li Manni, G., Olsen, J., and Gagliardi, L. (2016). Second-order perturbation theory for generalized active space self-consistent-field wave functions. J. Chem. Theory Comput. 12 : 3208–3213.
- Angeli, C., Cimiraglia, R., Evangelisti, S. et al. (2001). Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114 : 10252–10264.
- Ghosh, S., Verma, P., Cramer, C.J. et al. (2018). Combining wave function methods with density functional theory for excited states. Chem. Rev. 118 : 7249–7292.
- Lischka, H., Nachtigallova, D., Aquino, A.J.A. et al. (2018). Multireference approaches for excited states of molecules. Chem. Rev. 118 : 7293–7361.
- Grimme, S. and Waletzke, M. (1999). A combination of Kohn-Sham density functional theory and multi-reference configuration-interaction methods. J. Chem. Phys. 111 : 5645–5655.
- Kleinschmidt, M., Marian, C.M., Waletzke, M., and Grimme, S. (2009). Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene. J. Chem. Phys. 130 : 044708.
- Li Manni, G., Carlson, R.K., Luo, S. et al. (2014). Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 10 : 3669–3680.
- Gagliardi, L., Truhlar, D.G., Li Manni, G. et al. (2017). Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc. Chem. Res. 50 : 66–73.
- Savin, A. and Flad, H.-J. (1995). Density functionals for the Yukawa electron-electron interaction. Int. J. Quantum Chem. 56 : 327–332.
- Hedegård, E.D., Toulouse, J., and Jensen, H.J.Å. (2018). Multiconfigurational short-range density-functional theory for open-shell systems. J. Chem. Phys. 148 : 214103.
- Theophilou, A.K. (1972). The energy density functional formalism for excited states. J. Phys. C 12 : 5419–5430.
- Gross, E.K.U., Oliveira, L.N., and Kohn, W. (1988). Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev. A 37 : 2805–2808.
- Gross, E.K.U., Oliveira, L.N., and Kohn, W. (1988). Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys. Rev. A 37 : 2809–2820.
- Pastorczak, E., Gidopoulos, N.I., and Pernal, K. (2013). Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle. Phys. Rev. A 87 : 062501.
- Franck, O. and Fromager, E. (2014). Generalized adiabatic connection in ensemble density-functional theory for excited states: example of the H2 molecule. Mol. Phys. 112 : 1684–1701.
- Filatov, M. and Shaik, S. (2014). A spin-restricted ensemble-referenced Kohn-Sham method and its application to diradicaloid situations. Chem. Phys. Lett. 304 : 429–437.
- Filatov, M., Martinez, T.J., and Kim, K.S. (2016). Using the GVB Ansatz to develop ensemble DFT method for describing multiple strongly correlated electron pairs. Phys. Chem. Chem. Phys. 18 : 21040–21050.
- Filatov, M., Liu, F., Kim, K.S., and Martínez, T.J. (2016). Self-consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs. J. Chem. Phys. 145 : 244104.
- Filatov, M. (2013). Assessment of density functional methods for obtaining geometries at conical intersections in organic molecules. J. Chem. Theory Comput. 9 : 4526–4541.
- Marian, C.M. and Gilka, N. (2008). Performance of the density functional theory/multireference configuration interaction method on electronic excitation of extended-systems. J. Chem. Theory Comput. 4 : 1501–1515.
- Hoyer, C.E., Ghosh, S., Truhlar, D.G., and Gagliardi, L. (2016). Multiconfiguration pair-density functional theory is as accurate as CASPT2 for electronic excitation. J. Phys. Chem. Lett. 7 : 586–591.
-
Savin, A. (1996). On degeneracy, near degeneracy and density functional theory. In: Recent Developments of Modern Density Functional Theory (ed. J.M. Seminario), 327–357. Amsterdam: Elsevier.
10.1016/S1380-7323(96)80091-4 Google Scholar
- Pedersen, J.K. (2004). Description of Correlation and Relativistic Effects in Calculations of Molecular Properties , Ph.D. thesis, University of Southern Denmark.
- Fromager, E., Toulouse, J., and Jensen, H.J.Å. (2007). On the universality of the long-/short range separation in multiconfigurational density-functional theory. J. Chem. Phys. 126 : 074111.
- Hubert, M., Jensen, H.J.Å., and Hedegård, E.D. (2016). Excitation spectra of nucleobases with multiconfigurational density functional theory. J. Phys. Chem. A 120 : 36–43.
- Helgaker, T., Jørgensen, P., and Olsen, J. (2004). Molecular Electronic-Structure Theory. Wiley.
- Saue, T. and Helgaker, T. (2002). Four-component relativistic Kohn-Sham theory. J. Comput. Chem. 23 : 814–823.
- Sałek, P., Vahtras, O., Helgaker, T., and Ågren, H. (2002). Density-functional theory of linear and nonlinear time-dependent molecular properties. J. Chem. Phys. 117 : 9630–9645.
- Parr, R. and Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. Oxford University Press.
- Vosko, S.H., Wilk, L., and Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58 : 1200–1211.
- Perdew, J.P. and Wang, Y. (1992). Accurate and simple analytic representation of the electron- gas correlation energy. Phys. Rev. B 45 : 13244–13249.
- Gunnarson, O. and Lundqvist, B.I. (1976). Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13 : 4274–4298.
- Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38 : 3098–3100.
- Lee, C., Yang, W., and Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 : 785–789.
- Perdew, J.P. (1991). Unified theory of exchange and correlation beyond the local density approximation. In: Electronic Structure of Solids ‘91 (eds. P. Ziesche and H. Eschrig), 11–20. Berlin: Akademie Verlag.
- Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77 : 3865–3868.
- Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 : 5648–5652.
- Tao, J., Perdew, J.P., Staroverov, and Scuseria, G.E. (2003). Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91 : 146401.
- Carlson, R.K., Truhlar, D.G., and Gagliardi, L. (2015). Multiconfiguration pair-density functional theory: a fully translated gradient approximation and its performance for transition metal dimers and the spectroscopy of Re2Cl8 2− . J. Chem. Theory Comput. 11 : 4077–4085.
- Toulouse, J., Savin, A., and Flad, H.-J. (2004). Short-range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction. Int. J. Quantum Chem. 100 : 1047–1056.
- Paziani, S., Moroni, S., Gori-Giorgi, P., and Bachelet, G.B. (2006). Local-spin-density functional for multideterminant density functional theory. Phys. Rev. B 73 : 155111.
- Goll, E., Werner, H.-J., and Stoll, H. (2005). A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. Phys. Chem. Chem. Phys. 7 : 3917–3923.
- Heyd, J., Scuseria, G.E., and Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118 : 8207–8215.
- Heyd, J. and Scuseria, G.E. (2004). Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 120 : 7274–7280.
- Toulouse, J., Colonna, F., and Savin, A. (2004). Long-range-short-range separation of the electron-electron interaction in density-functional theory. Phys. Rev. A 70 : 062505.
- Goll, E., Ernst, M., Moegle-Hofacker, F., and Stoll, H. (2009). Development and assessment of a short-range meta-GGA functional. J. Chem. Phys. 130 : 234112.
- Casida, M.E. (1996). Time-dependent density functional response theory for molecules. In: Recent Advances in Density Functional Methods. Part I, vol. 1 (ed. D.P. Chong), 155–192. World Scientific.
- Bauernschmitt, R. and Ahlrichs, R. (1995). Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256 : 454–464.
- Linderberg, J. and Öhrn, Y. (1973). Propagators in Quantum Chemistry. London: Academic Press.
- Zubarev, D.L. (1974). Nonequilibrium Statistical Thermodynamics. New York: Consultant Bureau.
- Olsen, J. and Jørgensen, P. (1985). Linear and non-linear response functions for an exact state and for an MCSCF state. J. Chem. Phys. 82 : 3235–3264.
- Sałek, P., Helgaker, T., and Saue, T. (2005). Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2 . Chem. Phys. 311 : 187–201.
- Neugebauer, J., Baerends, E.J., and Nooijen, M. (2004). Vibronic coupling and double excitations in linear response time-dependent density functional calculations: dipole-allowed states of N2 . J. Chem. Phys. 121 : 6155–6166.
- Burke, K. (2012). Perspective on density functional theory. J. Chem. Phys. 136 : 150901.
- Eriksen, J.J., Sauer, S.P.A., Mikkelsen, K.V. et al. (2013). Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline. Mol. Phys. 111 : 1235–1248.
- Tawada, Y., Tsuneda, T., and Yanagisawa, S. (2004). A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120 : 8425–8433.
- Yanai, T., Tew, D.P., and Handy, N.C. (2004). A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393 : 51–57.
- Koch, W. and Holthausen, M.C. (2008). A Chemist's Guide to Density Functional Theory, 2 ed. Wiley.
- Neese, F. (2004). Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems. J. Phys. Chem. Solids 65 : 781–785.
-
Seminario, J.M. (1994). A study of small systems containing H and O atoms using nonlocal functionals: comparisons with ab initio and experiment.
Int. J. Quantum Chem.
S28: 655–666.
10.1002/qua.560520858 Google Scholar
- Perdew, J.P., Savin, A., and Burke, K. (1995). Escaping the symmetry dilemma through a pair-density of spin-density functional theory. Phys. Rev. A 51 : 4531–4541.
- Löwdin, P.-O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97 : 1474–1489.
- Löwdin, P.-O. (1955). Quantum theory of many-particle systems. II. Study of the ordinary Hartree-Fock approximation. Phys. Rev. 97 : 1474–1489.
- Delley, B., Freeman, A.J., and Ellis, D.E. Metal-metal bonding in Cr-Cr and Mo-Mo dimers: another success of local spin-density theory. Phys. Rev. Lett. 50 : 488–491.
- Dunlap, B.I. (1983). Xα, Cr2, and the symmetry dilemma. Phys. Rev. A 27 : 2217–2219.
- Jacob, C.R. and Reiher, M. (2012). Spin in density-functional theory. Int. J. Quantum Chem. 112 : 3661–3684.
- Lie, G.C. and Clement, E. (1974). Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree–Fock density and its application to the hydrides of the second row atoms. J. Chem. Phys. 60 : 1275–1287.
- Lie, G.C. and Clement, E. (1974). Study of the electronic structure of molecules. XXII. Correlation energy corrections as a functional of the Hartree Fock type density and its application to the homonuclear diatomic molecules of the second row atoms. J. Chem. Phys. 60 : 1288–1296.
- Malcolm, N.O. and McDouall, J.J. (1998). A simple scaling for combining multiconfigurational wave functions with density functionals. Chem. Phys. Lett. 282 : 121–127.
- Wetmore, R.W. and Segal, G.A. (1975). Efficient generation of configuration interaction elements. Chem. Phys. Lett. 36 : 478–483.
- Marian, C.M., Heil, A., and Kleinschmidt, M. (2019). The DFT/MRCI method. WIREs Comput. Mol. Sci. 9 : e1394.
- Beck, E.V., Stahlberg, E.A., Burggraf, L.W., and Blaudeau, J.-P. (2008). A graphical unitary group approach-based hybrid density functional theory multireference configuration interaction method. Chem. Phys. 349 : 158–169.
- Lyskov, I., Kleinschmidt, M., and Marian, C.M. (2016). Redesign of the DFT/MRCI Hamiltonian. J. Chem. Phys. 144 : 034104.
- McWeeny, R. (1959). The density matrix in many-electron quantum mechanics. I. Generalized product functions. Factorization and physical interpretation of the density matrices. Proc. R. Soc. Lond. A 253 : 242–259.
- McWeeny, R. (1960). Some recent advances in density matrix theory. Rev. Mod. Phys. 32 : 335–369.
- McWeeny, R. (2004). Spins in Chemistry. Dover.
- McWeeny, R. and Sutcliffe, B.T. (1969). Methods of Molecular Quantum Mechanics. Academic Press London.
- Gräfenstein, J. and Cremer, D. (2000). The combination of density functional theory with multiconfiguration methods–CAS-DFT. Chem. Phys. Lett. 316 : 569–577.
- Gräfenstein, J. and Cremer, D. (2005). Development of a CAS-DFT method covering non- dynamical and dynamical electron correlation in a balanced way. Mol. Phys. 103 : 279–308.
- Gusarov, S., Malmqvist, P.-Å., and Lindh, R. (2004). Using on-top pair density for construction of correlation functionals for multideterminant wave functions. Mol. Phys. 102 : 2207–2216.
- Takeda, R., Yamanaka, S., and Yamaguchi, K. (2004). Approximate on-top pair density into one-body functions for CAS-DFT. Chem. Phys. Lett. 96 : 463–473.
- Moscarda, F. and San-Fabian, E. (1991). Density-functional formalism and the two-body problem. Phys. Rev. A 44 : 1549–1553.
-
Ziegler, T.,Rauk, A., and Baerends, E.J. (1977). On the calculation of multiplet energies by the Hartree-Fock- Slater method.
Theoret. Chim. Acta
271
: 261–271.
10.1007/BF00551551 Google Scholar
- Perdew, J.P., Ernzerhof, M., Burke, K., and Savin, A. (1997). On-top pair-density interpretation of spin density functional theory, with applications to magnetism. Int. J. Quantum Chem. 61 : 197–205.
- Becke, A.D., Savin, A., and Stoll, H. (1995). Extension of the local-spin-density exchange- correlation approximation to multiplet states. Theor. Chim. Acta 91 : 147–156.
- Presti, D., Truhlar, D.G., and Gagliardi, L. (2018). Intramolecular charge transfer and local excitation in organic fluorescent photoredox catalysts explained by RASCI-PDFT. J. Phys. Chem. C 122 : 12061–12070.
- Ghosh, S., Cramer, C.J., Truhlar, D.G., and Gagliardi, L. (2017). Generalized-active-space pair-density functional theory: an efficient method to study large, strongly correlated, conjugated systems. Chem. Sci. 8 : 2741–2750.
- Sharma, P., Bernales, V., Knecht, S., Truhlar, D.G., and Gagliardi, L. (2019). Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 10 : 1716–1723.
- Miehlich, B., Stoll, H., and Savin, A. (1997). A correlation-energy density functional for multi- determinantal wave functions. Mol. Phys. 91 : 527–536.
- McDouall, J.J. (2003). Combining two-body density functionals with multiconfigurational wave functions: diatomic molecules. Mol. Phys. 101 : 361–371.
- Goll, E., Werner, H.-J., Stoll, H. et al. (2006). A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: application to alkali-metal rare-gas dimers. Chem. Phys. 329 : 276–282.
- Hedegård, E.D., Heiden, F., Knecht, S. et al. (2013). Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. J. Chem. Phys. 139 : 184308.
- Hubert, M., Hedegård, E.D., and Jensen, H.J.Å. (2016). Investigation of multiconfigurational short-range density functional theory for electronic excitations in organic molecules. J. Chem. Theory Comput. 12 : 2203–2213.
- Olsen, J.M.H. and Hedegård, E.D. (2017). Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution. Phys. Chem. Chem. Phys. 19 : 15870–15875.
- Hedegård, E.D. (2016). Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules. Mol. Phys. 115 : 26–38.
- Fromager, E., Cimiraglia, R., and Jensen, H.J.Å. (2010). Merging multireference perturbation and density-functional theories by means of range separation: potential curves for Be2, Mg2, and Ca2 . Phys. Rev. A 81 : 024502.
- Leininger, T., Stoll, H., Werner, H.-J., and Savin, A. (1997). Combining long-range configuration interaction with short-range density functionals. Chem. Phys. Lett. 275 : 151–160.
- Garza, A.J., Bulik, I.W., Henderson, T.M., and Scuseria, G.E. (2015). Range separated hybrids of pair coupled cluster doubles and density functionals. Phys. Chem. Chem. Phys. 17 : 22412–22422.
- Hedegård, E.D., Olsen, J.M.H., Knecht, S. et al. (2015). Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. J. Chem. Phys. 142 : 114113.
- Fromager, E., Knecht, S., and Jensen, H.J.Å. (2013). Multi-configuration time-dependent density-functional theory based on range separation. J. Chem. Phys. 138 : 084101.
- Fromager, E., Réal, F., Wåhlin, P. et al. (2009). On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f 0 actinide species. J. Chem. Phys. 131 : 054107.
- Schreiber, M., Silva-Junior, M.R., Sauer, S.P.A., and Thiel, W. (2008). Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 128 : 134110.
- Silva-Junior, M.R., Schreiber, M., Sauer, S.P.A., and Thiel, W. (2008). Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. J. Chem. Phys. 129 : 104103.
- Silva-Junior, M.R., Schreiber, M., Sauer, S.P.A., and Thiel, W. (2010). Basis set effects on coupled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2. Mol. Phys. 108 : 453–465.
- Silva-Junior, M.R., Schreiber, M., Sauer, S.P.A., and Thiel, W. (2010). Benchmarks of electronically excited states: basis set effects on CASPT2 results. J. Chem. Phys. 133 : 174318.
- König, C. and Neugebauer, J. (2012). Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. ChemPhysChem 13 : 386–425.
- Ghosh, S., Sonnenberger, A.L., Hoyer, C.E. et al. (2015). Multiconfiguration pair-density functional theory outperforms Kohn-Sham density functional theory and multireference perturbation theory for ground-state and excited-State charge transfer. J. Chem. Theory Comput. 11 : 3643–3649.
- Buijse, M.A. and Baerends, E.J. (1990). Analysis of nondynamical correlation in the metal-ligand bond. Pauli repulsion and orbital localization in . J. Chem. Phys. 93 : 4129–4141.
- Wolfsberg, M. and Helmholz, L. (1952). The spectra and electronic structure of the tetrahedral ions , , and . J. Chem. Phys. 20 : 837–843.
- Johnson, K. and Smith, F.J. (1971). Scattered-wave model for the electronic structure and optical properties of the permanganate ion. Chem. Phys. Lett. 10 : 219–223.
- Johansen, H. and Rettrup, S. (1983). Limited configuration interaction calculation of the optical spectrum for the permanganate ion. Chem. Phys. 74 : 77–81.
- Nakai, H., Ohmori, Y., and Nakatsuji, H. (1991). Theoretical study on the ground and excited states of . J. Chem. Phys. 95 : 8287–8291.
- Nooijen, M. (1999). Combining coupled cluster and perturbation theory. J. Chem. Phys. 111 : 10815–10826.
- van Gisbergen, S.J.A., Groeneveld, J.A., Rosa, A. et al. (1999). Excitation energies for transition metal compounds from time-dependent density functional theory. Applications to , Ni(CO)4, and Mn2(CO)10 . J. Phys. Chem. A 103 : 6835–6844.
- Nooijen, M. and Lotrich, V. (2000). Extended similarity transformed equation-of-motion coupled cluster theory (extended-STEOM-CC): applications to doubly excited states and transition metal compounds. J. Chem. Phys. 113 : 494–507.
- Boulet, P., Chermette, H., Daul, C. et al. (2001). Absorption spectra of several metal complexes revisited by the time-dependent density-functional theory-response theory formalism. J. Phys. Chem. A 105 : 885–894.
- Neugebauer, J., Baerends, E.J., and Nooijen, M. (2005). Vibronic structure of the permanganate absorption spectrum from time-dependent density functional calculations. J. Phys. Chem. A 109 : 1168–1179.
- Jose, L., Seth, M., and Ziegler, T. (2012). Molecular and vibrational structure of tetroxo d0 metal complexes in their excited states. A study based on time-dependent density functional calculations and Franck-Condon theory. J. Phys. Chem. A 116 : 1864–1876.
- Ziegler, T. (2012). A chronicle about the development of electronic structure theories for transition metal complexes. Struct. Bond. 143 : 1–38.
- Almeida, N.M., McKinlay, R.G., and Paterson, M.J. (2015). Excited electronic states of : challenges for wave function and density functional response theories. Chem. Phys. 446 : 86–91.
- Seidu, I., Krykunov, M., and Ziegler, T. (2015). Applications of time-dependent and time-independent density functional theory to electronic transitions in tetrahedral d0 metal oxides. J. Chem. Theory Comput. 11 : 4041–4053.
- Holt, S.L. and Ballhausen, C. (1967). Low temperature absorption spectra of KMnO4 in KClO4 . Theor. Chim. Acta 7 : 313–320.
- Hedegård, E.D., Jensen, H.J.Å., and Kongsted, J. (2014). Polarizable embedding based on multiconfigurational methods: current developments and the road ahead. Int. J. Quantum Chem. 114 : 1102–1107.
- Stein, C.J. and Reiher, M. (2016). Automated selection of active orbital spaces. J. Chem. Theory Comput. 12 : 1760–1771.
- Su, J., Xu, W.-H., Xu, C.-F. et al. (2013). Theoretical studies on the photoelectron and absorption spectra of and . Inorg. Chem. 52 : 9867–9874.
- Hillier, I.H. and Saunders, V.R. (1970). Ab initio molecular orbital calculations of the ground and excited state of the permanganate and chromate ions. Proc. R. Soc. A 320 : 161–173.
- Escudero, D. and Thiel, W. (2014). Theoretical studies on the photoelectron and absorption spectra of and . J. Chem. Phys. 140 : 194105.
- Sharma, P., Truhlar, D.G., and Gagliardi, L. (2018). Multiconfiguration pair-density functional theory investigation of the electronic spectrum of . J. Chem. Phys. 148 : 124305.