Path-Integral Approaches to Non-Adiabatic Dynamics
Maximilian A. C. Saller
Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorJohan E. Runeson
Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorJeremy O. Richardson
Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorMaximilian A. C. Saller
Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorJohan E. Runeson
Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorJeremy O. Richardson
Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorLeticia González
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, Sweden
Search for more papers by this authorSummary
In this chapter, we describe methods for simulating non-adiabatic dynamics based on the path-integral formulation of quantum mechanics. In order to employ trajectory calculations to a system of more than one electronic state, we introduce the mapping formalism and explain how this approach can be used with linearized semiclassical or ring-polymer molecular dynamics.
References
- Feynman, R.P. and Hibbs, A.R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill.
- Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12 : 570.
- Craig, I.R. and Manolopoulos, D.E. (2004). Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys. 121 : 3368–3373.
- Tuckerman, M.E. (2002). Path integration via molecular dynamics. In: Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, NIC Series, vol. 10 (eds. J. Grotendorst, D. Marx and A. Muramatsu), 269–298. Jülich: John von Neumann Institute for Computing.
- Chandler, D. (1987). Introduction to Modern Statistical Mechanics. New York: Oxford University Press.
- Mukamel, S. (1995). Principles of Nonlinear Optical Spectroscopy. Oxford University Press.
- Egorov, S.A., Rabani, E., and Berne, B.J. (1998). Vibronic spectra in condensed matter: a comparison of exact quantum mechanical and various semiclassical treatments for harmonic baths. J. Chem. Phys. 108 : 1407–1422.
- Rabani, E., Egorov, S.A., and Berne, B.J. (1998). A comparison of exact quantum mechanical and various semiclassical treatments for the vibronic absorption spectrum: the case of fast vibrational relaxation. J. Chem. Phys. 109: 63766381.
- Richardson, J.O., Meyer, P., Pleinert, M.-O., and Thoss, M. (2017). An analysis of nonadiabatic ring-polymer molecular dynamics and its application to vibronic spectra. Chem. Phys. 482 : 124–134.arXiv:1609.00644 [physics.chem-ph].
- Karsten, S., Ivanov, S.D., Bokarev, S.I., and Kühn, O. (2018). Quasi-classical approaches to vibronic spectra revisited. J. Chem. Phys. 148 : 102337.
- Miller, W.H., Schwartz, S.D., and Tromp, J.W. (1983). Quantum mechanical rate constants for bimolecular reactions. J. Chem. Phys. 79 : 4889.
- Wolynes, P.G. (1987). Imaginary time path integral Monte Carlo route to rate coefficients for nonadiabatic barrier crossing. J. Chem. Phys. 87 : 6559.
- Topaler, M. and Makri, N. (1996). Path integral calculation of quantum nonadiabatic rates in model condensed phase reactions. J. Phys. Chem. 100 : 4430–4436.
- Shi, Q. and Geva, E. (2004). Nonradiative electronic relaxation rate constants from approximations based on linearizing the path-integral forward-backward action. J. Phys. Chem. A 108 : 6109–6116.
- Huo, P., Miller, T.F. III, and Coker, D.F. (2013). Communication: predictive partial linearized path integral simulation of condensed phase electron transfer dynamics. J. Chem. Phys. 139 : 151103.
- Richardson, J.O. and Thoss, M. (2014). Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory. J. Chem. Phys. 141 : 074106.arXiv:1406.3144 [physics.chem-ph].
- Kananenka, A.A., Sun, X., Schubert, A. et al. (2018). A comparative study of different methods for calculating electronic transition rates. J. Chem. Phys. 148 : 102304.
- Makri, N. (2015). Quantum-classical path integral: a rigorous approach to condensed phase dynamics. Int. J. Quantum Chem. 115 : 1209–1214.
- Meyer, H.-D. and Miller, W.H. (1979). A classical analog for electronic degrees of freedom in non-adiabatic collision processes. J. Chem. Phys. 70 : 3214–3223.
- Stock, G. and Thoss, M. (1997). Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78 : 578–581.
- Stock, G. and Thoss, M. (2005). Classical description of nonadiabatic quantum dynamics. Adv. Chem. Phys. 131 : 243–376.
- Tully, J.C. (1990). Molecular dynamics with electronic transitions. J. Chem. Phys. 93 : 1061–1071.
- Micha, D.A. (1983). A self-consistent eikonal treatment of electronic transitions in molecular collisions. J. Chem. Phys. 78 : 7138–7145.
- Stock, G. and Müller, U. (1999). Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics. J. Chem. Phys. 111 : 65–76.
- Kelly, A., van Zon, R., Schofield, J., and Kapral, R. (2012). Mapping quantum- classical Liouville equation: projectors and trajectories. J. Chem. Phys. 136 : 084101.
- Runeson, J.E. and Richardson, J.O. (2019). Spin-mapping approach for nonadiabatic molecular dynamics. J. Chem. Phys. 151 : 044119.arXiv:1904.08293 [physics.chem-ph]; Runeson, J.E. and Richardson, J.O. (2020). Generalized spin mapping for quantum-classical dynamics. J. Chem. Phys. 152: 084110.
- Sun, X. and Miller, W.H. (1997). Semiclassical initial value representation for electronically nonadiabatic molecular dynamics. J. Chem. Phys. 106 : 6346–6353.
- Cotton, S.J., Liang, R., and Miller, W.H. (2017). On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics. J. Chem. Phys. 147 : 064112.
- Mandal, A., Yamijala, S.S.R.K.C., and Huo, P. (2018). Quasi-diabatic representation for nonadiabatic dynamics propagation. J. Chem. Theory Comput. 14 : 1828–1840.
- Sun, X., Wang, H., and Miller, W.H. (1998). Semiclassical theory of electronically non-adiabatic dynamics: results of a linearized approximation to the initial value representation. J. Chem. Phys. 109 : 7064–7074.
- Wang, H., Song, X., Chandler, D., and Miller, W.H. (1999). Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: spin-boson problem with Debye spectral density. J. Chem. Phys. 110 : 4828–4840.
- Miller, W.H. (2009). Electronically nonadiabatic dynamics via semiclassical initial value methods. J. Phys. Chem. A 113 : 1405–1415.
- Kapral, R. (2006). Progress in the theory of mixed quantum-classical dynamics. Annu. Rev. Phys. Chem. 57 : 129–157.
- Kim, H., Nassimi, A., and Kapral, R. (2008). Quantum-classical Liouville dynamics in the mapping basis. J. Chem. Phys. 129 : 084102.
- Kapral, R. (2015). Quantum dynamics in open quantum-classical systems. J. Phys.-Condens. Mat. 27 : 073201.
- Church, M.S., Hele, T.J.H., Ezra, G.S., and Ananth, N. (2018). Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation. J. Chem. Phys. 148 : 102326.
- Bonella, S. and Coker, D.F. (2005). LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J. Chem. Phys. 122 : 194102.
- Hsieh, C.-Y. and Kapral, R. (2012). Nonadiabatic dynamics in open quantum-classical systems: forward-backward trajectory solution. J. Chem. Phys. 137 : 22A507.
- Huo, P. and Coker, D.F. (2011). Communication: partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution. J. Chem. Phys. 135 : 201101.
- Miller, W.H. and Cotton, S.J. (2016). Classical molecular dynamics simulation of electronically non-adiabatic processes. Faraday Discuss. 195 : 9–30.
-
Weiss, U. (2012). Quantum Dissipative Systems, 4e. Singapore: World Scientific.
10.1142/8334 Google Scholar
- Garg, A., Onuchic, J.N., and Ambegaokar, V. (1985). Effect of friction on electron transfer in biomolecules. J. Chem. Phys. 83 : 4491.
- Marcus, R.A. (1993). Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65 : 599.
- Leggett, A.J., Chakravarty, S., Dorsey, A.T. et al. (1987). Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59 (1).
- Bader, J.S., Kuharski, R.A., and Chandler, D. (1990). Role of nuclear tunneling in aqueous ferrous- ferric electron transfer. J. Chem. Phys. 93 : 230–236.
- Mak, C.H. and Chandler, D. (1991). Coherent-incoherent transition and relaxation in condensed-phase tunneling systems. Phys. Rev. A 44 : 2352–2369.
- Makarov, D.E. and Makri, N. (1993). Tunneling dynamics in dissipative curve-crossing problems. Phys. Rev. A 48 : 3626.
- Thoss, M., Wang, H., and Miller, W.H. (2001). Self-consistent hybrid approach for complex systems: application to the spin-boson model with Debye spectral density. J. Chem. Phys. 115 : 2991.
- Kelly, A., Brackbill, N., and Markland, T.E. (2015). Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations. J. Chem. Phys. 142 : 094110.
- Montoya-Castillo, A. and Reichman, D.R. (2016). Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics. J. Chem. Phys. 144 : 184104.
- Montoya-Castillo, A. and Reichman, D.R. (2017). Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions. J. Chem. Phys. 146 : 084110.
- Müller, U. and Stock, G. (1999). Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics. II. Application to nonadiabatic processes. J. Chem. Phys. 111 : 77.
- Wang, H., Thoss, M., and Miller, W.H. (2001). Systematic convergence in the dynamical hybrid approach for complex systems: a numerically exact methodology. J. Chem. Phys. 115 : 2979.
- Craig, I.R., Thoss, M., and Wang, H. (2007). Proton transfer reactions in model condensed-phase environments: accurate quantum dynamics using the multilayer multiconfiguration time-dependent Hartree approach. J. Chem. Phys. 127 : 144503.
- Craig, I.R. and Manolopoulos, D.E. (2005). Chemical reaction rates from ring polymer molecular dynamics. J. Chem. Phys. 122: 084106.
- Kelly, A., Montoya-Castillo, A., Wang, L., and Markland, T.E. (2016). Generalized quantum master equations in and out of equilibrium: when can one win? J. Chem. Phys. 144 : 184105.
- Saller, M.A.C., Kelly, A., and Richardson, J.O. (2019). On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics. J. Chem. Phys. 150 : 071101.
- Saller, M.A.C., Kelly, A., and Richardson, J.O. (2019). Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach. Faraday Discuss. : 150–167.arXiv:1904.11847 [physics.chem-ph].
- Chandler, D. and Wolynes, P.G. (1981). Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74 : 4078–4095.
- Parrinello, M. and Rahman, A. (1984). Study of an F center in molten KCl. J. Chem. Phys. 80 : 860–867.
- Ceriotti, M., Fang, W., Kusalik, P.G. et al. (2016). Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116 : 7529–7550.
- Markland, T.E. and Ceriotti, M. (2018). Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2 : 0109.
- Habershon, S., Manolopoulos, D.E., Markland, T.E., and Miller, T.F. III (2013). Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annu. Rev. Phys. Chem. 64 : 387–413.
- Richardson, J.O. and Thoss, M. (2013). Communication: nonadiabatic ring-polymer molecular dynamics. J. Chem. Phys. 139 : 031102.
- Ananth, N. (2013). Mapping variable ring polymer molecular dynamics: a path-integral based method for nonadiabatic processes. J. Chem. Phys. 139 : 124102.
- Chowdhury, S.N. and Huo, P. (2017). Coherent state mapping ring-polymer molecular dynamics for non-adiabatic quantum propagations. J. Chem. Phys. 147 : 214109.arXiv:1706.08403 [physics.chem-ph].
- Alexander, M.H. (2001). Path-integral simulation of finite-temperature properties of systems involving multiple, coupled electronic states. Chem. Phys. Lett. 347 : 436–442.
- Ceperley, D.M. (1995). Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67 : 279.
- Zimmermann, T. and Vaníček, J. (2013). Role of sampling in evaluating classical time autocorrelation functions. J. Chem. Phys. 139 : 104105.
- Ananth, N. and Miller, T.F. III (2010). Exact quantum statistics for electronically nonadiabatic systems using continuous path variables. J. Chem. Phys. 133 : 234103.
- Runeson, J., Nava, M., and Parrinello, M. (2018). Quantum symmetry from enhanced sampling methods. Phys. Rev. Lett. 121 : 140602.
-
Kalos, M.H. and Whitlock, P.A. (1986). Monte Carlo methods. Vol. 1: Basics. New York, USA: Wiley-Interscience.
10.1002/9783527617395 Google Scholar
- Light, J.C., Hamilton, I.P., and Lill, J.V. (1985). Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 82 : 1400.
- Witt, A., Ivanov, S.D., Shiga, M. et al. (2009). On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy. J. Chem. Phys. 130 : 194510.
- Rossi, M., Ceriotti, M., and Manolopoulos, D.E. (2014). How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys. 140 : 234166.
- Müller, U. and Stock, G. (1998). Consistent treatment of quantum-mechanical and classical degrees of freedom in mixed quantum-classical simulations. J. Chem. Phys. 108: 7516–7526.
- Bonella, S. and Coker, D.F. (2001). A semiclassical limit for the mapping Hamiltonian approach to electronically nonadiabatic dynamics. J. Chem. Phys. 114 : 7778–7789.
- Bonella, S. and Coker, D.F. (2001). Semi-classical implementation of mapping Hamiltonian methods for general non-adiabatic problems. Chem. Phys. 268 : 189–200.
- Richardson, J.O., Bauer, R., and Thoss, M. (2015). Semiclassical Green's functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit. J. Chem. Phys. 143 : 134115.arXiv:1508.04919 [physics.chem-ph];Richardson, J.O. (2015). Ring-polymer instanton theory of electron transfer in the nonadiabatic limit. J. Chem. Phys. 143: 134116, arXiv:1508.05195 [physics.chem-ph].
- Mattiat, J. and Richardson, J.O. (2018). Effects of tunnelling and asymmetry for system-bath models of electron transfer. J. Chem. Phys. 148 : 102311.arXiv:1708.06702 [physics.chem-ph].
- Heller, E.R. and Richardson, J.O. (2020). Instanton formulation of Fermi's golden rule in the Marcus inverted regime. J. Chem. Phys. 152 : 034106.
- Cao, J., Minichino, C., and Voth, G.A. (1995). The computation of electron transfer rates: the nonadiabatic instanton solution. J. Chem. Phys. 103 : 1391.
- Cao, J. and Voth, G.A. (1997). A unified framework for quantum activated rate processes. II. The nonadiabatic limit. J. Chem. Phys. 106 : 1769.
- Lawrence, J.E. and Manolopoulos, D.E. (2018). Analytic continuation of Wolynes theory into the Marcus inverted regime. J. Chem. Phys. 148 : 102313.
- Menzeleev, A.R., Bell, F., and Miller, T.F. III (2014). Kinetically constrained ring- polymer molecular dynamics for non-adiabatic chemical reactions. J. Chem. Phys. 140 : 064103.
- Duke, J.R. and Ananth, N. (2016). State space path integrals for electronically nonadiabatic reaction rates. Faraday Discuss. 195 : 253–268.