Full and Ab Initio Multiple Spawning
Basile F. E. Curchod
Department of Chemistry, Durham University, Durham, DH1 3LE United Kingdom
Search for more papers by this authorBasile F. E. Curchod
Department of Chemistry, Durham University, Durham, DH1 3LE United Kingdom
Search for more papers by this authorLeticia González
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, Sweden
Search for more papers by this authorSummary
This Chapter describes the method for non-adiabatic quantum molecular dynamics called Full Multiple Spawning. The Full Multiple Spawning framework proposes to portray nuclear wave functions by linear combinations of classically-traveling multi-dimensional Gaussian functions, called trajectory basis functions. The number of trajectory basis functions can be adapted when needed during the excited-state dynamics through a spawning algorithm, and all basis functions are coupled together.
Hence, Full Multiple Spawning is a formally exact method for non-adiabatic dynamics in the limit of a large number of basis functions. Full Multiple Spawning can be extended to the description of light/matter interaction or the inclusion of spin-orbit coupling effects. Two controlled approximations can be performed on the Full Multiple Spawning equations and lead to the Ab Initio Multiple Spawning technique, which allows for on-the-fly non-adiabatic quantum dynamics of medium-size molecules. In addition to describing the formalism and algorithms of the Full- and Ab Initio Multiple Spawning, this Chapter presents a dissection of a typical Ab Initio Multiple Spawning dynamics run, as well as different successful applications of this technique.
References
- Agostini, F., Min, S.K., Abedi, A., and Gross, E.K.U. (2016). Quantum-classical non-adiabatic dynamics: coupled- vs. independent-trajectory methods. J. Chem. Theory Comput. 12 (5): 2127–2143.
- Alborzpour, J.P., Tew, D.P., and Habershon, S. (2016). Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression. J. Chem. Phys. 145 (17): 174112.
- Ben-Nun, M. and Martínez, T.J. (1998). Nonadiabatic molecular dynamics: validation of the multiple spawning method for a multidimensional problem. J. Chem. Phys. 108 : 7244–7257.
- Ben-Nun, M. and Martínez, T.J. (2000). A multiple spawning approach to tunneling dynamics. J. Chem. Phys. 112 (14): 6113–6121.
- Ben-Nun, M. and Martínez, T.J. (2002). Ab initio quantum molecular dynamics. Adv. Chem. Phys. 121 : 439–512.
- Ben-Nun, M. and Martínez, T.J. (2007). A continuous spawning method for non-adiabatic dynamics and validation for the zero-temperature spin-boson problem. Isr. J. Chem. 47 (1): 75–88.
- Ben-Nun, M., Quenneville, J., and Martínez, T.J. (2000). Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104 : 5161–5175.
- Bittner, E.R. and Rossky, P.J. (1995). Quantum decoherence in mixed quantum-classical systems: nonadiabatic processes. J. Chem. Phys. 103 : 8130.
- Born, M. and Huang, K. (1954). Dynamical Theory of Crystal Lattices. Clarendon, Oxford.
- Crespo-Otero, R. and Barbatti, M. (2018). Recent advances and perspectives on non-adiabatic mixed quantum–classical dynamics. Chem. Rev. 118 (15): 7026–7068.
- Curchod, B.F.E. and Martínez, T.J. (2018). Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 118 (7): 3305–3336.
- Curchod, B.F.E., Rauer, C., Marquetand, P. et al. (2016). Communication: GAIMS–generalized ab initio multiple spawning for both internal conversion and intersystem crossing processes. J. Chem. Phys. 144 (10): 101102.
- Curchod, B.F.E., Sisto, A., and Martínez, T.J. (2017). Ab initio multiple spawning photochemical dynamics of DMABN using GPUs. J. Phys. Chem. A 121 (1): 265–276.
- Curchod, B.F.E. and Tavernelli, I. (2013). On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping. J. Chem. Phys. 138 : 184112.
-
Domcke, W., Yarkony, D., and Köppel, H. (2004). Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, vol. 15. World Scientific Pub Co Inc.
10.1142/5406 Google Scholar
- Fedorov, D.A., Lykhin, A.O., and Varganov, S.A. (2018). Predicting intersystem crossing rates with aims-dft molecular dynamics. J. Phys. Chem. A 122 (13): 3480–3488.
- Fedorov, D.A., Pruitt, S.R., Keipert, K. et al. (2016). Ab initio multiple spawning method for intersystem crossing dynamics: spin-forbidden transitions between 3B1 and 1A1 states of GeH2 . J. Phys. Chem. A 120 (18): 2911–2919.
- Gao, X. and Thiel, W. (2017). Non-hermitian surface hopping. Phys. Rev. E 95 : 013308.
- Granucci, G. and Persico, M. (2007). Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 126 : 134114.
- Granucci, G., Persico, M., and Spighi, G. (2012). Surface hopping trajectory simulations with spin–orbit and dynamical couplings. J. Chem. Phys. 137 (22): 22A501.
- Granucci, G., Persico, M., and Zoccante, A. (2010). Including quantum decoherence in surface hopping. J. Chem. Phys. 133 : 134111.
- Hack, M.D., Wensmann, A.M., Truhlar, D.G. et al. (2001). Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically non-adiabatic dynamics. J. Chem. Phys. 115 : 1172.
- Heller, E.J. (1975). Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62 : 1544–1555.
- Heller, E.J. (1981). Frozen Gaussians: a very simple semiclassical approximation. J. Chem. Phys. 75 (6): 2923–2931.
- Heller, E.J. (1981). The semiclassical way to molecular spectroscopy. Acc. Chem. Res. 14 (12): 368–375.
- Hohenstein, E.G., Luehr, N., Ufimtsev, I.S., and Martínez, T.J. (2015). An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 142 (22): 224103.
- Jaeger, H.M., Fischer, S., and Prezhdo, O.V. (2012). Decoherence-induced surface hopping. J. Chem. Phys. 137 : 22A545.
- Jasper, A.W. and Truhlar, D.G. (2007). Electronic decoherence time for non-born-oppenheimer trajectories. J. Chem. Phys. 127 : 194306.
- Joubert-Doriol, L., Sivasubramanium, J., Ryabinkin, I.G., and Izmaylov, A.F. (2017). Topologically correct quantum non-adiabatic formalism for on-the-fly dynamics. J. Phys. Chem. Lett. 8 (2): 452–456.
- Kim, J., Tao, H., Martinez, T.J., and Bucksbaum, P. (2015). Ab initio multiple spawning on laser-dressed states: a study of 1, 3-cyclohexadiene photoisomerization via light-induced conical intersections. J. Phys. B Atomic Mol. Phys. 48 (16): 164003.
- Kim, J., Tao, H., White, J.L. et al. (2011). Control of 1, 3-cyclohexadiene photoisomerization using light-induced conical intersections. J. Phys. Chem. A 116 (11): 2758–2763.
- Kobayashi, T., Horio, T., and Suzuki, T. (2015). Ultrafast deactivation of the ππ *(V) state of ethylene studied using sub-20 fs time-resolved photoelectron imaging. J. Phys. Chem. A 119 (36): 9518–9523.
- Lasorne, B., Bearpark, M.J., Robb, M.A., and Worth, G.A. (2006). Direct quantum dynamics using variational multi-configuration Gaussian wave packets. Chem. Phys. Lett. 432 (4): 604–609.
- Lasorne, B., Robb, M., and Worth, G.A. (2007). Direct quantum dynamics using variational multi-configuration Gaussian wave packets. Implementation details and test case. Phys. Chem. Chem. Phys. 9 (25): 3210–3227.
- Levine, B.G., Coe, J.D., Virshup, A.M., and Martínez, T.J. (2008). Implementation of ab initio multiple spawning in the Molpro quantum chemistry package. Chem. Phys. 347 (1): 3–16.
- Mai, S., Marquetand, P., and González, L. (2015). A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115 (18): 1215–1231.
- Makhov, D., Symonds, C., Fernandez-Alberti, S., and Shalashilin, D. (2017). Ab initio quantum direct dynamics simulations of ultrafast photochemistry with multiconfigurational Ehrenfest approach. Chem. Phys. 493 : 200.
- Makhov, D.V., Glover, W.J., Martinez, T.J., and Shalashilin, D.V. (2014). Ab initio multiple cloning algorithm for quantum non-adiabatic molecular dynamics. J. Chem. Phys. 141 (5): 054110.
- Marian, C.M. (2012). Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput. Mol. Sci. 2 : 187–120.
- Martínez, T.J., Ben-Nun, M., and Levine, R.D. (1996). Multi-electronic-state molecular dynamics: a wave function approach with applications. J. Phys. Chem. 100 (19): 7884–7895.
- Martínez, T.J. and Levine, R.D. (1997). Non-adiabatic molecular dynamics: split-operator multiple spawning with applications to photodissociation. J. Chem. Soc. Faraday Trans. 93 (5): 941–947.
- Meek, G.A. and Levine, B.G. (2016). The best of both reps–diabatized Gaussians on adiabatic surfaces. J. Chem. Phys. 145 (18): 184103.
- Mendive-Tapia, D., Lasorne, B., Worth, G.A. et al. (2012). Towards converging non-adiabatic direct dynamics calculations using frozen-width variational Gaussian product basis functions. J. Chem. Phys. 137 (22): 22A548.
- Mignolet, B. and Curchod, B.F.E. (2018). A walk through the approximations of ab initio multiple spawning. J. Chem. Phys. 148 (13): 134110.
- Mignolet, B. and Curchod, B.F.E. (2019). Excited-state molecular dynamics triggered by light pulses – ab initio multiple spawning versus trajectory surface hopping. J. Phys. Chem. A 123 : 3582.
- Mignolet, B. and Curchod, B.F.E. (2019). Steering the outcome of a photochemical reaction – an in silico experiment on the H2CSO sulfine using few-femtosecond dump pulses. J. Chem. Phys. 150 (10): 101101.
- Mignolet, B., Curchod, B.F.E., and Martínez, T.J. (2016). Communication: XFAIMS–external field ab initio multiple spawning for electron-nuclear dynamics triggered by short laser pulses. J. Chem. Phys. 145 (19): 191104.
-
Mignolet, B., Curchod, B.F.E., and Martínez, T.J. (2016). Rich athermal ground-state chemistry triggered by dynamics through a conical intersection.
Angew. Chem. Int. Ed.
128
(48): 15217–15220.
10.1002/ange.201607633 Google Scholar
- Mignolet, B., Curchod, B.F.E., Remacle, F., and Martínez, T.J. (2019). Sub-femtosecond stark control of molecular photoexcitation with near single-cycle pulses. J. Phys. Chem. Lett. 10 : 742.
- Min, S.K., Agostini, F., and Gross, E.K.U. (2015). Coupled-trajectory quantum-classical approach to electronic decoherence in non-adiabatic processes. Phys. Rev. Lett. 115 (7): 073001.
- Min, S.K., Agostini, F., Tavernelli, I., and Gross, E.K.U. (2017). Ab initio non-adiabatic dynamics with coupled trajectories: a rigorous approach to quantum (de)coherence. J. Phys. Chem. Lett. 8 : 3048.
- Mori, T., Glover, W.J., Schuurman, M.S., and Martinez, T.J. (2012). Role of Rydberg states in the photochemical dynamics of ethylene. J. Phys. Chem. A 116 (11): 2808–2818.
- Neville, S.P., Chergui, M., Stolow, A., and Schuurman, M.S. (2018). Ultrafast X-ray spectroscopy of conical intersections. Phys. Rev. Lett. 120 (24): 243001.
- Penfold, T.J., Gindensperger, E., Daniel, C., and Marian, C.M. (2018). Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118 (15): 6975–7025.
- Persico, M. and Granucci, G. (2014). An overview of non-adiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 133 (9): 1–28.
- Pijeau, S., Foster, D., and Hohenstein, E.G. (2017). Excited-state dynamics of 2-(2-hydroxyphenyl) benzothiazole: ultrafast proton transfer and internal conversion. J. Phys. Chem. A 121 : 4595.
- Richings, G., Polyak, I., Spinlove, K. et al. (2015). Quantum dynamics simulations using Gaussian wave packets: the MCG method. Int. Rev. Phys. Chem. 34 (2): 269–308.
- Saita, K. and Shalashilin, D.V. (2012). On-the-fly ab initio molecular dynamics with multiconfigurational Ehrenfest method. J. Chem. Phys. 137 (22): 22A506.
- Schreiner, P.R., Reisenauer, H.P., Romanski, J., and Mloston, G. (2010). Oxathiirane. J. Am. Chem. Soc. 132 (21): 7240–7241.
- Shalashilin, D. (2009). Quantum mechanics with the basis set guided by Ehrenfest trajectories: theory and application to spin-boson model. J. Chem. Phys. 130 : 244101.
- Shalashilin, D.V. (2010). Nonadiabatic dynamics with the help of multiconfigurational Ehrenfest method: improved theory and fully quantum 24D simulation of pyrazine. J. Chem. Phys. 132 (24): 244111.
- Shenvi, N., Subotnik, J.E., and Yang, W. (2011). Phase-corrected surface hopping: correcting the phase evolution of the electronic wave function. J. Chem. Phys. 135 : 024101.
- Shenvi, N., Subotnik, J.E., and Yang, W. (2011). Simultaneous-trajectory surface hopping: a parameter-free algorithm for implementing decoherence in non-adiabatic dynamics. J. Chem. Phys. 134 : 144102.
- Shenvi, N. and Yang, W. (2012). Achieving partial decoherence in surface hopping through phase correction. J. Chem. Phys. 137 : 22A528.
- Smith, B.D., Spears, K.G., and Sension, R.J. (2016). Probing the biexponential dynamics of ring-opening in 7-dehydrocholesterol. J. Phys. Chem. A 120 (33): 6575–6581.
- Snyder, J.W. Jr., Curchod, B.F.E., and Martínez, T.J. (2016). GPU-accelerated state-averaged complete active space self-consistent field interfaced with ab initio multiple spawning unravels the photodynamics of provitamin d3. J. Phys. Chem. Lett. 7 (13): 2444–2449.
- Snyder, J.W. Jr., Fales, B.S., Hohenstein, E.G. et al. (2017). A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. J. Chem. Phys. 146 (17): 174113.
- Snyder, J.W. Jr., Hohenstein, E.G., Luehr, N., and Martínez, T.J. (2015). An atomic orbital-based formulation of analytical gradients and non-adiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 143 (15): 154107.
- Subotnik, J.E., Ouyang, W., and Landry, B.R. (2013). Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J. Chem. Phys. 139 : 214107.
- Subotnik, J.E. and Shenvi, N. (2011). Decoherence and surface hopping: when can averaging over initial conditions help capture the effects of wave packet separation? J. Chem. Phys. 134 : 244114.
- Subotnik, J.E. and Shenvi, N. (2011). A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 134 : 024105.
- Hernández, H., Martínez, T.J., and Vaníček, J. (2013). Relation of exact Gaussian basis methods to the dephasing representation: theory and application to time-resolved electronic spectra. J. Chem. Phys. 139 (3): 034112.
- Tao, H., Allison, T., Wright, T. et al. (2011). Ultrafast internal conversion in ethylene. I. The excited state lifetime. J. Chem. Phys. 134 (24): 244306.
- Tao, H., Levine, B.G., and Martínez, T.J. (2009). Ab initio multiple spawning dynamics using multi-state second-order perturbation theory. J. Chem. Phys. A 113 (49): 13656–13662.
- Tully, J.C. (1990). Molecular dynamics with electronic transitions. J. Chem. Phys. 93 : 1061–1071.
- Ufimtsev, I.S. and Martinez, T.J. (2008). Graphical processing units for quantum chemistry. Comput. Sci. Eng. 10 (6): 26–34.
- Ufimtsev, I.S. and Martinez, T.J. (2008). Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J. Chem. Theory Comput. 4 (2): 222–231.
- Ufimtsev, I.S. and Martinez, T.J. (2009). Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. J. Chem. Theory Comput. 5 (4): 1004–1015.
- Ufimtsev, I.S. and Martinez, T.J. (2009 ). Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 5 (10): 2619–2628.
- Virshup, A.M., Punwong, C., Pogorelov, T.V. et al. (2008). Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. J. Phys. Chem. B 113 (11): 3280–3291.
- Werner, H.-J., Knowles, P.J., Knizia, G. et al.(2012). Molpro, version 2012.1, a package of ab initio programs.
- Worth, G.A., Robb, M., and Burghardt, I. (2004). A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wave packets. Faraday Discuss. 127 : 307–323.
- Worth, G.A. and Cederbaum, L.S. (2004). Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55 : 127–158.
- Worth, G.A., Robb, M.A., and Lasorne, B. (2008). Solving the time-dependent Schrödinger equation for nuclear motion in one step: direct dynamics of non-adiabatic systems. Mol. Phys. 106 (16–18): 2077–2091.
- Yang, J., Zhu, X., Wolf, T.J. et al. (2018). Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361 (6397): 64–67.
- Yang, S., Coe, J.D., Kaduk, B., and Martínez, T.J. (2009). An “optimal” spawning algorithm for adaptive basis set expansion in non-adiabatic dynamics. J. Chem. Phys. 130 (13): 04B606.