Digital Outcrop Model Reconstruction and Interpretation
Andrea Bistacchi
Dipartimento di Scienze dell'Ambiente e della Terra, Universita' degli Studi di Milano - Bicocca, Piazza della Scienza, 4, 20126 Milano
Search for more papers by this authorSilvia Mittempergher
Dipartimento di Scienze dell'Ambiente e della Terra, Universita' degli Studi di Milano - Bicocca, Piazza della Scienza, 4, 20126 Milano
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 106, 41125 Modena
Search for more papers by this authorMattia Martinelli
Dipartimento di Scienze dell'Ambiente e della Terra, Universita' degli Studi di Milano - Bicocca, Piazza della Scienza, 4, 20126 Milano
Search for more papers by this authorAndrea Bistacchi
Dipartimento di Scienze dell'Ambiente e della Terra, Universita' degli Studi di Milano - Bicocca, Piazza della Scienza, 4, 20126 Milano
Search for more papers by this authorSilvia Mittempergher
Dipartimento di Scienze dell'Ambiente e della Terra, Universita' degli Studi di Milano - Bicocca, Piazza della Scienza, 4, 20126 Milano
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 106, 41125 Modena
Search for more papers by this authorMattia Martinelli
Dipartimento di Scienze dell'Ambiente e della Terra, Universita' degli Studi di Milano - Bicocca, Piazza della Scienza, 4, 20126 Milano
Search for more papers by this authorAndrea Bistacchi
Department of Environmental and Earth Sciences, University of Milano-Bicocca, Milan, Italy
Search for more papers by this authorMatteo Massironi
Department of Geosciences, University of Padua, Padua, Italy
Search for more papers by this authorSummary
Collecting quantitative and extensive datasets in the field is fundamental in structural geology, stratigraphy, and sedimentology, rock mechanics, and in other fields of the Earth and planetary sciences. Digital Outcrop Models (DOMs) provide a 3D framework for collecting these large datasets and can be obtained from laser scanning or photogrammetric surveys, carried out either with an avionic platform (airplane, helicopter, drone) or with terrestrial methods. In this chapter we review best-practice methods for collecting DOMs, focusing particularly on terrestrial and drone photogrammetric surveys and on critical issues that determine their efficiency, reliability, and accuracy. Then we compare the two main formats for DOMs: point clouds (PC-DOMs) and textured surfaces (TS-DOMs). Finally, we outline typical goals and workflows for the geological interpretation of DOMs on PC- and TS-DOMs, either from laser scanning or photogrammetric surveys.
References
- Barnes , R. , Gupta , S. , Traxler , C. et al. ( 2018 ). Geological analysis of Martian Rover-derived digital outcrop models using the 3-D visualization tool, Planetary Robotics 3-D Viewer-PRo3D . Earth and Space Science 5 : 285 – 307 . https://doi.org/10.1002/2018EA000374 .
- Bellian , J.A.J.A. , Kerans , C. , and Jennette , D.C. ( 2005 ). Digital outcrop models: Applications of terrestrial scanning LiDAR technology in stratigraphic modeling . Journal of Sedimentary Research 75 : 166 – 176 . https://doi.org/10.2110/jsr.2005.013 .
- Bilmes , A. , D'Elia , L. , Lopez , L. et al. ( 2019 ). Digital outcrop modelling using “structure-from-motion” photogrammetry: Acquisition strategies, validation and interpretations to different sedimentary environments . Journal of South American Earth Sciences 96 , 102325: https://doi.org/10.1016/j.jsames.2019.102325 .
- Bistacchi , A. , Massironi , M. , Dal Piaz , G.V. et al. ( 2008 ). 3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case study . Computers and Geosciences 34 : 351 – 372 . https://doi.org/10.1016/j.cageo.2007.04.002 .
- Bistacchi , A. , Griffith , W.A. , Smith , S.A.F. et al. ( 2011 ). Fault roughness at seismogenic depths from LiDAR and photogrammetric analysis . Pure and Applied Geophysics 168 : 2345 – 2363 . https://doi.org/10.1007/s00024-011-0301-7 .
- Bistacchi , A. , Massironi , M. , Superchi , L. et al. ( 2013 ). A 3D geological model of the 1963 vajont landslide . Italian Journal of Engineering Geology and Environment 2013 : 531 – 539 . https://doi.org/10.4408/IJEGE.2013-06.B-51 .
- Bistacchi , A. , Balsamo , F. , Storti , F. et al. ( 2015 ). Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy) . Geosphere 11 : 2031 – 2048 . https://doi.org/10.1130/GES01005.1 .
- Bistacchi , A. , Mittempergher , S. , Martinelli , M. , and Storti , F. ( 2020 ). On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity) . Solid Earth 11 : 2535 – 2547 . https://doi.org/10.5194/se-2020-83 .
- Buckley , S.J. , Howell , J. , Enge , H.D.D. , and Kurz , T.H.H. ( 2008 ). Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations . Journal of the Geological Society 165 : 625 – 638 . https://doi.org/10.1144/0016-76492007-100 .
- Catmull , E.E. ( 1974 ). A subdivision algorithm for computer display of curved surfaces. PhD Thesis . University of Utah .
- Chen , N. , Kemeny , J. , Jiang , Q. , and Pan , Z. ( 2017 ). Automatic extraction of blocks from 3D point clouds of fractured rock . Computers and Geosciences 109 : 149 – 161 . https://doi.org/10.1016/j.cageo.2017.08.013 .
-
Cudahy , T.
(
2016
).
Mineral mapping for exploration: An Australian journey of evolving spectral sensing technologies and industry collaboration
.
Geosciences
6
:
52
.
https://doi.org/10.3390/geosciences6040052
.
10.3390/geosciences6040052 Google Scholar
- De Toffoli , B. , Mangold , N. , Massironi , M. et al. ( 2020 ). Structural analysis of sulfate vein networks in Gale crater (Mars) . Journal of Structural Geology 137 : 104083. https://doi.org/10.1016/j.jsg.2020.104083 .
- Dewez , T.J.B. , Girardeau-Montaut , D. , Allanic , C. , and Rohmer , J. ( 2016 ). Facets : A CloudCompare plugin to extract geological planes from unstructured 3d point clouds . In: ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol. XLI-B5 , 799 – 804 . https://doi.org/10.5194/isprsarchives-XLI-B5-799-2016 .
-
Dujoncquoy , E.
,
Masse , P.
,
Nicol , Y.
et al. (
2019
).
UAV-based 3d outcrop analog models for oil and gas exploration and production
. In:
IGARSS 2019 -—2019 IEEE International Geoscience and Remote Sensing Symposium
,
6791
–
6794
.
IEEE
https://doi.org/10.1109/IGARSS.2019.8900176
.
10.1109/IGARSS.2019.8900176 Google Scholar
- Fabuel-Perez , I. , Hodgetts , D. , and Redfern , J. ( 2010 ). Integration of digital outcrop models (DOMs) and high resolution sedimentology—workflow and implications for geological modelling: Oukaimeden Sandstone Formation, High Atlas (Morocco) . Petroleum Geoscience 16 : 133 – 154 . https://doi.org/10.1144/1354-079309-820 .
- Foi , A. , Katkovnik , V. , and Egiazarian , K. ( 2006 ). Pointwise shape-adaptive DCT for high-quality deblocking of compressed color images . European Signal Processing Conference 16 : 1 – 17 . https://doi.org/10.1.1.75.416.
- Franceschi , M. , Martinelli , M. , Gislimberti , L. et al. ( 2015 ). Integration of 3D modeling, aerial LiDAR and photogrammetry to study a synsedimentary structure in the Early Jurassic Calcari Grigi (Southern Alps, Italy) . European Journal of Remote Sensing 48 : 527 – 539 . https://doi.org/10.5721/EuJRS20154830 .
- Francese , R. , Mazzarini , F. , Bistacchi , A. et al. ( 2009 ). A structural and geophysical approach to the study of fractured aquifers in the Scansano-Magliano in Toscana Ridge, southern Tuscany, Italy . Hydrogeology Journal 17 : 1233 – 1246 . https://doi.org/10.1007/s10040-009-0435-1 .
-
Furukawa , Y.
and
Hernández , C.
(
2015
).
Multi-view stereo: A Tutorial
.
Foundations and Trends® in Computer Graphics and Vision
9
:
1
–
148
.
https://doi.org/10.1561/0600000052
.
10.1561/0600000052 Google Scholar
- Furukawa , Y. and Ponce , J. ( 2010 ). Accurate, dense, and robust multiview stereopsis . IEEE Transactions on Pattern Analysis and Machine Intelligence 32 : 1362 – 1376 . https://doi.org/10.1109/TPAMI.2009.161 .
- Ge , Y. , Tang , H. , Xia , D. et al. ( 2018 ). Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm . Engineering Geology 242 : 44 – 54 . https://doi.org/10.1016/j.enggeo.2018.05.007 .
- Hodgetts , D. ( 2013 ). Laser scanning and digital outcrop geology in the petroleum industry: A review . Marine and Petroleum Geology 46 : 335 – 354 . https://doi.org/10.1016/j.marpetgeo.2013.02.014 .
-
Jaboyedoff , M.
,
Metzger , R.
,
Oppikofer , T.
et al. (
2007
).
New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points
. In:
Rock Mechanics: Meeting Society's Challenges and Demands
,
61
–
68
.
Taylor and Francis
https://doi.org/10.1201/NOE0415444019-c8
.
10.1201/NOE0415444019-c8 Google Scholar
- Jacquemyn , C. , Huysmans , M. , Hunt , D. et al. ( 2015 ). Multi-scale three-dimensional distribution of fracture- and igneous intrusion-controlled hydrothermal dolomite from digital outcrop model, Latemar platform, Dolomites, northern Italy . AAPG Bulletin 99 : 957 – 984 . https://doi.org/10.1306/10231414089 .
- James , M.R. and Robson , S. ( 2014 ). Mitigating systematic error in topographic models derived from UAV and ground-based image networks . Earth Surface Processes and Landforms 39 : 1413 – 1420 . https://doi.org/10.1002/esp.3609 .
-
Jaud , M.
,
Passot , S.
,
Allemand , P.
et al. (
2018
).
Suggestions to limit geometric distortions in the reconstruction of linear coastal landforms by SfM Photogrammetry with PhotoScan® and MicMac® for UAV surveys with restricted GCPs pattern
.
Drones
3
:
2
.
https://doi.org/10.3390/drones3010002
.
10.3390/drones3010002 Google Scholar
- Jones , R.R. , Mccaffrey , K.J.W. , Clegg , P. et al. ( 2009 ). Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models . Computers and Geosciences 35 : 4 – 18 . https://doi.org/10.1016/j.cageo.2007.09.007 .
- Jones , R.R. , Pringle , J.K. , Mccaffrey , K.J.W. et al. ( 2011 ). Extending Digital Outcrop Geology into the Subsurface . Outcrops Revitalized. SEPM (Society for Sedimentary Geology) 31 – 50 . https://doi.org/10.2110/sepmcsp.10.031 .
- Kazhdan , M. and Hoppe , H. ( 2013 ). Screened poisson surface reconstruction . ACM Transactions on Graphics 32 : 1 – 13 . https://doi.org/10.1145/2487228.2487237 .
- Kehl , C. , Mullins , J.R. , Buckley , S.J. et al. ( 2021 ). Interpretation and mapping of geological features using mobile devices in outcrop geology—A case study of the Saltwick Formation, North Yorkshire, UK . In: 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces . Wiley, this volume .
- Kromer , R. , Walton , G. , Gray , B. et al. ( 2019 ). Development and optimization of an automated fixed-location time lapse photogrammetric rock slope monitoring system . Remote Sensing 11 : 1890 . https://doi.org/10.3390/rs11161890 .
- Lato , M.J. and Vöge , M. ( 2012 ). Automated mapping of rock discontinuities in 3D LiDAR and photogrammetry models . International Journal of Rock Mechanics and Mining Sciences 54 : 150 – 158 . https://doi.org/10.1016/j.ijrmms.2012.06.003 .
- Lowe , D.G. ( 2004 ). Distinctive image features from scale-invariant keypoints . International Journal of Computer Vision 60 : 91 – 110 . https://doi.org/10.1023/B:VISI.00000 .
- Madjid , M.Y.A. , Vandeginste , V. , Hampson , G. et al. ( 2018 ). Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping . Marine and Petroleum Geology 91 : 723 – 734 . https://doi.org/10.1016/j.marpetgeo.2018.02.002 .
- Martinelli , M. , Franceschi , M. , Massironi , M. et al. ( 2017 ). An extensional syn-sedimentary structure in the Early Jurassic Trento Platform (Southern Alps, Italy) as analogue of potential hydrocarbon reservoirs developing in rifting-affected carbonate platforms . Marine and Petroleum Geology 79 : 360 – 371 . https://doi.org/10.1016/j.marpetgeo.2016.11.002 .
- Martinelli , M. , Bistacchi , A. , Mittempergher , S. et al. ( 2020 ). Damage zone characterization combining scan-line and scan-area analysis on a km-scale Digital Outcrop Model: The Qala Fault (Gozo) . Journal of Structural Geology 140 , 104144: https://doi.org/10.1016/j.jsg.2020.104144 .
- Massironi , M. , Bertoldi , L. , Calafa , P. et al. ( 2008 ). Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco) . Geosphere 4 : 736 . https://doi.org/10.1130/GES00161.1 .
- Massironi , M. , Zampieri , D. , Superchi , L. et al. ( 2013 ). Geological structures of the vajont landslide . Italian Journal of Engineering Geology and Environment 2013 : 573 – 582 . https://doi.org/10.4408/IJEGE.2013-06.B-55 .
-
Mather , P.M.
and
Koch , M.
(
2011
).
Computer Processing of Remotely-Sense
d Images: An Introduction
,
4th
e.
Wiley-Blackwell
.
10.1002/9780470666517 Google Scholar
- McCaffrey , K.J.W. , Jones , R.R. , Holdsworth , R.R.E. et al. ( 2005 ). Unlocking the spatial dimension: Digital technologies and the future of geoscience fieldwork . Journal of the Geological Society 162 : 927 – 938 . https://doi.org/10.1144/0016-764905-017 .
- Mikhail , E.M. , Bethel , J.S. , and McGlone , J.C. ( 2001 ). Introduction to Modern Photogrammetry . John Wiley & Sons .
- Mittempergher , S. and Bistacchi , A. ( 2021 ). Image analysis algorithms for semi-automatic lineament detection on Digital Outcrop Models . In: 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces . Wiley, this volume .
- Penasa , L. , Franceschi , M. , Preto , N. et al. ( 2014 ). Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops . ISPRS Journal of Photogrammetry and Remote Sensing 93 : 88 – 97 . https://doi.org/10.1016/j.isprsjprs.2014.04.003 .
- Qu , D. , Frykman , P. , Stemmerik , L. et al. ( 2021 ). Upscaling of outcrop information for improved reservoir modelling—exemplified by a case study on chalk . Petroleum Geoscience 27 : petgeo2020-126. https://doi.org/10.1144/petgeo2020-126 .
- Riquelme , A.J. , Abellán , A. , Tomás , R. , and Jaboyedoff , M. ( 2014 ). A new approach for semi-automatic rock mass joints recognition from 3D point clouds . Computers and Geosciences 68 : 38 – 52 . https://doi.org/10.1016/j.cageo.2014.03.014 .
-
Riquelme , A.
,
Cano , M.
,
Tomás , R.
, and
Abellán , A.
(
2017
).
Identification of rock slope discontinuity sets from laser Ssanner and photogrammetric point clouds: A comparative analysis
.
Procedia Engineering
191
:
838
–
845
.
https://doi.org/10.1016/j.proeng.2017.05.251
.
10.1016/j.proeng.2017.05.251 Google Scholar
- Siddiqui , N.A. , Ramkumar , M. , Rahman , A.H.A. et al. ( 2019 ). High resolution faces architecture and digital outcrop modeling of the Sandakan formation sandstone reservoir, Borneo: Implications for reservoir characterization and flow simulation . Geoscience Frontiers 10 : 957 – 971 . https://doi.org/10.1016/j.gsf.2018.04.008 .
- Silva , O.L. , Bezerra , F.H.R. , Maia , R.P. , and Cazarin , C.L. ( 2017 ). Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints . Geomorphology 295 : 611 – 630 . https://doi.org/10.1016/j.geomorph.2017.07.025 .
- Sima , A.A. , Bonaventura , X. , Feixas , M. et al. ( 2013 ). Computer-aided image geometry analysis and subset selection for optimizing texture quality in photorealistic models . Computers and Geosciences 52 : 281 – 291 . https://doi.org/10.1016/j.cageo.2012.11.004 .
- Smith , S.A.F. , Bistacchi , A. , Mitchell , T.M. et al. ( 2013 ). The structure of an exhumed intraplate seismogenic fault in crystalline basement . Tectonophysics 599 : 29 – 44 . https://doi.org/10.1016/j.tecto.2013.03.031 .
- Snavely , N. , Seitz , S. , and Szeliski , R. ( 2006 ). PhotoTourism: Exploring photo collections in 3D . In: SIGGRAPH Conference Proceedings , 835 – 846 . https://doi.org/10.1145/1141911.1141964 .
- Sturzenegger , M. , Stead , D. , and Elmo , D. ( 2011 ). Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape . Engineering Geology 119 : 96 – 111 . https://doi.org/10.1016/j.enggeo.2011.02.005 .
- Tavani , S. , Corradetti , A. , and Billi , A. ( 2016 ). High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology . Journal of Structural Geology 86 : 200 – 210 . https://doi.org/10.1016/j.jsg.2016.03.009 .
- Tavani , S. , Granado , P. , Corradetti , A. et al. ( 2014 ). Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran) . Computers and Geosciences 63 : 44 – 53 . https://doi.org/10.1016/j.cageo.2013.10.013 .
- Thiele , S.T. , Grose , L. , Samsu , A. et al. ( 2017 ). Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data . Solid Earth 8 : 1241 – 1253 . https://doi.org/10.5194/se-8-1241-2017 .
- Tomassetti , L. , Petracchini , L. , Brandano , M. et al. ( 2018 ). Modeling lateral facies heterogeneity of an upper Oligocene carbonate ramp (Salento, southern Italy) . Marine and Petroleum Geology 96 : 254 – 270 . https://doi.org/10.1016/j.marpetgeo.2018.06.004 .
- Triantafyllou , A. , Watlet , A. , Le Mouélic , S. et al. ( 2019 ). 3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium) . Journal of Structural Geology 120 : 55 – 66 . https://doi.org/10.1016/j.jsg.2019.01.001 .
- Tsai , R.Y. ( 1987 ). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses . IEEE Journal on Robotics and Automation 3 : 323 – 344 . https://doi.org/10.1109/JRA.1987.1087109 .
- van der Meer , F.D. , van der Werff , H.M.A. , van Ruitenbeek , F.J.A. et al. ( 2012 ). Multi- and hyperspectral geologic remote sensing: A review . International Journal of Applied Earth Observation and Geoinformation 14 : 112 – 128 . https://doi.org/10.1016/j.jag.2011.08.002 .
- Vasuki , Y. , Holden , E.-J.J. , Kovesi , P. , and Micklethwaite , S. ( 2014 ). Semi-automatic mapping of geological structures using UAV-based photogrammetric data: An image analysis approach . Computers and Geosciences 69 : 22 – 32 . https://doi.org/10.1016/j.cageo.2014.04.012 .
- Vasuki , Y. , Holden , E.-J. , Kovesi , P. , and Micklethwaite , S. ( 2017 ). An interactive image segmentation method for lithological boundary detection: A rapid mapping tool for geologists . Computers and Geosciences 100 : 27 – 40 . https://doi.org/10.1016/j.cageo.2016.12.001 .
- Vollgger , S.A. and Cruden , A.R. ( 2016 ). Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia . Journal of Structural Geology 85 : 168 – 187 . https://doi.org/10.1016/j.jsg.2016.02.012 .
- White , P.D. and Jones , R.R. ( 2008 ). A cost-efficient solution to true color terrestrial laser scanning . Geosphere 4 : 564 . https://doi.org/10.1130/GES00155.1 .
- Wilkinson , M.W. , Jones , R.R. , Woods , C.E. et al. ( 2016 ). A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition . Geosphere 12 : 1865 – 1880 . https://doi.org/10.1130/GES01342.1 .
-
Wu , C.
(
2013
).
Towards linear-time incremental structure from motion
. In:
3DV. IEEE
,
127
–
134
.
https://doi.org/10.1109/3DV.2013.25
.
10.1109/3DV.2013.25 Google Scholar
-
Wu , C.
(
2014
).
Critical configurations for radial distortion self-calibration
. In:
2014 IEEE Conference on Computer Vision and Pattern Recognition
,
1
–
16
.
https://doi.org/10.1109/CVPR.2014.11
.
10.1109/CVPR.2014.11 Google Scholar
- Wu , C. , Agarwal , S. , Curless , B. , and Seitz , S.M. ( 2011 ). Multicore bundle adjustment. CVPR 2011 : 3057 – 3064 . https://doi.org/10.1109/CVPR.2011.5995552 .
- Zhang , P. , Du , K. , Tannant , D.D. et al. ( 2018 ). Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass . Engineering Geology 239 : 109 – 118 . https://doi.org/10.1016/j.enggeo.2018.03.020 .