Functional Ecology of Vascular Epiphytes
Gerhard Zotz
Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
Smithsonian Tropical Research Institute, Panama, Republic of Panama
Search for more papers by this authorPeter Hietz
Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
Search for more papers by this authorHelena J. R. Einzmann
Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
Search for more papers by this authorGerhard Zotz
Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
Smithsonian Tropical Research Institute, Panama, Republic of Panama
Search for more papers by this authorPeter Hietz
Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
Search for more papers by this authorHelena J. R. Einzmann
Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
Search for more papers by this authorAbstract
The epiphytic life form characterizes almost 10% of all vascular plants. Defined by their mechanical dependence throughout their life and their non-parasitic relationship with the host, the term epiphyte describes a very heterogenous and taxonomically diverse group of plants. This article explores the functional ecology of this group, acknowledging from the start that our current knowledge is highly biased, e.g. with a strong focus on particular families like bromeliads or orchids. This bias goes along with a number of problematic and weakly founded generalizations in the literature. Our article covers a set of particularly important aspects of epiphyte ecology, e.g. germination, water and nutrient relationships, and biomechanical aspects of the epiphyte-host relationship. Throughout our article, we describe ways for future research projects to reach a more comprehensive and representative understanding of the biological responses to the varying challenges of the arboreal habitat, and emphasize that the study of epiphytes should not only be of interest to the narrow expert: a comparison of the functional ecology of epiphytes and ground-rooted terrestrials offers unique perspectives to understanding both evolutionary and ecological, phenotypic responses to the diverse habitats of vascular plants in general.
References
- Abril, A.B. and Bucher, E.H. (2009). A comparison of nutrient sources of the epiphyte Tillandsia capillaris attached to trees and cables in Cordoba, Argentina. Journal of Arid Environments 73: 393–395.
- Abril, A.B., Torres, P.A., and Bucher, E.H. (2005). The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. Journal of Tropical Ecology 21: 103–107.
- Aerts, R. and Chapin, F.S. (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1–67.
- Ågren, G.I. (2004). The C : N : P stoichiometry of autotrophs – theory and observations. Ecology Letters 7: 185–191.
- Ågren, G.I. (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology and Systematics 39: 153–170.
- Almeida, A.B.R., Smidt, E.C., and Amano, E. (2016). Development and function of root hairs in Acianthera Scheidw. (Orchidaceae: Pleurothallidinae). Australian Journal of Basic and Applied Sciences 10: 122–126.
- Andrade, J.L. and Nobel, P.S. (1997). Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29: 261–270.
- Aranda, I., Pardo, F., Gil, L., and Pardos, J.A. (2004). Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species. Acta Oecologica 25: 187–195.
- Aroca, R., Porcel, R., and Ruiz-Lozano, J.M. (2012). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany 63: 43–57.
- Auvray, G. and Newman, M.F. (2010). A revision of Cautleya (Zingiberaceae). Edinburgh Journal of Botany 67: 451–465.
10.1017/S0960428610000193 Google Scholar
- Bader, M.Y., Menke, G., and Zotz, G. (2009). A pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Functional Ecology 23: 472–479.
- Balachandar, M., Ravi, R.K., Ranjithamani, A., and Muthukumar, T. (2019). Comparative vegetative anatomy and mycorrhizal morphology of three South Indian Luisia species (Orchidaceae) with the note on their epiphytic adaptations. Flora 251: 39–61.
- Barthlott, W. and Capesius, I. (1975). Mikromorphologische und funktionelle Untersuchungen am Velamen radicum der Orchideen. Berichte der Deutschen Botanischen Gesellschaft 88: 379–390.
- Batke, S.P. and Kelly, D.L. (2015). Changes in the distribution of mechanically dependent plants along a gradient of past hurricane impact. AoB Plants 7: plv096.
- Batke, S.P., Holohan, A., Hayden, R. et al. (2018). The pressure is on – epiphyte water-relations altered under elevated CO2. Frontiers in Plant Science 9.
- Benner, J.W., Conroy, S., Lunch, C.K. et al. (2007). Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39: 400–405.
- Bentley, B.L. (1987). Nitrogen fixation by epiphylls in a tropical rainforest. Annals of the Missouri Botanical Garden 74: 234–241.
- Benzing, D.H. (1970). Roots in certain species of Tillandsia and Vriesea and their role in the epiphytic environment. Bromeliad Society Bulletin 20: 79–84.
- Benzing, D.H. (1990). Vascular Epiphytes. General Biology and Related Biota. Cambridge: Cambridge University Press.
10.1017/CBO9780511525438 Google Scholar
- Benzing, D.H. (1996). Aerial roots and their environments. In: Plant Roots: The Hidden Half (ed. Y. Waisel, A. Eshel and U. Kafkafi). New York: Marcel Dekker.
- Benzing, D.H. (1998). Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change 39: 519–540.
- Benzing, D.H. and Ott, D.W. (1981). Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: its origin and significance. Biotropica 13: 131–140.
- Bernal, A.A., Smidt, E.D.C., and Bona, C. (2015). Spiral root hairs in Spiranthinae (Cranichideae: Orchidaceae). Brazilian Journal of Botany 38: 411–415.
- Biebl, R. (1964). Zum Wasserhaushalt von Tillandsia recurvata L. und Tillandsia usneoides L. auf Puerto Rico. Protoplasma 58: 345–368.
- M. Black, J.D. Bewley, and P. Halmer eds. (2006). The Encyclopedia of Seeds. CAB International.
10.1079/9780851997230.0000 Google Scholar
- Bone, R.E., Smith, J.A.C., Arrigo, N., and Buerki, S. (2015). A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case study. New Phytologist 208: 469–481.
- Bristow, C.S., Hudson-Edwards, K.A., and Chappell, A. (2010). Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophysical Research Letters 37: L14807.
- Burns, K.C. (2010). How arboreal are epiphytes? A null model for Benzing's classifications. New Zealand Journal of Botany 48: 185–191.
- Cabral, J.S., Petter, G., Mendieta Leiva, G. et al. (2015). Branchfall as a demographic filter for epiphyte communities: lessons from forest floor-based sampling. PLoS One 10: e0128019.
- Cach-Pérez, M.J., Andrade, J.L., and Reyes-García, C. (2018). Morphophysiological plasticity in epiphytic bromeliads across a precipitation gradient in the Yucatan peninsula, Mexico. Tropical Conservation Science 11: 1940082918781926.
- Callaway, R.M., Reinhart, K.O., Moore, G.W. et al. (2002). Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132: 221–230.
- Canestraro, B.K., Moran, R.C., and Watkins, J.E. Jr. (2014). Reproductive and physiological ecology of climbing and terrestrial Polybotrya (Dryopteridaceae) at the La Selva Biological Station, Costa Rica. International Journal of Plant Sciences 175: 432–441.
- Cardelús, C.L. and Mack, M. (2010). The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecology 207: 25–37.
- Cavelier, J., Jaramillo, M., Solis, D., and de Leon, D. (1997). Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology 193: 83–96.
- Chapin, F.S. III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.
- Chen, Q., Sun, J.Q., Song, L. et al. (2019). Trait acclimation of the clonal fern Selliguea griffithiana to forest epiphytic and terrestrial habitats. Ecological Research 34: 406–414.
- Choat, B., Jansen, S., Brodribb, T.J. et al. (2012). Global convergence in the vulnerability of forests to drought. Nature 491: 752–755.
- Chomba, C. (2014). Do epiphytes in drier climates select host tree substrates between rough and smooth bole textures and crown and stem, vertical and upright stems? What are the implications for water catchment and forest management? Open Journal of Ecology 4: 641–652.
10.4236/oje.2014.410054 Google Scholar
- Clark, K.L., Nadkarni, N.M., Schaefer, D., and Gholz, H.L. (1998). Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology 14: 27–45.
- Cockburn, W., Goh, C.J., and Avadhani, P.N. (1985). Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (DON) LDL: a variant on crassulacean acid metabolism. Plant Physiology 77: 83–86.
- Correa, S. and Zotz, G. (2014). The influence of collecting date, temperature and moisture regimes on the germination of epiphytic bromeliads. Seed Science Research 24: 353–363.
- Crayn, D.M., Winter, K., Schulte, K., and Smith, J.A.C. (2015). Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Botanical Journal of the Linnean Society 178: 169–221.
- Diefendorf, A.F., Mueller, K.E., Wing, S.L. et al. (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences 107: 5738–5743.
- Doughty, C.E. and Goulden, M.L. (2008). Are tropical forests near a high temperature threshold? Journal of Geophysical Research – Biogeosciences 113: G00B07.
- Duarte, A.A., de Lemos, J.P., and Marques, A.R. (2018). Seed germination of bromeliad species from the campo rupestre: thermal time requirements and response under predicted climate-change scenarios. Flora 238: 119–128.
- Dueker, J. and Arditti, J. (1968). Photosynthetic 14CO2 fixation by green Cymbidium (Orchidaceae) flowers. Plant Physiology 43: 130–132.
- Dycus, A.M. and Knudson, L. (1957). The role of the velamen of the aerial roots of orchids. Botanical Gazette 119: 78–87.
10.1086/335966 Google Scholar
- Earnshaw, M.J., Winter, K., Ziegler, H. et al. (1987). Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea. Oecologia 73: 566–572.
- Einzmann, H.J.R. and Zotz, G. (2017). Dispersal and establishment of epiphytes in human-modified landscapes. AoB Plants 9: plx052.
- Einzmann, H.J.R., Beyschlag, J., Hofhansl, F. et al. (2015). Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants 7: plu073.
- Esau, K. (1965). Plant Anatomy. New York: John Wiley & Sons.
- Eskov, A.K., Abakumov, E.V., Tiunov, A.V. et al. (2017). Ageotropic aerial root-traps of nest epiphytes and their role in suspended soils forming (in Russian). Zhurnal Obshche Biologii 78: 54–68.
- Eskov, A.K., Onipchenko, V.G., Prilepsky, N.G. et al. (2019). Dependence of epiphytic community on autochthonous and allochthonous sources of nitrogen in three forest habitats of southern Vietnam. Plant and Soil 443: 565–574.
- Evans, C.E. and Etherington, J.R. (1990). The effect of soil-water potential on seed germination of some British plants. New Phytologist 115: 539–548.
- Flores-Palacios, A., García-Franco, J.G., and Capistrán-Barradas, A. (2015). Biomass, phorophyte specificity and distribution of Tillandsia recurvata in a tropical semi-desert environment (Chihuahuan Desert, Mexico). Plant Ecology and Evolution 148: 68–75.
- Forman, R.T.T. (1975). Canopy lichens with blue-green algae: a nitrogen source in a Columbian rain forest. Ecology 56: 1176–1184.
- Freiberg, E. (1998). Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117: 9–18.
- Futuyma, D.J. (2005). Evolution. Sunderland: Sinauer.
- Gabriel y Galán, J.M., Murciano, A., Sirvent, L. et al. (2018). Germination fitness of two temperate epiphytic ferns shifts under increasing temperatures and forest fragmentation. PLoS One 13: e0197110.
- Gentry, A.H. and Dodson, C.H. (1987). Diversity and biogeography of Neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74: 205–233.
- Gessner, F. (1956). Der Wasserhaushalt der Epiphyten und Lianen. In: Pflanze und Wasser (ed. O. Stocker). Berlin: Springer.
10.1007/978-3-642-94678-3_50 Google Scholar
- Givnish, T.J., Millam, K.C., Berry, P.E., and Sytsma, K.J. (2007). Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23: 3–26.
10.5642/aliso.20072301.04 Google Scholar
- Givnish, T.J., Barfuss, M.H.J., Ee, B.V. et al. (2014). Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution 71: 55–78.
- Göbel, C.Y., Schlumpberger, B.O., and Zotz, G. (2020). What is a pseudobulb? – Towards a quantitative definition. International Journal of Plant Sciences 181: 686–696.
- Gomez-Escamilla, N., Téllez-Bnos, B., Espejo-Serna, A., and López-Ferrari, A. (2017). The use of epiphytic bromeliads by Ateles geoffroyi Kuhl (Primates, Mammalia) in Chiapas, Mexico. Journal of the Bromeliad Society 66: 26–33.
- Gotsch, S.G., Nadkarni, N.M., Darby, A. et al. (2015). Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs 85: 393–412.
- Gotsch, S.G., Dawson, T.E., and Draguljic, D. (2018). Variation in the resilience of cloud forest vascular epiphytes to severe drought. New Phytologist 219: 900–913.
- Griffiths, H. and Smith, J.A.C. (1983). Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60: 176–184.
- Groot, E.P., Sweeney, E.J., and Rost, T.L. (2003). Development of the adhesive pad on climbing fig (Ficus pumila) stems from clusters of adventitious roots. Plant and Soil 248: 85–96.
- Güsewell, S. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243–266.
- Hao, G.-Y., Goldstein, G., Sack, L. et al. (2011). Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy. Ecology 92: 2117–2130.
- Hauber, F., Konrad, W., and Roth-Nebelsick, A. (2020). Aerial roots of orchids: the velamen radicum as a porous material for efficient imbibition of water. Applied Physics A 126.
- Helbsing, S., Riederer, M., and Zotz, G. (2000). Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure? Annals of Botany 86: 765–769.
- Herppich, W.B., Martin, C.E., Totzke, C. et al. (2019). External water transport is more important than vascular transport in the extreme atmospheric epiphyte Tillandsia usneoides (Spanish moss). Plant, Cell & Environment 42: 1645–1656.
- Hietz, P. (1997). Population dynamics of epiphytes in a Mexican humid montane forest. Journal of Ecology 85: 767–777.
- Hietz, P. and Briones, O. (1998). Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114: 305–316.
- Hietz, P. and Briones, O. (2001). Photosynthesis, chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Plant Biology 3: 279–287.
- Hietz, P., Wanek, W., and Popp, M. (1999). Stable isotopic composition of carbon and nitrogen, and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment 22: 1435–1443.
- Hietz, P., Wanek, W., Wania, R., and Nadkarni, N.M. (2002). Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131: 350–355.
- Hoeber, V. and Zotz, G. (2021). Not so stressful after all: epiphytic individuals of accidental epiphytes experience more favourable abiotic conditions than terrestrial conspecifics. Forest Ecology and Management 479: 118529.
- Hoeber, V., Klinghardt, M., and Zotz, G. (2020). Drought resistance does not explain epiphytic abundance of accidental epiphytes. Plant Ecology and Diversity 13: 175–187.
- Holbrook, N.M. and Putz, F.E. (1996). Water relations of epiphytic and terrestrially-rooted strangler figs in Venezuelan palm savanna. Oecologia 106: 424–431.
- Huang, J.B., Liu, W.Y., Li, S. et al. (2019). Ecological stoichiometry of the epiphyte community in a subtropical forest canopy. Ecology and Evolution 9: 14394–14406.
- Joca, T.A.C., Oliveira, D.C.D., Zotz, G. et al. (2017). The velamen of epiphytic orchids: variation in structure and correlations with nutrient absorption. Flora 230: 66–74.
- Johansson, D. (1974). Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59: 1–136.
- Kernan, C. and Fowler, N. (1995). Differential substrate use by epiphytes in Corcovado National Park, Costa Rica: a source of guild structure. Journal of Ecology 83: 65–73.
- Kowalski, V.K., Oliveira, F.M.C.D., Voltolini, C.H. et al. (2019). Velamen or uniseriate epidermis? Root apices in Bromeliaceae Juss. Flora 250: 9–17.
- Kreft, H., Köster, N., Küper, W. et al. (2004). Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography 31: 1463–1476.
- Lambers, H., Chapin, F.S. III and Pons, T.L. (2008). Plant Physiological Ecology. New York: Springer.
- Lasso, E. and Ackerman, J.D. (2013). Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment. Oecologia 171: 165–174.
- Laube, S. and Zotz, G. (2003). Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology 17: 598–604.
- Lee, M.-H. and Kim, I.-S. (2011). Characteristics of adhesive disks in Parthenocissus tricuspidata during attachment. Applied Microscopy 41: 139–145.
- Leitgeb, H. (1865). Die Luftwurzeln der Orchideen. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse 24: 179–222.
- Leroy, C., Gril, E., Ouali, L.S. et al. (2019). Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads. Environmental and Experimental Botany 163: 112–123.
- Lösch, R. (2001). Wasserhaushalt der Pflanzen. Wiebelsheim: Quelle & Meyer.
- Lugo, A.E. and Scatena, F.N. (1992). Epiphytes and climate change research in the Caribbean: a proposal. Selbyana 13: 123–130.
- U. Lüttge ed. (1989). Vascular Plants as Epiphytes: Evolution and Ecophysiology. Heidelberg: Springer.
10.1007/978-3-642-74465-5 Google Scholar
- Lüttge, U. (2004). Ecophysiology of Crassulacean Acid Metabolism (CAM). Annals of Botany 93: 629–652.
- Lüttge, U. (2008). Physiological Ecology of Tropical Plants. Berlin: Springer.
- Males, J. and Griffiths, H. (2017). Functional types in the Bromeliaceae: relationships with drought resistance traits and bioclimatic distributions. Functional Ecology 31: 1868–1880.
- Mantovani, A. and Iglesias, R.R. (2010). The effect of water stress on seed germination of three terrestrial bromeliads from restinga. Revista Brasileira de Botânica 33: 201–205.
10.1590/S0100-84042010000100017 Google Scholar
- Martin, C.E., Mas, E.J., Lu, C., and Ong, B.L. (2010). The photosynthetic pathway of the roots of twelve epiphytic orchids with CAM leaves. Photosynthetica 48: 42–50.
- Matelson, T.J., Nadkarni, N.M., and Longino, J.T. (1993). Longevity of fallen epiphytes in a neotropical montane forest. Ecology 74: 265–269.
- Melzer, B., Steinbrecher, T., Seidel, R. et al. (2010). The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. Journal of the Royal Society Interface 7: 1383–1389.
- Migenis, L.E. and Ackerman, J.D. (1993). Orchid-phorophyte relationships in a forest watershed in Puerto Rico. Journal of Tropical Ecology 9: 231–240.
- Mondragón, D., Valverede, T., and Hernández-Apolinar, M. (2015). Population ecology of epiphytic angiosperms: a review. Tropical Ecology 56: 1–39.
- Mooney, H.A., Bullock, S.H., and Ehleringer, J.R. (1989). Carbon isotope ratios of plants of a tropical forest in Mexico. Functional Ecology 3: 137–142.
- Moreira, A.S.P., Lemos Filho, J.P., Zotz, G., and Isaias, R.M.S. (2009). Anatomy and photosynthetic parameters of roots and leaves of two shade adapted orchids, Dichaea cogniauxiana Shltr. and Epidendrum secundum Jacq. Flora 204: 604–611.
- Müller, L.-L.B., Albach, D., and Zotz, G. (2017). “Are 3°C too much?” – Thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology 105: 507–516.
- Nadkarni, N.M. and Solano, R. (2002). Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131: 580–586.
- Niinemets, Ü., Keenan, T.F., and Hallik, L. (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist 205: 973–993.
- Niklas, K.J. (1994). Plant Allometry: The Scaling of Form and Process. Chicago: Chicago University Press.
- Niklas, K.J. (1999). A mechanical perspective on foliage leaf form and function. New Phytologist 143: 19–31.
- Ocampo, G. and Almeda, F. (2013). Do Melastomataceae perform CAM photosynthesis? A survey of neotropical species using carbon isotope ratios. Journal of Tropical Ecology 29: 265–269.
- Ohrui, T., Nobira, H., Sakata, Y. et al. (2007). Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta 227: 47–56.
- Oliver, W.R.B. (1930). New Zealand epiphytes. Journal of Ecology 18: 1–50.
- Ospina-Bautista, F. and Estevez Varon, J.V. (2016). Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri. Brazilian Journal of Biology 76: 686–691.
- Patiño, S., Tyree, M.T., and Herre, E.A. (1995). Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama. New Phytologist 129: 125–134.
- Perry, D.R. (1978). Factors influencing arboreal epiphytic phytosociology in Central America. Biotropica 10: 235–237.
- Petter, G., Wagner, K., Zotz, G. et al. (2016). Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Functional Ecology 30: 188–198.
- Pridgeon, A.M. (1987). The velamen and exodermis of orchid roots. In: Orchid Biology. Reviews and Perspectives IV (ed. J. Arditti). Ithaca, NY: Cornell University Press.
- Proctor, M.C.F. (2012). Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche. Annals of Botany 109: 1019–1026.
- Proença, S.L. and Sajo, M.G. (2008). Rhizome and root anatomy of 14 species of Bromeliaceae. Rodriguésia 59: 113–128.
10.1590/2175-7860200859106 Google Scholar
- Putz, F.E. and Holbrook, N.M. (1989). Strangler fig rooting habits and nutrient relations in the Llanos of Venezuela. American Journal of Botany 76: 781–788.
- Rapp, J.M. and Silman, M.R. (2014). Epiphyte response to drought and experimental warming. F1000Research 3: 7.
- Richards, J.H., Henn, J.J., Sorenson, Q.M. et al. (2021). Mistletoes and their eucalypt hosts differ in the response of leaf functional traits to climatic moisture supply. Oecologia 195: 759–771.
- Rodrigues, M.A., Matiz, A., Cruz, A.B. et al. (2013). Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: unravelling C3–CAM plasticity in an organ-compartmented way. Annals of Botany 112: 17–29.
- Rodríguez-Robles, J.A., Ackerman, J.D., and Meléndez, E.J. (1990). Host distribution and hurricane damage to an orchid population at Toro Negro forest, Puerto Rico. Caribbean Journal of Science 26: 163–164.
- Rosado-Calderón, A.T., Tamayo-Chim, M., de la Barrera, E. et al. (2020). High resilience to extreme climatic changes in the CAM epiphyte Tillandsia utriculata L. (Bromeliaceae). Physiologia Plantarum 168: 547–562.
- de la Rosa-Manzano, E. and Briones, O. (2010). Germination response of the epiphytic cactus Rhipsalis baccifera (J. S. Miller) Stearn to different light conditions and water availability. International Journal of Plant Sciences 171: 267–274.
- Rosell, J.A. and Olson, M.E. (2014). The evolution of bark mechanics and storage across habitats in a clade of tropical trees. American Journal of Botany 101: 764–777.
- Rungwattana, K. and Hietz, P. (2018). Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics. Functional Ecology 32: 260–272.
- Sarneel, J.M., Janssen, R.H., Rip, W.J. et al. (2014). Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks. Journal of Applied Ecology 51: 1006–1014.
- Schellenberger-Costa, D., Zotz, G., Hemp, A., and Kleyer, M. (2018). Trait patterns of epiphytes compared to other plant life forms along a tropical elevation gradient. Functional Ecology 32: 2073–2084.
- Schimper, A.F.W. (1888). Die epiphytische Vegetation Amerikas. Jena: Gustav Fischer.
- Schmidt, S. and Tracey, D.P. (2006). Adaptations of strangler figs to life in the rainforest canopy. Functional Plant Biology 33: 465–475.
- Schmidt, G. and Zotz, G. (2001). Ecophysiological consequences of differences in plant size – in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. Plant, Cell and Environment 24: 101–112.
- Schmidt, G., Stuntz, S., and Zotz, G. (2001). Plant size – an ignored parameter in epiphyte ecophysiology. Plant Ecology 153: 65–72.
- S.A. Schnitzer, F. Bongers, R.J. Burnham, and F.E. Putz eds. (2015). Ecology of Lianas. JohnWiley & Sons, Ltd.
10.1002/9781118392409 Google Scholar
- Silvera, K., Santiago, L.S., Cushman, J.C., and Winter, K. (2010). The incidence of crassulacean acid metabolism in Orchidaceae derived from carbon isotope ratios: a checklist of the flora of Panama and Costa Rica. Botanical Journal of the Linnean Society 163: 194–222.
- Sioma, A., Socha, J., and Klamerus-Iwan, A. (2018). A new method for characterizing bark microrelief using 3D vision systems. Forests 9: 30.
- Smith, J.A.C. and Winter, K. (1996). Taxonomic distribution of crassulacean acid metabolism. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution (ed. K. Winter and J.A.C. Smith). Berlin: Springer.
10.1007/978-3-642-79060-7_27 Google Scholar
- Smith, J.A.C., Griffiths, H., Lüttge, U. et al. (1986). Comparative ecophysiology of CAM and C3 bromeliads. IV. Plant water relations. Plant, Cell and Environment 9: 395–410.
- Stark, A.Y., Adams, B.J., Fredley, J.L., and Yanoviak, S.P. (2017). Out on a limbt: thermal microenvironments in the tropical forest canopy and their relevance to ants. Journal of Thermal Biology 69: 32–38.
- Steinbrecher, T., Beuchle, G., Melzer, B. et al. (2011). Structural development and morphology of the attachment system of Parthenocissus tricuspidata. International Journal of Plant Sciences 173: 1120–1129.
- Strong, D.R. (1977). Epiphyte load, tree falls, and perennial forest disruption: a mechanism for maintaining higher tree species richness in the tropics without animals. Journal of Biogeography 4: 215–218.
- Stuart, T.S. (1968). The revival and respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta 83: 185–206.
- Stuntz, S., Simon, U., and Zotz, G. (2002). Rainforest airconditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. International Journal of Biometeorology 46: 53–59.
- Suriyagoda, L.D.B., Rajapaksha, R., Pushpakumara, G., and Lambers, H. (2018). Nutrient resorption from senescing leaves of epiphytes, hemiparasites and their hosts in tropical forests of Sri Lanka. Journal of Plant Ecology 11: 815–826.
- Tay, J., Zotz, G., Pusczylowski, J., and Einzmann, H.J.R. (2021). Go with the flow: the extent of drag reduction as epiphytes reorient in wind. PLoS One 16 (6): e0252790.
- Taylor, A.S., Mendieta, J., Bemal, R., and Silvera, G. (2008). A neverbefore-reported characteristic of Zamia pseudoparasitica. The Cyad Newsletter 31: 8–9.
- Torres-Morales, G., Lasso, E., Silvera, K. et al. (2020). Occurrence of crassulacean acid metabolism in Colombian orchids determined by leaf carbon isotope ratios. Botanical Journal of the Linnean Society 193: 431–477.
- Tremblay, R.L. (2008). Ecological correlates and short-term effects of relocation of a rare epiphytic orchid after Hurricane Georges. Endangered Species Research 5: 83–90.
10.3354/esr00114 Google Scholar
- Tremblay, R.L., Ackerman, J.D., Zimmerman, J.K., and Calvo, R.N. (2005). Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society 84: 1–54.
- Ungar, I.A. (1982). Germination ecology of halophytes. In: Contributions to the Ecology of Halophytes (ed. D.N. Sen and K.S. Rajpurohit). Dordrecht: Springer.
10.1007/978-94-009-8037-2_10 Google Scholar
- Van Stan, J.T. II and Pypker, T.G. (2015). A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Science of the Total Environment 536: 813–824.
- Veneklaas, E.J., Zagt, R.J., Van Leerdam, A. et al. (1990). Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89: 183–192.
- Vergutz, L., Manzoni, S., Porporato, A. et al. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82: 205–220.
- Wagner, K. and Zotz, G. (2018). Epiphytic bromeliads in a changing world: the effect of elevated CO2 and varying water supply on growth and nutrient relations. Plant Biology 20: 636–640.
- Wagner, K., Bogusch, W., and Zotz, G. (2013). The role of the regeneration niche for the vertical stratification of vascular epiphytes. Journal of Tropical Ecology 29: 277–290.
- Wanek, W. and Zotz, G. (2011). Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta. New Phytologist 192: 462–470.
- Watkins, J.E. Jr. Holbrook, N.M., and Zwieniecki, M.A. (2010). Hydraulic properties of fern sporophytes: consequences for ecological and evolutionary diversification. American Journal of Botany 97: 2007–2019.
- Weaver, P.L. (1999). Impacts of Hurricane Hugo on the dwarf cloud forest of Puerto Rico's Luquillo Mountains. Caribbean Journal of Science 35: 101–111.
- Went, F.W. (1940). Soziologie der Epiphyten eines tropischen Regenwaldes. Annales du Jardin Botanique de Buitenzorg 50: 1–98.
- Winkler, U. and Zotz, G. (2009). Highly efficient uptake of phosphorus in epiphytic bromeliads. Annals of Botany 103: 477–484.
- Winkler, M., Hülber, K., and Hietz, P. (2005). Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95: 1039–1047.
- Winter, K. (2019). Ecophysiology of constitutive and facultative CAM photosynthesis. Journal of Experimental Botany 70: 6495–6508.
- Winter, K. and Smith, J.A.C. (1996). An introduction to crassulacean acid metabolism: biochemical principles and biological diversity. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution (ed. K. Winter and J.A.C. Smith). Berlin: Springer.
10.1007/978-3-642-79060-7_1 Google Scholar
- Winter, K., Wallace, B.J., Stocker, G.C., and Roksandic, Z. (1983). Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141.
- Wu, Y., Liu, W.-Y., Lu, H.Z. et al. (2020). Stoichiometric and isotopic flexibility: facultative epiphytes exploit rock and bark interchangeably. Environmental and Experimental Botany 179: 104208.
- Yang, X.J. and Deng, W.L. (2017). Morphological and structural characterization of the attachment system in aerial roots of Syngonium podophyllum. Planta 245: 507–521.
- Yang, S.-J., Sun, M., Yang, Q.-Y. et al. (2016). Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs. AoB Plants 8: plw046.
- Zenone, A., Alagna, A., D'Anna, G. et al. (2020). Biological adhesion in seagrasses: the role of substrate roughness in Posidonia oceanica (L.) Delile seedling anchorage via adhesive root hairs. Marine Environmental Research 160: 105012.
- Zhang, T., Liu, W., Hu, T. et al. (2021). Divergent adaptation strategies of vascular facultative epiphytes to bark and soil habitats: insights from stoichiometry. Forests 12: 16.
- Zona, S. and Christenhusz, M.J.M. (2015). Litter-trapping plants: filter-feeders of the plant kingdom. Botanical Journal of the Linnean Society 179: 554–586.
- Zotz, G. (1995). How fast does an epiphyte grow? Selbyana 16: 150–154.
- Zotz, G. (1998). Demography of the epiphytic orchid, Dimerandra emarginata. Journal of Tropical Ecology 14: 725–741.
- Zotz, G. (1999). What are backshoots good for? Seasonal changes in mineral, carbohydrate, and water content of different organs of the epiphytic orchid, Dimerandra emarginata. Annals of Botany 84: 791–798.
- Zotz, G. (2004). How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138: 184–192.
- Zotz, G. (2016). Plants on Plants. The Biology of Vascular Epiphytes. Cham: Springer International Publishing Switzerland.
10.1007/978-3-319-39237-0 Google Scholar
- Zotz, G. and Asshoff, R. (2010). Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biology 12: 108–113.
- Zotz, G. and Bader, M.Y. (2009). Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progress in Botany 70: 147–170.
- Zotz, G. and Hietz, P. (2001). The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52: 2067–2078.
- Zotz, G. and Richter, A. (2006). Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta. Annals of Botany 97: 745–754.
- Zotz, G. and Thomas, V. (1999). How much water is in the tank? Model calculations for two epiphytic bromeliads. Annals of Botany 83: 183–192.
- Zotz, G. and Winkler, U. (2013). Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171: 733–741.
- Zotz, G. and Winter, K. (1994). Annual carbon balance and nitrogen use efficiency in tropical C3 and CAM epiphytes. New Phytologist 126: 481–492.
- Zotz, G. and Winter, K. (1996). Seasonal changes in daytime versus nighttime CO2 fixation of Clusia uvitana in situ. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution (ed. K. Winter and J.A.C. Smith). Berlin: Springer.
- Zotz, G. and Ziegler, H. (1997). The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama. New Phytologist 137: 223–229.
- Zotz, G., Tyree, M.T., and Cochard, H. (1994). Hydraulic architecture, water relations and vulnerability to cavitation of Clusia uvitana: a C3-CAM tropical hemiepiphyte. New Phytologist 127: 287–295.
- Zotz, G., Hietz, P., and Schmidt, G. (2001). Small plants, large plants – the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany 52: 2051–2056.
- Zotz, G., Vollrath, B., and Schmidt, G. (2003). Carbon relations of fruits of epiphytic orchids. Flora 198: 98–105.
- Zotz, G., Laube, S., and Schmidt, G. (2005). Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography 28: 806–814.
- Zotz, G., Bogusch, W., Hietz, P., and Ketteler, N. (2010). Growth of epiphytic bromeliads in a changing world: the effect of elevated CO2 and varying water and nutrient supply. Acta Oecologica 36: 659–665.
- Zotz, G., Schickenberg, N., and Albach, D. (2017). The velamen radicum is common among terrestrial monocotyledons. Annals of Botany 120: 625–632.
- Zotz, G., Kappert, N., Müller, L.-L.B., and Wagner, K. (2020). Temperature dependence of germination and growth in Anthurium (Araceae). Plant Biology 22: 184–190.
- Zotz, G., Weigelt, P., Kessler, M. et al. (2021a). EpiList 1.0 – A global checklist of vascular epiphytes. Ecology 102: e03326.
- Zotz, G., Almeda, F., Bautista-Bello, A.P. et al. (2021b). Hemiepiphytes revisited. Perspectives in Plant Ecology Evolution and Systematics 51: 125620.
Citing Literature
Browse other articles of this reference work: