8 Comparative Evolutionary Genomics of Land Plants
Abstract
The evolution of land plants is characterized by increasing adaptation to the terrestrial environment and increasing structural complexity. Flowering plants have more elaborate structure and life cycles than do mosses, and have diversified and colonized a wider variety of habitats. Nonetheless, analyses suggest that on average flowering plants have neither larger genomes nor more genes than mosses. Genome size varies dramatically among embryophytes but the most significant factor appears to be amplification of transposable elements, which not only mediate genome size but dynamically affect genome structure and function as well. Along with whole genome duplications and lineage-specific expansion of individual gene families, they are responsible for shaping land plant genomes, generating substantial differences in genome size, gene number, and gene order even among closely related cultivars. Comparative analyses of fully sequenced genomes have shed substantial light on the dynamics of genome and gene family evolution; they are just beginning, however, to help us understand the molecular basis of the key adaptations that have allowed plants to thrive on land.
References
- Adams, K.L. & Palmer, J.D. (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Molecular Phylogenetics and Evolution, 29, 380–395.
- Adams, K.L. & Wendel, J.F. (2005) Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8, 135–141.
- Aguilar-Melendez, A., Morrell, P.L., Roose, M.L., et al. (2009) Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. American Journal of Botany, 96, 1190–1202.
- Ahuja, M.R. (2005) Polyploidy in gymnosperms: revisited. Silvae Genetica, 54, 59–69.
- Allaby, R.G., Fuller, D.Q. & Brown, T.A. (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proceedings of the National Academy of Sciences of the United States of America, 105, 13982–13986.
- Ammiraju, J.S., Zuccolo, A., Yu, Y., et al. (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant Journal, 52, 342–351.
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815.
- Arumuganathan, K. & Earle, E.D. (1991) Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9, 208–218.
- Bancroft, I. (2001) Duplicate and diverge: the evolution of plant genome microstructure. Trends in Genetics, 17, 89–93.
- Banks, J.A., Nishiyama, T., Hasebe, M., et al. (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 332, 960–963.
- Barker, M.S. (2009) Evolutionary genomic analyses of ferns reveal that high chromosome numhers are a product of high retention and fewer rounds of polyploidy relative to angiosperms. American Fern Journal, 99, 136–141.
- Barker, M.S., Kane, N.C., Matvienko, M., et al. (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Molecular Biology and Evolution, 25, 2445–2455.
- Barker, M.S. & Wolf, P.G. (2010) Unfurling fern biology in the genomics age. BioScience, 60, 177–185.
- Baucom, R.S., Estill, J.C., Chaparro, C., et al. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genetics, 5, e1000732.
- Beaulieu, J.M. (2010) The right stuff: evidence for an ‘optimal’ genome size in a wild grass population. New Phytologist, 187, 883–885.
- Beck, J.B., Al-Shehbaz, I.A., O'Kane, S.L., Jr., et al. (2007) Further insights into the phylogeny of Arabidopsis (Brassicaceae) from nuclear Atmyb2 flanking sequence. Molecular Phylogenetics and Evolution, 42, 122–130.
- Becker, B. & Marin, B. (2009) Streptophyte algae and the origin of embryophytes. Annals of Botany, 103, 999–1004.
- Beilstein, M.A., Nagalingum, N.S., Clements, M.D., et al. (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107, 18724–18728.
- Bennett, M.D. & Smith, J.B. (1991) Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London B, 334, 309–345.
- Bennetzen, J.L. (2000) Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology, 42, 251–269.
- Bennetzen, J.L. (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Current Opinion in Plant Biology, 15, 621–627.
- Bennetzen, J.L. & Kellogg, E.A. (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell, 9, 1509–1514.
- Bennetzen, J.L., Ma, J. & Devos, K.M. (2005) Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95, 127–132.
- Bennetzen, J.L., SanMiguel, P., Chen, M., et al. (1998) Grass genomes. Proceedings of the National Academy of Sciences of the United States of America, 95, 1975–1978.
- Bikard, D., Patel, D., Le Mette, C., et al. (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana . Science, 323, 623–626.
- Blanc, G., Barakat, A., Guyot, R., et al. (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell, 12, 1093–1101.
- Blanc, G., Duncan, G., Agarkova, I., et al. (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22, 2943–2955.
- Blanc, G. & Wolfe, K.H. (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 16, 1667–1678.
- Bowers, J.E., Arias, M.A., Asher, R., et al. (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proceedings of the National Academy of Sciences of the United States of America, 102, 13206–13211.
- Bowers, J.E., Chapman, B.A., Rong, J., et al. (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422, 433–438.
- Brown, T.A., Jones, M.K., Powell, W., et al. (2009) The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology and Evolution, 24, 103–109.
- Cavalier-Smith, T. (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95, 147–175.
- Cenci, A., Combes, M.C. & Lashermes, P. (2010) Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Molecular Genetics and Genomics, 283, 493–501.
- Chan, A.P., Crabtree, J., Zhao, Q., et al. (2010) Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 28, 951–956.
- Chapman, M. A., Pashley, C.H., Wenzler, J., et al. (2008) A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell, 20, 2931–2945.
- Clark, R.M., Linton, E., Messing, J., et al. (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proceedings of the National Academy of Sciences of the United States of America, 101, 700–707.
- Cui, L., Wall, P.K., Leebens-Mack, J.H., et al. (2006) Widespread genome duplications throughout the history of flowering plants. Genome Research, 16, 738–749.
- Davies, B.J., O'Brien, I.E.W. & Murray, B.G. (1997) Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution, 208, 169–185.
- De Bodt, S., Maere, S. & Van de Peer, Y. (2005) Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution, 20, 591–597.
- Derelle, E., Ferraz, C., Rombauts, S., et al. (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 103, 11647–11652.
- Deutsch, M. & Long, M. (1999) Intron-exon structures of eukaryotic model organisms. Nucleic Acids Research, 27, 3219–3228.
- Devos, K.M. (2010) Grass genome organization and evolution. Current Opinion in Plant Biology, 13, 139–145.
- Devos, K.M., Brown, J.K. & Bennetzen, J.L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Research, 12, 1075–1079.
- Doebley, J. (2004) The genetics of maize evolution. Annual Review of Genetics, 38, 37–59.
- Doebley, J., Stec, A. & Hubbard, L. (1997) The evolution of apical dominance in maize. Nature, 386, 485–488.
- Doebley, J.F., Gaut, B.S. & Smith, B.D. (2006) The molecular genetics of crop domestication. Cell, 127, 1309–1321.
- Ellegren, H. (2002) Mismatch repair and mutational bias in microsatellite DNA. Trends in Genetics, 18, 552.
- Ellis, T.H., Poyser, S.J., Knox, M.R., et al. (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Molecular & General Genetics, 260, 9–19.
- Eyre-Walker, A., Gaut, R.L., Hilton, H., et al. (1998) Investigation of the bottleneck leading to the domestication of maize. Proceedings of the National Academy of Sciences of the United States of America, 95, 4441–4446.
- Fawcett, J.A., Maere, S. & Van de Peer, Y. (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 106, 5737–5742.
- Flavell, R.B., Bennett, M.D., Smith, J.B., et al. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics, 12, 257–269.
- Flowers, J.M. & Purugganan, M.D. (2008) The evolution of plant genomes: scaling up from a population perspective. Current Opinion in Genetics and Development, 18, 565–570.
- Floyd, S.K. & Bowman, J.L. (2007) The ancestral developmental tool kit of land plants. International Journal of Plant Sciences, 168, 1–35.
- Frary, A., Nesbitt, T.C., Grandillo, S., et al. (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289, 85–88.
- Friesen, N., Brandes, A. & Heslop-Harrison, J.S. (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Molecular Biology and Evolution, 18, 1176–1188.
- Fu, H. & Dooner, H. K. (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proceedings of the National Academy of Sciences of the United States of America, 99, 9573–9578.
- Garfinkel, D.J. (2005) Genome evolution mediated by Ty elements in Saccharomyces. Cytogenetic and Genome Research, 110, 63–69.
- Gaut, B.S. & Ross-Ibarra, J. (2008) Selection on major components of angiosperm genomes. Science, 320, 484–486.
- Goff, S.A., Ricke, D., Lan, T.H., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296, 92–100.
- Grandbastien, M.A., Audeon, C., Bonnivard, E., et al. (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenetic and Genome Research, 110, 229–241.
- Grant, D., Cregan, P. & Shoemaker, R.C. (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 97, 4168–4173.
- Greilhuber, J., Borsch, T., Muller, K., et al. (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology, 8, 770–777.
- Gribbon, B.M., Pearce, S.R., Kalendar, R., et al. (1999) Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Molecular and General Genetics, 261, 883–891.
- Gupta, S., Gallavotti, A., Stryker, G.A., et al. (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Molecular Biology, 57, 115–127.
-
Hall, J. & Delwiche, C. (2007) In the shadow of giants; systematics of the charophyte green algae. In: Unraveling the Algae: the Past, Present, and Future of Algal Systematics (eds J. Brodie & J. Lewis). pp. 155–170. CRC Press, Boca Raton, FL.
10.1201/9780849379901.ch8 Google Scholar
- Hanada, K., Vallejo, V., Nobuta, K., et al. (2009) The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell, 21, 25–38.
- Hao, D., Yang, L. & Xiao, P. (2011) The first insight into the Taxus genome via fosmid library construction and end sequencing. Molecular Genetics and Genomics, 285, 197–205.
- Harlan, J.R., De Wet, J.M.J. & Price, E.G. (1973) Comparative evolution of cereals. Evolution, 27, 311–325.
- Haufler, C.H. (1987) Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. American Journal of Botany, 74, 953–966.
- Haufler, C.H. & Soltis, D.E. (1986) Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proceedings of the National Academy of Sciences of the United States of America, 83, 4389–4393.
- Hawkins, J.S., Kim, H., Nason, J.D., et al. (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium . Genome Research, 16, 1252–1261.
- Hawkins, J.S., Proulx, S.R., Rapp, R.A., et al. (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 17811–17816.
- Hill, P., Burford, D., Martin, D.M., et al. (2005) Retrotransposon populations of Vicia species with varying genome size. Molecular Genetics and Genomics, 273, 371–381.
- Hu, T.T., Pattyn, P., Bakker, E.G., et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 43, 476–481.
- Huang, S., Li, R., Zhang, Z., et al. (2009) The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281.
- Hufton, A.L. & Panopoulou, G. (2009) Polyploidy and genome restructuring: a variety of outcomes. Current Opinion in Genetics & Development, 19, 600–606.
- Ilic, K., SanMiguel, P.J. & Bennetzen, J.L. (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proceedings of the National Academy of Sciences of the United States of America, 100, 12265–12270.
- Jaillon, O., Aury, J.M., Noel, B., et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–467.
- Jiang, N., Bao, Z., Zhang, X., et al. (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature, 431, 569–573.
- Kapraun, D.F. (2007) Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta. Annals of Botany, 99, 677–701.
- Kashkush, K., Feldman, M. & Levy, A.A. (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics, 33, 102–106.
- Kellogg, E.A. (2003) Genome evolution: it's all relative. Nature, 422, 383–384.
- Khandelwal, S. (1990) Chromosome evolution in the genus Ophioglossum . Botanical Journal of the Linnean Society, 102, 205–217.
- Kilian, B., Ozkan, H., Walther, A., et al. (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. Molecular Biology and Evolution, 24, 2657–2668.
- Kinlaw, C.S. & Neale, D.B. (1997) Complex gene families in pine genomes. Trends in Plant Science, 2, 356–359.
- Kirik, A., Salomon, S. & Puchta, H. (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO Journal, 19, 5562–5566.
- Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., et al. (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell, 13, 681–693.
- Knight, C.A., Molinari, N.A. & Petrov, D.A. (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany, 95, 177–190.
- Koonin, E.V., Fedorova, N.D., Jackson, J.D., et al. (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 5: R7.
- Kovach, A., Wegrzyn, J.L., Parra, G., et al. (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics, 11, 420.
- Krutovsky, K.V., Troggio, M., Brown, G.R., et al. (2004) Comparative mapping in the Pinaceae. Genetics, 168, 447–461.
- Kubis, S., Schmidt, T. & Heslop-Harrison, J. (1998) Repetitive DNA eements as a major component of plant genomes. Annals of Botany, 82, 45–55.
- Kuittinen, H., de Haan, A.A., Vogl, C., et al. (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana . Genetics, 168, 1575–1584.
- Kumar, A. & Bennetzen, J.L. (1999) Plant retrotransposons. Annual Review of Genetics, 33, 479–532.
- Lagercrantz, U. & Lydiate, D.J. (1996) Comparative genome mapping in Brassica . Genetics, 144, 1903–1910.
- Lai, J., Li, Y., Messing, J., et al. (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proceedings of the National Academy of Sciences of the United States of America, 102, 9068–9073.
- Lang, D., Weiche, B., Timmerhaus, G., et al. (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biology and Evolution, 2, 488–503.
- Lang, D., Zimmer, A.D., Rensing, S.A. & Reski, R. (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends in Plant Science, 13, 542–549.
- Leeton, P.R. & Smyth, D.R. (1993) An abundant LINE-like element amplified in the genome of Lilium speciosum. Molecular and General Genetics, 237, 97–104.
- Leitch, I.J. & Bennett, M.D. (1997) Polyploidy in angiosperms. Trends in Plant Science, 2, 470–476.
- Leitch, I.J., Hanson, L., Winfield, M., et al. (2001) Nuclear DNA C- values complete familial representation in gymnosperms. Annals of Botany, 88, 843–849.
- Lespinet, O., Wolf, Y.I., Koonin, E.V., et al. (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Research, 12, 1048–1059.
- Li, C., Zhou, A. & Sang, T. (2006) Rice domestication by reducing shattering. Science, 311, 1936–1939.
- Lippman, Z., Gendrel, A.V., Black, M., et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature, 430, 471–476.
- Lisch, D. (2009) Epigenetic regulation of transposable elements in plants. Annual Review of Plant Biology, 60, 43–66.
- Little, D.P., Moran, R.C., Brenner, E.D., et al. (2007) Nuclear genome size in Selaginella. Genome, 50, 351–356.
- Liu, R., Vitte, C., Ma, J., et al. (2007) A GeneTrek analysis of the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 104, 11844–11849.
- Lorenz, W.W. & Dean, J.F. (2002) SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiology, 22, 301–310.
- Lu, J., Tang, T., Tang, H., et al. (2006) The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends in Genetics, 22, 126–131.
- Lynch, M. & Conery, J.S. (2000) The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155.
- Lynch, M. & Force, A.G. (2000) The origin of interspecific genomic incompatibility via gene duplication. American Naturalist, 156, 590–605.
- Lyons, E., Pedersen, B., Kane, J., et al. (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Tropical Plant Biology, 1, 181–190.
- Lysak, M.A., Berr, A., Pecinka, A., et al. (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America, 103, 5224–5229.
- Ma, J. & Bennetzen, J.L. (2004) Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 12404–12410.
- Ma, J., Devos, K.M. & Bennetzen, J.L. (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research, 14, 860–869.
- Maere, S., De Bodt, S., Raes, J., et al. (2005) Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 102, 5454–5459.
- International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature, 436, 793–800.
- McClintock, B. (1984) The significance of responses of the genome to challenge. Science, 226, 792–801.
- Merchant, S.S., Prochnik, S.E., Vallon, O., et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318, 245–250.
- Messing, J., Bharti, A.K., Karlowski, W.M., et al. (2004) Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America, 101, 14349–14354.
- Ming, R., Hou, S., Feng, Y., et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452, 991–996.
- Morgante, M., Brunner, S., Pea, G., et al. (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nature Genetics, 37, 997–1002.
- Morgante, M., Hanafey, M. & Powell, W. (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30, 194–200.
- Morse, A.M., Peterson, D.G., Islam-Faridi, M.N., et al. (2009) Evolution of genome size and complexity in Pinus . PLoS ONE, 4, e4332.
- Murray, B.G., Leitch, I.J. & Bennett, M.D. (2010) Gymnosperm DNA C-values database (release 4.0, December 2010).
- Naito, K., Cho, E., Yang, G., et al. (2006) Dramatic amplification of a rice transposable element during recent domestication. Proceedings of the National Academy of Sciences of the United States of America, 103, 17620–17625.
- Nakazato, T. (2009) Fern genome structure and evolution. American Fern Journal, 99, 134–136.
- Nakazato, T., Jung, M.K., Housworth, E.A., et al. (2006) Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii . Genetics, 173, 1585–1597.
- O'Kane, S.L. & Al-Shehbaz, I.A. (2003) Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Annals of the Missouri Botanical Garden, 90, 603–612.
- Obermayer, R., Leitch, I.J., Hanson, L., et al. (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Annals of Botany, 90, 209–217.
- Ohno, S. (1970) Evolution by Gene Duplication. Springer, New York.
- Ohri, D. & Khoshoo, T.N. (1986) Genome size in gymnosperms. Plant Systematics and Evolution, 153, 119–132.
- Olsen, K.M., Caicedo, A.L., Polato, N., et al. (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics, 173, 975–983.
- Ouyang, S., Zhu, W., Hamilton, J., et al. (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research, 35, D883–D887.
- Palaisa, K., Morgante, M., Tingey, S., et al. (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proceedings of the National Academy of Sciences of the United States of America, 101, 9885–9890.
- Parchman, T.L., Geist, K.S., Grahnen, J.A., et al. (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics, 11, 180.
- Paterson, A.H. (2002) What has QTL mapping taught us about plant domestication? New Phytologist, 154, 591–608.
- Paterson, A.H., Bowers, J.E., Bruggmann, R., et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556.
- Paterson, A.H., Bowers, J.E. & Chapman, B.A. (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences of the United States of America, 101, 9903–9908.
- Paterson, A.H., Freeling, M., Tang, H., et al. (2010) Insights from the comparison of plant genome sequences. Annual Review of Plant Biology, 61, 349–372.
- Pellicer, J., Fay, M.F. & Leitch, I.J. (2010) The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society, 164, 10–15.
- Petrov, D.A. (2002) DNA loss and evolution of genome size in Drosophila. Genetica, 115, 81–91.
- Petrov, D.A., Lozovskaya, E.R. & Hartl, D.L. (1996) High intrinsic rate of DNA loss in Drosophila. Nature, 384, 346–349.
- Petrov, D.A., Sangster, T.A., Johnston, J.S., et al. (2000) Evidence for DNA loss as a determinant of genome size. Science, 287, 1060–1062.
- Piegu, B., Guyot, R., Picault, N., et al. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Research, 16, 1262–1269.
- Prochnik, S.E., Umen, J., Nedelcu, A.M., et al. (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri . Science, 329, 223–226.
- Purugganan, M.D. & Fuller, D.Q. (2009) The nature of selection during plant domestication. Nature, 457, 843–848.
- Qiu, Y.-L. (2008) Phylogeny and evolution of charophytic algae and land plants. Journal of Systematics and Evolution, 46, 287–306.
- Rabinowicz, P.D., Citek, R., Budiman, M.A., et al. (2005) Differential methylation of genes and repeats in land plants. Genome Research, 15, 1431–1440.
- Rensing, S.A., Lang, D., Zimmer, A.D., et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64–69.
- Richardt, S., Lang, D., Reski, R., et al. (2007) PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. Plant Physiology, 143, 1452–1466.
- Riechmann, J.L., Heard, J., Martin, G., et al. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110.
- Rostoks, N., Park, Y.J., Ramakrishna, W., et al. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Functional & Integrative Genomics, 2, 51–59.
- Salse, J., Bolot, S., Throude, M., et al. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell, 20, 11–24.
- SanMiguel, P. & Bennetzen, J. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany, 82 (Suppl. A), 37–44.
- SanMiguel, P., Gaut, B.S., Tikhonov, A., et al. (1998) The paleontology of intergene retrotransposons of maize. Nature Genetics, 20, 43–45.
- SanMiguel, P., Tikhonov, A., Jin, Y.K., et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science, 274, 765–768.
- Schmidt, R. (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Molecular Biology, 48, 21–37.
- Schmutz, J., Cannon, S.B., Schlueter, J., et al. (2010) Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183.
- Schnable, P.S., Ware, D., Fulton, R.S., et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science, 326, 1112–1115.
- Semon, M. & Wolfe, K.H. (2007) Consequences of genome duplication. Current Opinion in Genetics & Development, 17, 505–512.
- Shahmuradov, I.A., Akbarova, Y.Y., Solovyev, V.V., et al. (2003) Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Molecular Biology, 52, 923–934.
- Shirasu, K., Schulman, A.H., Lahaye, T., et al. (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Research, 10, 908–915.
- Shiu, S.H., Shih, M.C. & Li, W.H. (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiology, 139, 18–26.
- Simillion, C., Vandepoele, K., Van Montagu, M.C., et al. (2002) The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of The United States of America, 99, 13627–13632.
- Simons, K.J., Fellers, J.P., Trick, H.N., et al. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547–555.
- Smarda, P., Horova, L., Bures, P., et al. (2010) Stabilizing selection on genome size in a population of Festuca pallens under conditions of intensive intraspecific competition. New Phytologist, 187, 1195–1204.
- Soltis, D. & Soltis, P. (1999) Polyploidy: recurrent formation and genome evolution. Trends in Ecology and Evolution, 14, 348–352.
- Soltis, D.E., Albert, V.A., Leebens-Mack, J., et al. (2009) Polyploidy and angiosperm diversification. American Journal of Botany, 96, 336–348.
- Soltis, D.E. & Burleigh, J.G. (2009) Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 106, 5455–5456.
- Tanaka, T., Antonio, B.A., Kikuchi, S., et al. (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 36, D1028–D1033.
- Tang, H., Bowers, J.E., Wang, X., et al. (2008a) Synteny and collinearity in plant genomes. Science, 320, 486–488.
- Tang, H., Bowers, J.E., Wang, X., et al. (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proceedings of the National Academy of Sciences of the United States of America, 107, 472–477.
- Tang, H., Sezen, U. & Paterson, A.H. (2009) Domestication and plant genomes. Current Opinion in Plant Biology, 13, 1–7.
- Tang, H., Wang, X., Bowers, J.E., et al. (2008b) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Research, 18, 1944–1954.
- Thiel, T., Graner, A., Waugh, R., et al. (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evolutionary Biology, 9, 209.
- Thomas, C.A., Jr. (1971) The genetic organization of chromosomes. Annual Review of Genetics, 5, 237–256.
- Tian, F., Stevens, N.M. & Buckler, E.S.T. (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proceedings of the National Academy of Sciences of the United States of America, 106 (Suppl. 1), 9979–9986.
- Tikhonov, A.P., SanMiguel, P.J., Nakajima, Y., et al. (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proceedings of the National Academy of Sciences of the United States of America, 96, 7409–7414.
- Tirichine, L. & Bowler, C. (2011) Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant Journal, 66, 45–57.
- Tsukahara, S., Kobayashi, A., Kawabe, A., et al. (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature, 461, 423–426.
- Tuskan, G.A., Difazio, S., Jansson, S., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–1604.
- Van de Peer, Y., Fawcett, J.A., Proost, S., et al. (2009a) The flowering world: a tale of duplications. Trends in Plant Science, 14, 680–688.
- Van de Peer, Y., Maere, S. & Meyer, A. (2009b) The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 10, 725–732.
- Vandepoele, K. & Van de Peer, Y. (2005) Exploring the plant transcriptome through phylogenetic profiling. Plant Physiology, 137, 31–42.
- Velasco, R., Zharkikh, A., Affourtit, J., et al. (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 42, 833–839.
- Velasco, R., Zharkikh, A., Troggio, M., et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE, 2, e1326.
- Vicient, C.M., Jaaskelainen, M.J., Kalendar, R., et al. (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiology, 125, 1283–1292.
- Vision, T.J., Brown, D.G. & Tanksley, S.D. (2000) The origins of genomic duplications in Arabidopsis. Science, 290, 2114–2117.
- Vitte, C. & Bennetzen, J.L. (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 103, 17638–17643.
- Vitte, C. & Panaud, O. (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetic and Genome Research, 110, 91–107.
- Vogel, C. & Chothia, C. (2006) Protein family expansions and biological complexity. PLoS Computational Biology, 2(5): e48.
- Vogel, J.P. Garvin, D.F., Mockler, T.C., et al. (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon . Nature, 463, 763–768.
- Wakamiya, I., Newton, R.J., Johnston, J.S., et al. (1993) Genome size and environmental factors in the genus Pinus. American Journal of Botany, 80, 1235–1241.
- Wang, Q. & Dooner, H.K. (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proceedings of the National Academy of Sciences of the United States of America, 103, 17644–17649.
- Wang, W., Tanurdzic, M., Luo, M., et al. (2005) Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics. BMC Plant Biology, 5, 10.
- Wendel, J.F. (2000) Genome evolution in polyploids. Plant Molecular Biology, 42, 225–249.
- Wessler, S.R., Bureau, T.E. & White, S.E. (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Current Opinion in Genetics & Development, 5, 814–821.
- Williams, C.G., Joyner, K.L., Auckland, L.D., et al. (2002) Genomic consequences of interspecific Pinus spp. hybridization. Biological Journal of the Linnean Society, 75, 503–508.
- Wood, T.E., Takebayashi, N., Barker, M.S., et al. (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 13875–13879.
- Wright, S.I., Bi, I.V., Schroeder, S.G., et al. (2005) The effects of artificial selection on the maize genome. Science, 308, 1310–1314.
- Xu, K., Xu, X., Fukao, T., et al. (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442, 705–708.
- Yagi, E., Akita, T. & Kawahara, T. (2011) A novel Au SINE sequence found in a gymnosperm. Genes & Genetic Systems, 86, 19–25.
- Yang, L. & Bennetzen, J.L. (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 106, 19922–19927.
- Yogeeswaran, K., Frary, A., York, T.L., et al. (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Research, 15, 505–515.
- Yu, J., Hu, S., Wang, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296, 79–92.
- Zhu, W. & Buell, C.R. (2007) Improvement of whole-genome annotation of cereals through comparative analyses. Genome Research, 17, 299–310.
- Ziolkowski, P.A., Koczyk, G., Galganski, L., et al. (2009) Genome sequence comparison of Col and Ler lines reveals the dynamic nature of Arabidopsis chromosomes. Nucleic Acids Research, 37, 3189–3201.
- Zuccolo, A., Sebastian, A., Talag, J., et al. (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza . BMC Evolutionary Biology, 7, 152.
Browse other articles of this reference work: